Properties

Label 2299.1.m.a
Level $2299$
Weight $1$
Character orbit 2299.m
Analytic conductor $1.147$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,1,Mod(493,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([6, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.493"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.m (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-1,-2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.5285401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{4} q^{4} + (\zeta_{10}^{4} + \zeta_{10}^{2}) q^{5} + (\zeta_{10}^{3} - 1) q^{7} + \zeta_{10}^{2} q^{9} - \zeta_{10}^{3} q^{16} + (\zeta_{10} - 1) q^{17} + \zeta_{10} q^{19} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{20} + \cdots + (\zeta_{10}^{3} - 1) q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{4} - 2 q^{5} - 3 q^{7} - q^{9} - q^{16} - 3 q^{17} + q^{19} - 2 q^{20} - 2 q^{23} - 3 q^{25} + 2 q^{28} - q^{35} - q^{36} + 2 q^{43} - 2 q^{45} - 2 q^{47} + 2 q^{49} - 3 q^{61} - 3 q^{63}+ \cdots - 3 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(\zeta_{10}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
493.1
0.809017 0.587785i
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 + 0.587785i
0 0 −0.809017 0.587785i −0.500000 1.53884i 0 −1.30902 0.951057i 0 0.309017 0.951057i 0
1291.1 0 0 0.309017 + 0.951057i −0.500000 + 0.363271i 0 −0.190983 0.587785i 0 −0.809017 0.587785i 0
1576.1 0 0 0.309017 0.951057i −0.500000 0.363271i 0 −0.190983 + 0.587785i 0 −0.809017 + 0.587785i 0
1842.1 0 0 −0.809017 + 0.587785i −0.500000 + 1.53884i 0 −1.30902 + 0.951057i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
11.c even 5 1 inner
209.m odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.1.m.a 4
11.b odd 2 1 209.1.m.a 4
11.c even 5 1 2299.1.b.b 2
11.c even 5 1 inner 2299.1.m.a 4
11.c even 5 2 2299.1.m.c 4
11.d odd 10 1 209.1.m.a 4
11.d odd 10 1 2299.1.b.a 2
11.d odd 10 2 2299.1.m.b 4
19.b odd 2 1 CM 2299.1.m.a 4
33.d even 2 1 1881.1.bv.a 4
33.f even 10 1 1881.1.bv.a 4
44.c even 2 1 3344.1.bx.a 4
44.g even 10 1 3344.1.bx.a 4
209.d even 2 1 209.1.m.a 4
209.g even 6 2 3971.1.s.a 8
209.h odd 6 2 3971.1.s.a 8
209.k even 10 1 209.1.m.a 4
209.k even 10 1 2299.1.b.a 2
209.k even 10 2 2299.1.m.b 4
209.m odd 10 1 2299.1.b.b 2
209.m odd 10 1 inner 2299.1.m.a 4
209.m odd 10 2 2299.1.m.c 4
209.p even 18 6 3971.1.bc.a 24
209.q odd 18 6 3971.1.bc.a 24
209.s odd 30 2 3971.1.s.a 8
209.t even 30 2 3971.1.s.a 8
209.v odd 90 6 3971.1.bc.a 24
209.w even 90 6 3971.1.bc.a 24
627.b odd 2 1 1881.1.bv.a 4
627.y odd 10 1 1881.1.bv.a 4
836.h odd 2 1 3344.1.bx.a 4
836.s odd 10 1 3344.1.bx.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.1.m.a 4 11.b odd 2 1
209.1.m.a 4 11.d odd 10 1
209.1.m.a 4 209.d even 2 1
209.1.m.a 4 209.k even 10 1
1881.1.bv.a 4 33.d even 2 1
1881.1.bv.a 4 33.f even 10 1
1881.1.bv.a 4 627.b odd 2 1
1881.1.bv.a 4 627.y odd 10 1
2299.1.b.a 2 11.d odd 10 1
2299.1.b.a 2 209.k even 10 1
2299.1.b.b 2 11.c even 5 1
2299.1.b.b 2 209.m odd 10 1
2299.1.m.a 4 1.a even 1 1 trivial
2299.1.m.a 4 11.c even 5 1 inner
2299.1.m.a 4 19.b odd 2 1 CM
2299.1.m.a 4 209.m odd 10 1 inner
2299.1.m.b 4 11.d odd 10 2
2299.1.m.b 4 209.k even 10 2
2299.1.m.c 4 11.c even 5 2
2299.1.m.c 4 209.m odd 10 2
3344.1.bx.a 4 44.c even 2 1
3344.1.bx.a 4 44.g even 10 1
3344.1.bx.a 4 836.h odd 2 1
3344.1.bx.a 4 836.s odd 10 1
3971.1.s.a 8 209.g even 6 2
3971.1.s.a 8 209.h odd 6 2
3971.1.s.a 8 209.s odd 30 2
3971.1.s.a 8 209.t even 30 2
3971.1.bc.a 24 209.p even 18 6
3971.1.bc.a 24 209.q odd 18 6
3971.1.bc.a 24 209.v odd 90 6
3971.1.bc.a 24 209.w even 90 6

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2299, [\chi])\):

\( T_{5}^{4} + 2T_{5}^{3} + 4T_{5}^{2} + 3T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 3T_{7}^{3} + 4T_{7}^{2} + 2T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less