Properties

Label 2280.2.bp
Level $2280$
Weight $2$
Character orbit 2280.bp
Rep. character $\chi_{2280}(77,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $864$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.bp (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 120 \)
Character field: \(\Q(i)\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 976 864 112
Cusp forms 944 864 80
Eisenstein series 32 0 32

Trace form

\( 864q + O(q^{10}) \) \( 864q + 16q^{10} + 16q^{22} - 32q^{28} + 40q^{30} - 16q^{36} - 56q^{40} + 40q^{42} - 52q^{48} - 56q^{52} - 32q^{58} - 100q^{60} - 72q^{66} - 40q^{70} - 100q^{72} - 128q^{78} + 32q^{81} - 24q^{82} + 112q^{88} - 136q^{90} + 40q^{96} - 32q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)