Properties

Label 2280.1.el.a.149.2
Level 22802280
Weight 11
Character 2280.149
Analytic conductor 1.1381.138
Analytic rank 00
Dimension 1212
Projective image D18D_{18}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(149,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.149"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 9, 9, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2280.el (of order 1818, degree 66, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.137868228801.13786822880
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D18D_{18}
Projective field: Galois closure of Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)

Embedding invariants

Embedding label 149.2
Root 0.3420200.939693i0.342020 - 0.939693i of defining polynomial
Character χ\chi == 2280.149
Dual form 2280.1.el.a.1469.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.642788+0.766044i)q2+(0.3420200.939693i)q3+(0.173648+0.984808i)q4+(0.9848080.173648i)q5+(0.5000000.866025i)q6+(0.866025+0.500000i)q8+(0.766044+0.642788i)q9+(0.5000000.866025i)q10+(0.9848080.173648i)q12+(0.173648+0.984808i)q15+(0.9396930.342020i)q16+(0.9848080.826352i)q17+(0.9848080.173648i)q18+(0.939693+0.342020i)q19+(0.3420200.939693i)q20+(0.3007671.70574i)q23+(0.766044+0.642788i)q24+(0.939693+0.342020i)q25+(0.866025+0.500000i)q27+(0.642788+0.766044i)q30+(0.9396931.62760i)q31+(0.3420200.939693i)q321.28558iq34+(0.5000000.866025i)q36+(0.8660250.500000i)q38+(0.9396930.342020i)q40+(0.8660250.500000i)q45+(1.113341.32683i)q46+(1.50881+1.26604i)q47+1.00000iq48+(0.500000+0.866025i)q49+(0.342020+0.939693i)q50+(0.439693+1.20805i)q51+(1.50881+0.266044i)q53+(0.173648+0.984808i)q54+(0.642788+0.766044i)q571.00000q60+(1.70574+0.300767i)q61+(0.6427881.76604i)q62+(0.5000000.866025i)q64+(0.9848080.826352i)q68+(1.50000+0.866025i)q69+(0.3420200.939693i)q721.00000iq75+(0.1736480.984808i)q76+(0.9396930.342020i)q79+(0.866025+0.500000i)q80+(0.1736480.984808i)q81+(1.627600.939693i)q83+(0.826352+0.984808i)q85+(0.939693+0.342020i)q90+1.73205q92+(1.20805+1.43969i)q93+(1.939690.342020i)q94+(0.9848080.173648i)q95+(0.766044+0.642788i)q96+(0.984808+0.173648i)q98+O(q100)q+(0.642788 + 0.766044i) q^{2} +(-0.342020 - 0.939693i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(-0.984808 - 0.173648i) q^{5} +(0.500000 - 0.866025i) q^{6} +(-0.866025 + 0.500000i) q^{8} +(-0.766044 + 0.642788i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(0.984808 - 0.173648i) q^{12} +(0.173648 + 0.984808i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-0.984808 - 0.826352i) q^{17} +(-0.984808 - 0.173648i) q^{18} +(-0.939693 + 0.342020i) q^{19} +(0.342020 - 0.939693i) q^{20} +(-0.300767 - 1.70574i) q^{23} +(0.766044 + 0.642788i) q^{24} +(0.939693 + 0.342020i) q^{25} +(0.866025 + 0.500000i) q^{27} +(-0.642788 + 0.766044i) q^{30} +(-0.939693 - 1.62760i) q^{31} +(-0.342020 - 0.939693i) q^{32} -1.28558i q^{34} +(-0.500000 - 0.866025i) q^{36} +(-0.866025 - 0.500000i) q^{38} +(0.939693 - 0.342020i) q^{40} +(0.866025 - 0.500000i) q^{45} +(1.11334 - 1.32683i) q^{46} +(-1.50881 + 1.26604i) q^{47} +1.00000i q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.342020 + 0.939693i) q^{50} +(-0.439693 + 1.20805i) q^{51} +(-1.50881 + 0.266044i) q^{53} +(0.173648 + 0.984808i) q^{54} +(0.642788 + 0.766044i) q^{57} -1.00000 q^{60} +(-1.70574 + 0.300767i) q^{61} +(0.642788 - 1.76604i) q^{62} +(0.500000 - 0.866025i) q^{64} +(0.984808 - 0.826352i) q^{68} +(-1.50000 + 0.866025i) q^{69} +(0.342020 - 0.939693i) q^{72} -1.00000i q^{75} +(-0.173648 - 0.984808i) q^{76} +(0.939693 - 0.342020i) q^{79} +(0.866025 + 0.500000i) q^{80} +(0.173648 - 0.984808i) q^{81} +(1.62760 - 0.939693i) q^{83} +(0.826352 + 0.984808i) q^{85} +(0.939693 + 0.342020i) q^{90} +1.73205 q^{92} +(-1.20805 + 1.43969i) q^{93} +(-1.93969 - 0.342020i) q^{94} +(0.984808 - 0.173648i) q^{95} +(-0.766044 + 0.642788i) q^{96} +(-0.984808 + 0.173648i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q66q106q366q49+6q5112q60+6q6418q69+12q8512q94+O(q100) 12 q + 6 q^{6} - 6 q^{10} - 6 q^{36} - 6 q^{49} + 6 q^{51} - 12 q^{60} + 6 q^{64} - 18 q^{69} + 12 q^{85} - 12 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2280Z)×\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times.

