Properties

Label 2280.2.eb
Level $2280$
Weight $2$
Character orbit 2280.eb
Rep. character $\chi_{2280}(61,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $960$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.eb (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 2928 960 1968
Cusp forms 2832 960 1872
Eisenstein series 96 0 96

Trace form

\( 960q - 6q^{4} - 6q^{6} + O(q^{10}) \) \( 960q - 6q^{4} - 6q^{6} + 6q^{10} + 6q^{16} + 120q^{32} - 126q^{34} + 6q^{36} + 60q^{38} + 120q^{44} - 60q^{46} - 48q^{48} - 480q^{49} - 12q^{52} + 6q^{54} + 12q^{60} - 144q^{62} - 66q^{64} + 96q^{66} + 156q^{68} + 72q^{70} + 48q^{73} + 96q^{74} + 132q^{76} + 120q^{78} + 96q^{80} - 60q^{82} + 36q^{84} + 168q^{86} + 48q^{88} + 12q^{90} + 24q^{94} + 24q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)