Properties

Label 2280.2.eg
Level $2280$
Weight $2$
Character orbit 2280.eg
Rep. character $\chi_{2280}(899,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $2832$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.eg (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2280 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 2928 2928 0
Cusp forms 2832 2832 0
Eisenstein series 96 96 0

Trace form

\( 2832q - 30q^{4} - 12q^{6} - 24q^{9} + O(q^{10}) \) \( 2832q - 30q^{4} - 12q^{6} - 24q^{9} - 12q^{10} - 18q^{16} - 48q^{19} + 48q^{24} - 24q^{25} + 18q^{30} + 18q^{34} - 12q^{36} - 42q^{40} - 12q^{46} - 1296q^{49} - 24q^{51} - 60q^{60} + 30q^{64} - 48q^{66} + 66q^{70} - 192q^{75} - 60q^{76} - 24q^{81} + 78q^{84} + 18q^{90} + 120q^{91} - 24q^{94} + 24q^{96} - 132q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.