nn 457457 761761 11411141 17111711 19211921
χ(n)\chi(n) 1-1 1-1 1-1 11 e(29)e\left(\frac{2}{9}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.642788 + 0.766044i 0.642788 + 0.766044i
33 −0.342020 0.939693i −0.342020 0.939693i
44 −0.173648 + 0.984808i −0.173648 + 0.984808i
55 −0.984808 0.173648i −0.984808 0.173648i
66 0.500000 0.866025i 0.500000 0.866025i
77 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
88 −0.866025 + 0.500000i −0.866025 + 0.500000i
99 −0.766044 + 0.642788i −0.766044 + 0.642788i
1010 −0.500000 0.866025i −0.500000 0.866025i
1111 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1212 0.984808 0.173648i 0.984808 0.173648i
1313 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
1414 0 0
1515 0.173648 + 0.984808i 0.173648 + 0.984808i
1616 −0.939693 0.342020i −0.939693 0.342020i
1717 −0.984808 0.826352i −0.984808 0.826352i 1.00000i 0.5π-0.5\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
1818 −0.984808 0.173648i −0.984808 0.173648i
1919 −0.939693 + 0.342020i −0.939693 + 0.342020i
2020 0.342020 0.939693i 0.342020 0.939693i
2121 0 0
2222 0 0
2323 −0.300767 1.70574i −0.300767 1.70574i −0.642788 0.766044i 0.722222π-0.722222\pi
0.342020 0.939693i 0.388889π-0.388889\pi
2424 0.766044 + 0.642788i 0.766044 + 0.642788i
2525 0.939693 + 0.342020i 0.939693 + 0.342020i
2626 0 0
2727 0.866025 + 0.500000i 0.866025 + 0.500000i
2828 0 0
2929 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
3030 −0.642788 + 0.766044i −0.642788 + 0.766044i
3131 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
3232 −0.342020 0.939693i −0.342020 0.939693i
3333 0 0
3434 1.28558i 1.28558i
3535 0 0
3636 −0.500000 0.866025i −0.500000 0.866025i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 −0.866025 0.500000i −0.866025 0.500000i
3939 0 0
4040 0.939693 0.342020i 0.939693 0.342020i
4141 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4242 0 0
4343 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
4444 0 0
4545 0.866025 0.500000i 0.866025 0.500000i
4646 1.11334 1.32683i 1.11334 1.32683i
4747 −1.50881 + 1.26604i −1.50881 + 1.26604i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 1.00000i 1.00000i
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 0.342020 + 0.939693i 0.342020 + 0.939693i
5151 −0.439693 + 1.20805i −0.439693 + 1.20805i
5252 0 0
5353 −1.50881 + 0.266044i −1.50881 + 0.266044i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
5454 0.173648 + 0.984808i 0.173648 + 0.984808i
5555 0 0
5656 0 0
5757 0.642788 + 0.766044i 0.642788 + 0.766044i
5858 0 0
5959 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
6060 −1.00000 −1.00000
6161 −1.70574 + 0.300767i −1.70574 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
6262 0.642788 1.76604i 0.642788 1.76604i
6363 0 0
6464 0.500000 0.866025i 0.500000 0.866025i
6565 0 0
6666 0 0
6767 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
6868 0.984808 0.826352i 0.984808 0.826352i
6969 −1.50000 + 0.866025i −1.50000 + 0.866025i
7070 0 0
7171 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
7272 0.342020 0.939693i 0.342020 0.939693i
7373 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
7474 0 0
7575 1.00000i 1.00000i
7676 −0.173648 0.984808i −0.173648 0.984808i
7777 0 0
7878 0 0
7979 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
8080 0.866025 + 0.500000i 0.866025 + 0.500000i
8181 0.173648 0.984808i 0.173648 0.984808i
8282 0 0
8383 1.62760 0.939693i 1.62760 0.939693i 0.642788 0.766044i 0.277778π-0.277778\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
8484 0 0
8585 0.826352 + 0.984808i 0.826352 + 0.984808i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
9090 0.939693 + 0.342020i 0.939693 + 0.342020i
9191 0 0
9292 1.73205 1.73205
9393 −1.20805 + 1.43969i −1.20805 + 1.43969i
9494 −1.93969 0.342020i −1.93969 0.342020i
9595 0.984808 0.173648i 0.984808 0.173648i
9696 −0.766044 + 0.642788i −0.766044 + 0.642788i
9797 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
9898 −0.984808 + 0.173648i −0.984808 + 0.173648i
9999 0 0
100100 −0.500000 + 0.866025i −0.500000 + 0.866025i
101101 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
102102 −1.20805 + 0.439693i −1.20805 + 0.439693i
103103 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 0 0
105105 0 0
106106 −1.17365 0.984808i −1.17365 0.984808i
107107 1.32683 0.766044i 1.32683 0.766044i 0.342020 0.939693i 0.388889π-0.388889\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
108108 −0.642788 + 0.766044i −0.642788 + 0.766044i
