Properties

Label 2280.2.cd
Level $2280$
Weight $2$
Character orbit 2280.cd
Rep. character $\chi_{2280}(11,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $640$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.cd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 456 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 976 640 336
Cusp forms 944 640 304
Eisenstein series 32 0 32

Trace form

\( 640q + 2q^{4} + O(q^{10}) \) \( 640q + 2q^{4} - 2q^{10} + 2q^{16} + 8q^{19} - 8q^{24} - 320q^{25} - 16q^{30} + 16q^{33} - 18q^{34} - 28q^{36} + 28q^{40} + 42q^{42} + 62q^{48} - 608q^{49} + 16q^{52} + 14q^{54} + 8q^{57} - 32q^{58} + 80q^{64} - 12q^{66} + 12q^{70} + 72q^{72} - 16q^{73} + 76q^{78} + 8q^{81} + 40q^{82} - 64q^{84} + 24q^{88} + 18q^{90} + 28q^{94} + 156q^{96} - 32q^{97} - 32q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)