Properties

Label 2280.2.dm
Level $2280$
Weight $2$
Character orbit 2280.dm
Rep. character $\chi_{2280}(163,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $960$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.dm (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 760 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 1952 960 992
Cusp forms 1888 960 928
Eisenstein series 64 0 64

Trace form

\( 960q + 4q^{6} + 24q^{8} + O(q^{10}) \) \( 960q + 4q^{6} + 24q^{8} - 4q^{16} - 80q^{20} + 40q^{22} - 12q^{28} + 20q^{32} + 96q^{35} + 4q^{36} + 80q^{38} - 20q^{40} - 40q^{50} - 16q^{51} - 152q^{58} + 20q^{62} + 48q^{66} - 96q^{67} - 56q^{68} + 24q^{70} + 12q^{72} + 24q^{76} - 24q^{78} + 40q^{80} + 480q^{81} + 52q^{82} - 160q^{83} - 64q^{86} + 48q^{88} - 12q^{90} - 20q^{92} + 88q^{96} - 24q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)