109109 1.26604 + 0.223238i 1.26604 + 0.223238i 0.766044 0.642788i 0.222222π-0.222222\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.684040 −0.684040 −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
114114 −0.173648 + 0.984808i −0.173648 + 0.984808i
115115 1.73205i 1.73205i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 −0.642788 0.766044i −0.642788 0.766044i
121121 0.500000 + 0.866025i 0.500000 + 0.866025i
122122 −1.32683 1.11334i −1.32683 1.11334i
123123 0 0
124124 1.76604 0.642788i 1.76604 0.642788i
125125 −0.866025 0.500000i −0.866025 0.500000i
126126 0 0
127127 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
128128 0.984808 0.173648i 0.984808 0.173648i
129129 0 0
130130 0 0
131131 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
132132 0 0
133133 0 0
134134 0 0
135135 −0.766044 0.642788i −0.766044 0.642788i
136136 1.26604 + 0.223238i 1.26604 + 0.223238i
137137 0.342020 + 1.93969i 0.342020 + 1.93969i 0.342020 + 0.939693i 0.388889π0.388889\pi
1.00000i 0.500000π0.500000\pi
138138 −1.62760 0.592396i −1.62760 0.592396i
139139 0.439693 1.20805i 0.439693 1.20805i −0.500000 0.866025i 0.666667π-0.666667\pi
0.939693 0.342020i 0.111111π-0.111111\pi
140140 0 0
141141 1.70574 + 0.984808i 1.70574 + 0.984808i
142142 0 0
143143 0 0
144144 0.939693 0.342020i 0.939693 0.342020i
145145 0 0
146146 0 0
147147 0.984808 + 0.173648i 0.984808 + 0.173648i
148148 0 0
149149 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
150150 0.766044 0.642788i 0.766044 0.642788i
151151 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
152152 0.642788 0.766044i 0.642788 0.766044i
153153 1.28558 1.28558
154154 0 0
155155 0.642788 + 1.76604i 0.642788 + 1.76604i
156156 0 0
157157 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
158158 0.866025 + 0.500000i 0.866025 + 0.500000i
159159 0.766044 + 1.32683i 0.766044 + 1.32683i
160160 0.173648 + 0.984808i 0.173648 + 0.984808i
161161 0 0
162162 0.866025 0.500000i 0.866025 0.500000i
163163 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
164164 0 0
165165 0 0
166166 1.76604 + 0.642788i 1.76604 + 0.642788i
167167 −0.118782 0.673648i −0.118782 0.673648i −0.984808 0.173648i 0.944444π-0.944444\pi
0.866025 0.500000i 0.166667π-0.166667\pi
168168 0 0
169169 −0.766044 0.642788i −0.766044 0.642788i
170170 −0.223238 + 1.26604i −0.223238 + 1.26604i
171171 0.500000 0.866025i 0.500000 0.866025i
172172 0 0
173173 −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i 0.944444π-0.944444\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
180180 0.342020 + 0.939693i 0.342020 + 0.939693i
181181 −0.439693 0.524005i −0.439693 0.524005i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
182182 0 0
183183 0.866025 + 1.50000i 0.866025 + 1.50000i
184184 1.11334 + 1.32683i 1.11334 + 1.32683i
185185 0 0
186186 −1.87939 −1.87939
187187 0 0
188188 −0.984808 1.70574i −0.984808 1.70574i
189189 0 0
190190 0.766044 + 0.642788i 0.766044 + 0.642788i
191191 0 0 1.00000 00
−1.00000 π\pi
192192 −0.984808 0.173648i −0.984808 0.173648i
193193 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
194194 0 0
195195 0 0
196196 −0.766044 0.642788i −0.766044 0.642788i
197197 −0.300767 + 0.173648i −0.300767 + 0.173648i −0.642788 0.766044i 0.722222π-0.722222\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
198198 0 0
199199 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
200200 −0.984808 + 0.173648i −0.984808 + 0.173648i
201201 0 0
202202 0 0
203203 0 0
204204 −1.11334 0.642788i −1.11334 0.642788i
205205 0 0
206206 0 0
207207 1.32683 + 1.11334i 1.32683 + 1.11334i
208208 0 0
209209 0 0
210210 0 0
211211 −1.26604 + 1.50881i −1.26604 + 1.50881i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
212212 1.53209i 1.53209i
213213 0 0
214214 1.43969 + 0.524005i 1.43969 + 0.524005i
215215 0 0
216216 −1.00000 −1.00000
217217 0 0
218218 0.642788 + 1.11334i 0.642788 + 1.11334i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
224224 0 0
225225 −0.939693 + 0.342020i −0.939693 + 0.342020i
226226 −0.439693 0.524005i −0.439693 0.524005i
227227 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 −0.866025 + 0.500000i −0.866025 + 0.500000i
229229 1.96962i 1.96962i −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 0.984808i 0.444444π-0.444444\pi
230230 −1.32683 + 1.11334i −1.32683 + 1.11334i
231231 0 0
232232 0 0
233233 0.118782 0.673648i 0.118782 0.673648i −0.866025 0.500000i 0.833333π-0.833333\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
234234 0 0
235235 1.70574 0.984808i 1.70574 0.984808i
236236 0 0
237237 −0.642788 0.766044i −0.642788 0.766044i
238238 0 0
