Properties

Label 2280.2.u
Level $2280$
Weight $2$
Character orbit 2280.u
Rep. character $\chi_{2280}(1141,\cdot)$
Character field $\Q$
Dimension $144$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.u (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 488 144 344
Cusp forms 472 144 328
Eisenstein series 16 0 16

Trace form

\( 144q - 8q^{2} + 8q^{4} - 16q^{7} - 8q^{8} - 144q^{9} + O(q^{10}) \) \( 144q - 8q^{2} + 8q^{4} - 16q^{7} - 8q^{8} - 144q^{9} + 24q^{14} - 8q^{16} + 8q^{18} + 16q^{20} + 24q^{22} + 32q^{23} - 24q^{24} - 144q^{25} - 16q^{26} + 16q^{28} - 8q^{32} - 40q^{34} - 8q^{36} - 24q^{42} + 16q^{44} - 16q^{46} + 144q^{49} + 8q^{50} + 24q^{52} - 32q^{55} - 8q^{56} + 24q^{62} + 16q^{63} - 40q^{64} + 24q^{68} + 16q^{70} + 32q^{71} + 8q^{72} - 24q^{74} + 24q^{78} - 32q^{79} + 144q^{81} - 72q^{82} + 48q^{84} + 72q^{86} - 48q^{87} - 104q^{88} + 24q^{92} + 8q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)