Properties

Label 2299.1.bj.a
Level $2299$
Weight $1$
Character orbit 2299.bj
Analytic conductor $1.147$
Analytic rank $0$
Dimension $40$
Projective image $D_{55}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,1,Mod(37,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(110))
 
chi = DirichletCharacter(H, H._module([42, 55]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.bj (of order \(110\), degree \(40\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(40\)
Coefficient field: \(\Q(\zeta_{55})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{40} - x^{39} + x^{35} - x^{34} + x^{30} - x^{28} + x^{25} - x^{23} + x^{20} - x^{17} + x^{15} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{55}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{55} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{110}^{13} q^{4} + (\zeta_{110}^{54} + \zeta_{110}^{28}) q^{5} + (\zeta_{110}^{30} + \zeta_{110}^{6}) q^{7} + \zeta_{110}^{44} q^{9} + \zeta_{110}^{22} q^{11} + \zeta_{110}^{26} q^{16} + ( - \zeta_{110}^{25} - \zeta_{110}^{7}) q^{17} + \cdots - \zeta_{110}^{11} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{4} + 2 q^{5} - 3 q^{7} - 10 q^{9} - 10 q^{11} + q^{16} - 3 q^{17} + q^{19} + 2 q^{20} + 2 q^{23} + 3 q^{25} + 2 q^{28} - q^{35} + q^{36} + 2 q^{43} - 4 q^{44} + 2 q^{45} + 2 q^{47} - 2 q^{49}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(-\zeta_{110}^{13}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−0.998369 + 0.0570888i
−0.985354 + 0.170522i
0.974012 0.226497i
0.516397 + 0.856349i
−0.362808 + 0.931864i
0.516397 0.856349i
0.941844 + 0.336049i
−0.736741 0.676175i
0.696938 + 0.717132i
0.610648 + 0.791902i
0.897398 + 0.441221i
0.941844 0.336049i
−0.921124 0.389270i
0.0855750 + 0.996332i
−0.985354 0.170522i
0.0855750 0.996332i
0.897398 0.441221i
−0.466667 + 0.884433i
0.993482 0.113991i
−0.870746 0.491733i
0 0 −0.736741 + 0.676175i −1.02693 1.05668i 0 0.799530 1.32587i 0 −0.809017 0.587785i 0
75.1 0 0 0.610648 + 0.791902i −0.899779 + 0.825810i 0 0.931812 + 0.0532830i 0 0.309017 0.951057i 0
113.1 0 0 −0.985354 0.170522i 1.96749 + 0.112505i 0 1.03984 1.52072i 0 −0.809017 + 0.587785i 0
170.1 0 0 0.696938 + 0.717132i −0.354349 1.34808i 0 1.83474 0.654632i 0 0.309017 + 0.951057i 0
246.1 0 0 0.993482 + 0.113991i −0.927251 1.75734i 0 0.468333 + 0.197919i 0 −0.809017 0.587785i 0
284.1 0 0 0.696938 0.717132i −0.354349 + 1.34808i 0 1.83474 + 0.654632i 0 0.309017 0.951057i 0
322.1 0 0 −0.254218 0.967147i −0.0435095 0.506572i 0 −1.12153 + 0.128683i 0 −0.809017 + 0.587785i 0
379.1 0 0 0.974012 + 0.226497i −1.09955 + 1.60804i 0 −1.21371 1.24888i 0 0.309017 + 0.951057i 0
455.1 0 0 −0.564443 0.825472i −0.224186 1.10640i 0 0.500990 1.90596i 0 −0.809017 0.587785i 0
531.1 0 0 0.774142 0.633012i 1.50805 0.350681i 0 0.0420768 + 0.0386178i 0 −0.809017 + 0.587785i 0
588.1 0 0 0.941844 0.336049i 1.87141 0.214724i 0 −0.505709 + 1.29890i 0 0.309017 + 0.951057i 0
664.1 0 0 −0.254218 + 0.967147i −0.0435095 + 0.506572i 0 −1.12153 0.128683i 0 −0.809017 0.587785i 0
702.1 0 0 −0.466667 + 0.884433i −0.722533 0.590812i 0 0.104512 + 0.135534i 0 0.309017 0.951057i 0
740.1 0 0 0.897398 + 0.441221i −0.651166 1.67251i 0 −0.0294925 + 1.03237i 0 −0.809017 + 0.587785i 0
797.1 0 0 0.610648 0.791902i −0.899779 0.825810i 0 0.931812 0.0532830i 0 0.309017 + 0.951057i 0
873.1 0 0 0.897398 0.441221i −0.651166 + 1.67251i 0 −0.0294925 1.03237i 0 −0.809017 0.587785i 0
911.1 0 0 0.941844 + 0.336049i 1.87141 + 0.214724i 0 −0.505709 1.29890i 0 0.309017 0.951057i 0
949.1 0 0 −0.0285561 + 0.999592i 0.0497301 0.0280839i 0 1.38943 1.13613i 0 −0.809017 + 0.587785i 0
1006.1 0 0 0.0855750 0.996332i −0.00488737 + 0.171080i 0 −0.185351 0.351280i 0 0.309017 + 0.951057i 0
1082.1 0 0 −0.921124 0.389270i −1.12496 + 1.45888i 0 −1.95786 + 0.338821i 0 −0.809017 0.587785i 0
See all 40 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
121.g even 55 1 inner
2299.bj odd 110 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.1.bj.a 40
19.b odd 2 1 CM 2299.1.bj.a 40
121.g even 55 1 inner 2299.1.bj.a 40
2299.bj odd 110 1 inner 2299.1.bj.a 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.1.bj.a 40 1.a even 1 1 trivial
2299.1.bj.a 40 19.b odd 2 1 CM
2299.1.bj.a 40 121.g even 55 1 inner
2299.1.bj.a 40 2299.bj odd 110 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2299, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{40} \) Copy content Toggle raw display
$3$ \( T^{40} \) Copy content Toggle raw display
$5$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{40} + 3 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{10} \) Copy content Toggle raw display
$13$ \( T^{40} \) Copy content Toggle raw display
$17$ \( T^{40} + 3 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{40} - T^{39} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{40} \) Copy content Toggle raw display
$31$ \( T^{40} \) Copy content Toggle raw display
$37$ \( T^{40} \) Copy content Toggle raw display
$41$ \( T^{40} \) Copy content Toggle raw display
$43$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{40} \) Copy content Toggle raw display
$59$ \( T^{40} \) Copy content Toggle raw display
$61$ \( T^{40} + 3 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{40} \) Copy content Toggle raw display
$71$ \( T^{40} \) Copy content Toggle raw display
$73$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{40} \) Copy content Toggle raw display
$83$ \( T^{40} - 2 T^{39} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{40} \) Copy content Toggle raw display
$97$ \( T^{40} \) Copy content Toggle raw display
show more
show less