239239 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0.173648 0.984808i 0.173648 0.984808i
241241 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
242242 −0.342020 + 0.939693i −0.342020 + 0.939693i
243243 −0.984808 + 0.173648i −0.984808 + 0.173648i
244244 1.73205i 1.73205i
245245 0.642788 0.766044i 0.642788 0.766044i
246246 0 0
247247 0 0
248248 1.62760 + 0.939693i 1.62760 + 0.939693i
249249 −1.43969 1.20805i −1.43969 1.20805i
250250 −0.173648 0.984808i −0.173648 0.984808i
251251 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
252252 0 0
253253 0 0
254254 0 0
255255 0.642788 1.11334i 0.642788 1.11334i
256256 0.766044 + 0.642788i 0.766044 + 0.642788i
257257 −1.32683 + 1.11334i −1.32683 + 1.11334i −0.342020 + 0.939693i 0.611111π0.611111\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.642788 + 0.233956i −0.642788 + 0.233956i −0.642788 0.766044i 0.722222π-0.722222\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 1.53209 1.53209
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
270270 1.00000i 1.00000i
271271 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
1.00000 00
272272 0.642788 + 1.11334i 0.642788 + 1.11334i
273273 0 0
274274 −1.26604 + 1.50881i −1.26604 + 1.50881i
275275 0 0
276276 −0.592396 1.62760i −0.592396 1.62760i
277277 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
278278 1.20805 0.439693i 1.20805 0.439693i
279279 1.76604 + 0.642788i 1.76604 + 0.642788i
280280 0 0
281281 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
282282 0.342020 + 1.93969i 0.342020 + 1.93969i
283283 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
284284 0 0
285285 −0.500000 0.866025i −0.500000 0.866025i
286286 0 0
287287 0 0
288288 0.866025 + 0.500000i 0.866025 + 0.500000i
289289 0.113341 + 0.642788i 0.113341 + 0.642788i
290290 0 0
291291 0 0
292292 0 0
293293 1.62760 + 0.939693i 1.62760 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
294294 0.500000 + 0.866025i 0.500000 + 0.866025i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0.984808 + 0.173648i 0.984808 + 0.173648i
301301 0 0
302302 0.223238 + 0.266044i 0.223238 + 0.266044i
303303 0 0
304304 1.00000 1.00000
305305 1.73205 1.73205
306306 0.826352 + 0.984808i 0.826352 + 0.984808i
307307 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
308308 0 0
309309 0 0
310310 −0.939693 + 1.62760i −0.939693 + 1.62760i
311311 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 0 0
313313 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
314314 0 0
315315 0 0
316316 0.173648 + 0.984808i 0.173648 + 0.984808i
317317 −0.642788 + 1.76604i −0.642788 + 1.76604i 1.00000i 0.5π0.5\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
318318 −0.524005 + 1.43969i −0.524005 + 1.43969i
319319 0 0
320320 −0.642788 + 0.766044i −0.642788 + 0.766044i
321321 −1.17365 0.984808i −1.17365 0.984808i
322322 0 0
323323 1.20805 + 0.439693i 1.20805 + 0.439693i
324324 0.939693 + 0.342020i 0.939693 + 0.342020i
325325 0 0
326326 0 0
327327 −0.223238 1.26604i −0.223238 1.26604i
328328 0 0
329329 0 0
330330 0 0
331331 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
332332 0.642788 + 1.76604i 0.642788 + 1.76604i
333333 0 0
334334 0.439693 0.524005i 0.439693 0.524005i
335335 0 0
336336 0 0
337337 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
338338 1.00000i 1.00000i
339339 0.233956 + 0.642788i 0.233956 + 0.642788i
340340 −1.11334 + 0.642788i −1.11334 + 0.642788i
341341 0 0
342342 0.984808 0.173648i 0.984808 0.173648i
343343 0 0
344344 0 0
345345 1.62760 0.592396i 1.62760 0.592396i
346346 −1.00000 −1.00000
347347 −1.50881 0.266044i −1.50881 0.266044i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 0 0
349349 −0.592396 + 0.342020i −0.592396 + 0.342020i −0.766044 0.642788i 0.777778π-0.777778\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
360360 −0.500000 + 0.866025i −0.500000 + 0.866025i
361361 0.766044 0.642788i 0.766044 0.642788i
362362 0.118782 0.673648i 0.118782 0.673648i
363363 0.642788 0.766044i 0.642788 0.766044i
364364 0 0
365365 0 0
366366 −0.592396 + 1.62760i −0.592396 + 1.62760i
367367 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
368368 −0.300767 + 1.70574i −0.300767 + 1.70574i
369369 0 0
370370 0 0
371371 0 0
372372 −1.20805 1.43969i −1.20805 1.43969i
373373 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
374374 0 0
375375 −0.173648 + 0.984808i −0.173648 + 0.984808i
376376 0.673648 1.85083i 0.673648 1.85083i
377377 0 0
378378 0 0
379379 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
380380 1.00000i 1.00000i
381381 0 0
382382 0 0
