Properties

Label 2280.2.ba
Level $2280$
Weight $2$
Character orbit 2280.ba
Rep. character $\chi_{2280}(379,\cdot)$
Character field $\Q$
Dimension $240$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.ba (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 760 \)
Character field: \(\Q\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 488 240 248
Cusp forms 472 240 232
Eisenstein series 16 0 16

Trace form

\( 240q + 4q^{4} + 4q^{6} + 240q^{9} + O(q^{10}) \) \( 240q + 4q^{4} + 4q^{6} + 240q^{9} + 4q^{16} - 8q^{19} + 8q^{20} + 4q^{24} - 40q^{26} - 48q^{35} + 4q^{36} - 56q^{44} + 240q^{49} + 4q^{54} + 52q^{64} + 24q^{66} + 32q^{74} + 32q^{76} + 80q^{80} + 240q^{81} + 44q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)