Properties

Label 2299.1.b.b
Level $2299$
Weight $1$
Character orbit 2299.b
Self dual yes
Analytic conductor $1.147$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,1,Mod(1937,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1937");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.5285401.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{4} + (\beta - 1) q^{5} + ( - \beta + 1) q^{7} + q^{9} + q^{16} + \beta q^{17} - q^{19} + (\beta - 1) q^{20} - \beta q^{23} + ( - \beta + 1) q^{25} + ( - \beta + 1) q^{28} + (\beta - 2) q^{35} + \cdots + ( - \beta + 1) q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - q^{5} + q^{7} + 2 q^{9} + 2 q^{16} + q^{17} - 2 q^{19} - q^{20} - q^{23} + q^{25} + q^{28} - 3 q^{35} + 2 q^{36} + q^{43} - q^{45} - q^{47} + q^{49} + q^{61} + q^{63} + 2 q^{64}+ \cdots + q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1937.1
−0.618034
1.61803
0 0 1.00000 −1.61803 0 1.61803 0 1.00000 0
1937.2 0 0 1.00000 0.618034 0 −0.618034 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.1.b.b 2
11.b odd 2 1 2299.1.b.a 2
11.c even 5 2 2299.1.m.a 4
11.c even 5 2 2299.1.m.c 4
11.d odd 10 2 209.1.m.a 4
11.d odd 10 2 2299.1.m.b 4
19.b odd 2 1 CM 2299.1.b.b 2
33.f even 10 2 1881.1.bv.a 4
44.g even 10 2 3344.1.bx.a 4
209.d even 2 1 2299.1.b.a 2
209.k even 10 2 209.1.m.a 4
209.k even 10 2 2299.1.m.b 4
209.m odd 10 2 2299.1.m.a 4
209.m odd 10 2 2299.1.m.c 4
209.s odd 30 4 3971.1.s.a 8
209.t even 30 4 3971.1.s.a 8
209.v odd 90 12 3971.1.bc.a 24
209.w even 90 12 3971.1.bc.a 24
627.y odd 10 2 1881.1.bv.a 4
836.s odd 10 2 3344.1.bx.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.1.m.a 4 11.d odd 10 2
209.1.m.a 4 209.k even 10 2
1881.1.bv.a 4 33.f even 10 2
1881.1.bv.a 4 627.y odd 10 2
2299.1.b.a 2 11.b odd 2 1
2299.1.b.a 2 209.d even 2 1
2299.1.b.b 2 1.a even 1 1 trivial
2299.1.b.b 2 19.b odd 2 1 CM
2299.1.m.a 4 11.c even 5 2
2299.1.m.a 4 209.m odd 10 2
2299.1.m.b 4 11.d odd 10 2
2299.1.m.b 4 209.k even 10 2
2299.1.m.c 4 11.c even 5 2
2299.1.m.c 4 209.m odd 10 2
3344.1.bx.a 4 44.g even 10 2
3344.1.bx.a 4 836.s odd 10 2
3971.1.s.a 8 209.s odd 30 4
3971.1.s.a 8 209.t even 30 4
3971.1.bc.a 24 209.v odd 90 12
3971.1.bc.a 24 209.w even 90 12

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - T_{7} - 1 \) acting on \(S_{1}^{\mathrm{new}}(2299, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$47$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less