383383 −1.20805 + 0.439693i −1.20805 + 0.439693i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
384384 −0.500000 0.866025i −0.500000 0.866025i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
390390 0 0
391391 −1.11334 + 1.92836i −1.11334 + 1.92836i
392392 1.00000i 1.00000i
393393 0 0
394394 −0.326352 0.118782i −0.326352 0.118782i
395395 −0.984808 + 0.173648i −0.984808 + 0.173648i
396396 0 0
397397 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
398398 0.984808 + 0.173648i 0.984808 + 0.173648i
399399 0 0
400400 −0.766044 0.642788i −0.766044 0.642788i
401401 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.342020 + 0.939693i −0.342020 + 0.939693i
406406 0 0
407407 0 0
408408 −0.223238 1.26604i −0.223238 1.26604i
409409 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
410410 0 0
411411 1.70574 0.984808i 1.70574 0.984808i
412412 0 0
413413 0 0
414414 1.73205i 1.73205i
415415 −1.76604 + 0.642788i −1.76604 + 0.642788i
416416 0 0
417417 −1.28558 −1.28558
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
422422 −1.96962 −1.96962
423423 0.342020 1.93969i 0.342020 1.93969i
424424 1.17365 0.984808i 1.17365 0.984808i
425425 −0.642788 1.11334i −0.642788 1.11334i
426426 0 0
427427 0 0
428428 0.524005 + 1.43969i 0.524005 + 1.43969i
429429 0 0
430430 0 0
431431 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
432432 −0.642788 0.766044i −0.642788 0.766044i
433433 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
434434 0 0
435435 0 0
436436 −0.439693 + 1.20805i −0.439693 + 1.20805i
437437 0.866025 + 1.50000i 0.866025 + 1.50000i
438438 0 0
439439 −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i 0.555556π-0.555556\pi
−1.00000 π\pi
440440 0 0
441441 −0.173648 0.984808i −0.173648 0.984808i
442442 0 0
443443 0.524005 1.43969i 0.524005 1.43969i −0.342020 0.939693i 0.611111π-0.611111\pi
0.866025 0.500000i 0.166667π-0.166667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
450450 −0.866025 0.500000i −0.866025 0.500000i
451451 0 0
452452 0.118782 0.673648i 0.118782 0.673648i
453453 −0.118782 0.326352i −0.118782 0.326352i
454454 −0.766044 + 0.642788i −0.766044 + 0.642788i
455455 0 0
456456 −0.939693 0.342020i −0.939693 0.342020i
457457 0 0 1.00000 00
−1.00000 π\pi
458458 1.50881 1.26604i 1.50881 1.26604i
459459 −0.439693 1.20805i −0.439693 1.20805i
460460 −1.70574 0.300767i −1.70574 0.300767i
461461 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
462462 0 0
463463 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 1.43969 1.20805i 1.43969 1.20805i
466466 0.592396 0.342020i 0.592396 0.342020i
467467 −0.300767 0.173648i −0.300767 0.173648i 0.342020 0.939693i 0.388889π-0.388889\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
468468 0 0
469469 0 0
470470 1.85083 + 0.673648i 1.85083 + 0.673648i
471471 0 0
472472 0 0
473473 0 0
474474 0.173648 0.984808i 0.173648 0.984808i
475475 −1.00000 −1.00000
476476 0 0
477477 0.984808 1.17365i 0.984808 1.17365i
478478 0 0
479479 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
480480 0.866025 0.500000i 0.866025 0.500000i
481481 0 0
482482 0.118782 + 0.326352i 0.118782 + 0.326352i
483483 0 0
484484 −0.939693 + 0.342020i −0.939693 + 0.342020i
485485 0 0
486486 −0.766044 0.642788i −0.766044 0.642788i
487487 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
488488 1.32683 1.11334i 1.32683 1.11334i
489489 0 0
490490 1.00000 1.00000
491491 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.326352 + 1.85083i 0.326352 + 1.85083i
497497 0 0
498498 1.87939i 1.87939i
499499 1.93969 + 0.342020i 1.93969 + 0.342020i 1.00000 00
0.939693 + 0.342020i 0.111111π0.111111\pi
500500 0.642788 0.766044i 0.642788 0.766044i
501501 −0.592396 + 0.342020i −0.592396 + 0.342020i
502502 0 0
503503 0.984808 0.826352i 0.984808 0.826352i 1.00000i 0.5π-0.5\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
504504 0 0
505505 0 0
506506 0 0
507507 −0.342020 + 0.939693i −0.342020 + 0.939693i
508508 0 0
509509 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
510510 1.26604 0.223238i 1.26604 0.223238i
511511 0 0
512512 1.00000i 1.00000i
513513 −0.984808 0.173648i −0.984808 0.173648i
514514 −1.70574 0.300767i −1.70574 0.300767i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0.939693 + 0.342020i 0.939693 + 0.342020i
520520 0 0
521521 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
524524 0 0
525525 0 0
526526 −0.592396 0.342020i −0.592396 0.342020i
527527 −0.419550 + 2.37939i −0.419550 + 2.37939i
528528 0 0
529529 −1.87939 + 0.684040i −1.87939 + 0.684040i
