# Properties

 Label 2280.2.ba Level $2280$ Weight $2$ Character orbit 2280.ba Rep. character $\chi_{2280}(379,\cdot)$ Character field $\Q$ Dimension $240$ Sturm bound $960$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2280.ba (of order $$2$$ and degree $$1$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$760$$ Character field: $$\Q$$ Sturm bound: $$960$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2280, [\chi])$$.

Total New Old
Modular forms 488 240 248
Cusp forms 472 240 232
Eisenstein series 16 0 16

## Trace form

 $$240q + 4q^{4} + 4q^{6} + 240q^{9} + O(q^{10})$$ $$240q + 4q^{4} + 4q^{6} + 240q^{9} + 4q^{16} - 8q^{19} + 8q^{20} + 4q^{24} - 40q^{26} - 48q^{35} + 4q^{36} - 56q^{44} + 240q^{49} + 4q^{54} + 52q^{64} + 24q^{66} + 32q^{74} + 32q^{76} + 80q^{80} + 240q^{81} + 44q^{96} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2280, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2280, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2280, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(760, [\chi])$$$$^{\oplus 2}$$