Newspace parameters
| Level: | \( N \) | = | \( 229 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Character orbit: | \([\chi]\) | = | 229.b (of order \(2\) and degree \(1\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(1.82857420629\) |
| Analytic rank: | \(0\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(\sqrt{-5}) \) |
| Coefficient ring: | \(\Z[a_1, a_2]\) |
| Coefficient ring index: | \( 1 \) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/229\mathbb{Z}\right)^\times\).
| \(n\) | \(6\) |
| \(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 228.1 |
|
− | 2.23607i | 1.00000 | −3.00000 | 3.00000 | − | 2.23607i | 0 | 2.23607i | −2.00000 | − | 6.70820i | |||||||||||||||||||||
| 228.2 | 2.23607i | 1.00000 | −3.00000 | 3.00000 | 2.23607i | 0 | − | 2.23607i | −2.00000 | 6.70820i | ||||||||||||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 229.b | Even | 1 | yes |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \( T_{2}^{2} + 5 \) acting on \(S_{2}^{\mathrm{new}}(229, [\chi])\).