530530 0.984808 + 1.17365i 0.984808 + 1.17365i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 −1.43969 + 0.524005i −1.43969 + 0.524005i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0.766044 0.642788i 0.766044 0.642788i
541541 −1.26604 1.50881i −1.26604 1.50881i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
542542 0.300767 0.173648i 0.300767 0.173648i
543543 −0.342020 + 0.592396i −0.342020 + 0.592396i
544544 −0.439693 + 1.20805i −0.439693 + 1.20805i
545545 −1.20805 0.439693i −1.20805 0.439693i
546546 0 0
547547 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
548548 −1.96962 −1.96962
549549 1.11334 1.32683i 1.11334 1.32683i
550550 0 0
551551 0 0
552552 0.866025 1.50000i 0.866025 1.50000i
553553 0 0
554554 0 0
555555 0 0
556556 1.11334 + 0.642788i 1.11334 + 0.642788i
557557 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i 0.722222π-0.722222\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
558558 0.642788 + 1.76604i 0.642788 + 1.76604i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.62760 + 0.939693i −1.62760 + 0.939693i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
564564 −1.26604 + 1.50881i −1.26604 + 1.50881i
565565 0.673648 + 0.118782i 0.673648 + 0.118782i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0.342020 0.939693i 0.342020 0.939693i
571571 0.684040i 0.684040i −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 0.342020i 0.111111π-0.111111\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.300767 1.70574i 0.300767 1.70574i
576576 0.173648 + 0.984808i 0.173648 + 0.984808i
577577 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 −0.419550 + 0.500000i −0.419550 + 0.500000i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0.326352 + 1.85083i 0.326352 + 1.85083i
587587 −0.223238 + 0.266044i −0.223238 + 0.266044i −0.866025 0.500000i 0.833333π-0.833333\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
588588 −0.342020 + 0.939693i −0.342020 + 0.939693i
589589 1.43969 + 1.20805i 1.43969 + 1.20805i
590590 0 0
591591 0.266044 + 0.223238i 0.266044 + 0.223238i
592592 0 0
593593 0.118782 + 0.673648i 0.118782 + 0.673648i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0 0
596596 0 0
597597 −0.866025 0.500000i −0.866025 0.500000i
598598 0 0
599599 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
600600 0.500000 + 0.866025i 0.500000 + 0.866025i
601601 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
602602 0 0
603603 0 0
604604 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
605605 −0.342020 0.939693i −0.342020 0.939693i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0.642788 + 0.766044i 0.642788 + 0.766044i
609609 0 0
610610 1.11334 + 1.32683i 1.11334 + 1.32683i
611611 0 0
612612 −0.223238 + 1.26604i −0.223238 + 1.26604i
613613 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.524005 + 0.439693i −0.524005 + 0.439693i −0.866025 0.500000i 0.833333π-0.833333\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
618618 0 0
619619 0.592396 + 0.342020i 0.592396 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
620620 −1.85083 + 0.326352i −1.85083 + 0.326352i
621621 0.592396 1.62760i 0.592396 1.62760i
622622 0 0
623623 0 0
624624 0 0
625625 0.766044 + 0.642788i 0.766044 + 0.642788i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 0.866025i 0.333333π-0.333333\pi
632632 −0.642788 + 0.766044i −0.642788 + 0.766044i
633633 1.85083 + 0.673648i 1.85083 + 0.673648i
634634 −1.76604 + 0.642788i −1.76604 + 0.642788i
635635 0 0
636636 −1.43969 + 0.524005i −1.43969 + 0.524005i
637637 0 0
638638 0 0
639639 0 0
640640 −1.00000 −1.00000
641641 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
642642 1.53209i 1.53209i
643643 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
644644 0 0
645645 0 0
646646 0.439693 + 1.20805i 0.439693 + 1.20805i
647647 −0.684040 −0.684040 −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
648648 0.342020 + 0.939693i 0.342020 + 0.939693i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
654654 0.826352 0.984808i 0.826352 0.984808i
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
660660 0 0
661661 1.93969 0.342020i 1.93969 0.342020i 0.939693 0.342020i 0.111111π-0.111111\pi
1.00000 00
662662 −0.300767 1.70574i −0.300767 1.70574i
663663 0 0
664664 −0.939693 + 1.62760i −0.939693 + 1.62760i
665665 0 0
666666 0 0
667667 0 0
668668 0.684040 0.684040
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 0.642788 + 0.766044i 0.642788 + 0.766044i
676676 0.766044 0.642788i 0.766044 0.642788i
677677 0.300767 0.173648i 0.300767 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
678678 −0.342020 + 0.592396i −0.342020 + 0.592396i
679679 0 0
680680 −1.20805 0.439693i −1.20805 0.439693i
681681 0.939693 0.342020i 0.939693 0.342020i
682682 0 0
683683 0.347296i 0.347296i −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
684684 0.766044 + 0.642788i 0.766044 + 0.642788i
685685 1.96962i 1.96962i
686686 0 0
687687 −1.85083 + 0.673648i −1.85083 + 0.673648i
688688 0 0
689689 0 0
690690 1.50000 + 0.866025i 1.50000 + 0.866025i
691691 1.11334 0.642788i 1.11334 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
692692 −0.642788 0.766044i −0.642788 0.766044i
693693 0 0
694694 −0.766044 1.32683i −0.766044 1.32683i
695695 −0.642788 + 1.11334i −0.642788 + 1.11334i
696696 0 0
697697 0 0
698698 −0.642788 0.233956i −0.642788 0.233956i
699699 −0.673648 + 0.118782i −0.673648 + 0.118782i
700700 0 0
701701 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
702702 0 0
703703 0 0
704704 0 0
705705 −1.50881 1.26604i −1.50881 1.26604i
706706 1.70574 0.300767i 1.70574 0.300767i
707707 0 0
708708 0 0
709709 −0.233956 + 0.642788i −0.233956 + 0.642788i 0.766044 + 0.642788i 0.222222π0.222222\pi
−1.00000 π\pi
710710 0 0
711711 −0.500000 + 0.866025i −0.500000 + 0.866025i
712712 0 0
713713 −2.49362 + 2.09240i −2.49362 + 2.09240i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
720720 −0.984808 + 0.173648i −0.984808 + 0.173648i
721721 0 0
722722 0.984808 + 0.173648i 0.984808 + 0.173648i
723723 0.347296i 0.347296i
724724 0.592396 0.342020i 0.592396 0.342020i
725725 0 0
726726 1.00000 1.00000
727727 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
728728 0 0
729729 0.500000 + 0.866025i 0.500000 + 0.866025i
730730 0 0
731731 0 0
732732 −1.62760 + 0.592396i −1.62760 + 0.592396i
733733 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
734734 0 0
735735 −0.939693 0.342020i −0.939693 0.342020i
736736 −1.50000 + 0.866025i −1.50000 + 0.866025i
737737 0 0
738738 0 0
739739 −1.26604 + 1.50881i −1.26604 + 1.50881i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.50881 + 1.26604i 1.50881 + 1.26604i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
744744 0.326352 1.85083i 0.326352 1.85083i
745745 0 0
746746 0 0
747747 −0.642788 + 1.76604i −0.642788 + 1.76604i
748748 0 0
749749 0 0
750750 −0.866025 + 0.500000i −0.866025 + 0.500000i
751751 −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i 0.555556π0.555556\pi
−1.00000 π\pi
752752 1.85083 0.673648i 1.85083 0.673648i
753753 0 0
754754 0 0
755755 −0.342020 0.0603074i −0.342020 0.0603074i
756756 0 0
757757 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
758758 1.32683 1.11334i 1.32683 1.11334i
759759 0 0
760760 −0.766044 + 0.642788i −0.766044 + 0.642788i
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 −1.26604 0.223238i −1.26604 0.223238i
766766 −1.11334 0.642788i −1.11334 0.642788i
767767 0 0
768768 0.342020 0.939693i 0.342020 0.939693i
769769 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i 0.333333π-0.333333\pi
0.939693 0.342020i 0.111111π-0.111111\pi
770770 0 0
771771 1.50000 + 0.866025i 1.50000 + 0.866025i
772772 0 0
773773 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i 0.722222π-0.722222\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
774774 0 0
775775 −0.326352 1.85083i −0.326352 1.85083i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −2.19285 + 0.386659i −2.19285 + 0.386659i
783783 0 0
784784 0.766044 0.642788i 0.766044 0.642788i
785785 0 0
786786 0 0
787787 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
788788 −0.118782 0.326352i −0.118782 0.326352i
789789 0.439693 + 0.524005i 0.439693 + 0.524005i
790790 −0.766044 0.642788i −0.766044 0.642788i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 −0.524005 1.43969i −0.524005 1.43969i
796796 0.500000 + 0.866025i 0.500000 + 0.866025i
797797 0.347296i 0.347296i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
798798 0 0
799799 2.53209 2.53209
800800 1.00000i 1.00000i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 −0.939693 + 0.342020i −0.939693 + 0.342020i
811811 −0.233956 + 0.642788i −0.233956 + 0.642788i 0.766044 + 0.642788i 0.222222π0.222222\pi
−1.00000 π\pi
812812 0 0
813813 −0.342020 + 0.0603074i −0.342020 + 0.0603074i
814814 0 0
815815 0 0
816816 0.826352 0.984808i 0.826352 0.984808i
817817 0 0
818818 −0.984808 0.173648i −0.984808 0.173648i
819819 0 0
820820 0 0
821821 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
822822 1.85083 + 0.673648i 1.85083 + 0.673648i
823823 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.984808 1.17365i −0.984808 1.17365i −0.984808 0.173648i 0.944444π-0.944444\pi
1.00000i 0.5π-0.5\pi
828828 −1.32683 + 1.11334i −1.32683 + 1.11334i
829829 −1.11334 + 0.642788i −1.11334 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
830830 −1.62760 0.939693i −1.62760 0.939693i
831831 0 0
832832 0 0
833833 1.20805 0.439693i 1.20805 0.439693i
834834 −0.826352 0.984808i −0.826352 0.984808i
835835 0.684040i 0.684040i
836836 0 0
837837 1.87939i 1.87939i
838838 0 0
839839 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
840840 0 0
841841 −0.173648 + 0.984808i −0.173648 + 0.984808i
842842 0 0
843843 0 0
844844 −1.26604 1.50881i −1.26604 1.50881i
845845 0.642788 + 0.766044i 0.642788 + 0.766044i
846846 1.70574 0.984808i 1.70574 0.984808i
847847 0 0
848848 1.50881 + 0.266044i 1.50881 + 0.266044i
849849 0 0
850850 0.439693 1.20805i 0.439693 1.20805i
851851 0 0
852852 0 0
853853 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
854854 0 0
855855 −0.642788 + 0.766044i −0.642788 + 0.766044i
856856 −0.766044 + 1.32683i −0.766044 + 1.32683i
857857 −0.524005 0.439693i −0.524005 0.439693i 0.342020 0.939693i 0.388889π-0.388889\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
858858 0 0
859859 1.26604 0.223238i 1.26604 0.223238i 0.500000 0.866025i 0.333333π-0.333333\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
864864 0.173648 0.984808i 0.173648 0.984808i
865865 0.766044 0.642788i 0.766044 0.642788i
866866 0 0
867867 0.565258 0.326352i 0.565258 0.326352i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −1.20805 + 0.439693i −1.20805 + 0.439693i
873873 0 0
874874 −0.592396 + 1.62760i −0.592396 + 1.62760i
875875 0 0
876876 0 0
877877 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
878878 1.53209i 1.53209i
879879 0.326352 1.85083i 0.326352 1.85083i
880880 0 0
881881 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 0.642788 0.766044i 0.642788 0.766044i
883883 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
884884 0 0
885885 0 0
886886 1.43969 0.524005i 1.43969 0.524005i
887887 −1.85083 0.673648i −1.85083 0.673648i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0.984808 1.70574i 0.984808 1.70574i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −0.173648 0.984808i −0.173648 0.984808i
901901 1.70574 + 0.984808i 1.70574 + 0.984808i
902902 0 0
903903 0 0
904904 0.592396 0.342020i 0.592396 0.342020i
905905 0.342020 + 0.592396i 0.342020 + 0.592396i
906906 0.173648 0.300767i 0.173648 0.300767i
907907 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
908908 −0.984808 0.173648i −0.984808 0.173648i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −0.342020 0.939693i −0.342020 0.939693i
913913 0 0
914914 0 0
915915 −0.592396 1.62760i −0.592396 1.62760i
916916 1.93969 + 0.342020i 1.93969 + 0.342020i
917917 0 0
918918 0.642788 1.11334i 0.642788 1.11334i
919919 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
920920 −0.866025 1.50000i −0.866025 1.50000i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
930930 1.85083 + 0.326352i 1.85083 + 0.326352i
931931 0.173648 0.984808i 0.173648 0.984808i
932932 0.642788 + 0.233956i 0.642788 + 0.233956i
933933 0 0
934934 −0.0603074 0.342020i −0.0603074 0.342020i
935935 0 0
936936 0 0
937937 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
938938 0 0
939939 0 0
940940 0.673648 + 1.85083i 0.673648 + 1.85083i
941941 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i 0.944444π-0.944444\pi
0.642788 0.766044i 0.277778π-0.277778\pi
948948 0.866025 0.500000i 0.866025 0.500000i
949949 0 0
950950 −0.642788 0.766044i −0.642788 0.766044i
951951 1.87939 1.87939
952952 0 0
953953 1.85083 0.673648i 1.85083 0.673648i 0.866025 0.500000i 0.166667π-0.166667\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
954954 1.53209 1.53209
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0.939693 + 0.342020i 0.939693 + 0.342020i
961961 −1.26604 + 2.19285i −1.26604 + 2.19285i
962962 0 0
963963 −0.524005 + 1.43969i −0.524005 + 1.43969i
964964 −0.173648 + 0.300767i −0.173648 + 0.300767i
965965 0 0
966966 0 0
967967 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
968968 −0.866025 0.500000i −0.866025 0.500000i
969969 1.28558i 1.28558i
970970 0 0
971971 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
972972 1.00000i 1.00000i
973973 0 0
974974 0 0
975975 0 0
976976 1.70574 + 0.300767i 1.70574 + 0.300767i
977977 0.984808 1.70574i 0.984808 1.70574i 0.342020 0.939693i 0.388889π-0.388889\pi
0.642788 0.766044i 0.277778π-0.277778\pi
978978 0 0
979979 0 0
980980 0.642788 + 0.766044i 0.642788 + 0.766044i
981981 −1.11334 + 0.642788i −1.11334 + 0.642788i
982982 0 0
983983 −0.223238 + 1.26604i −0.223238 + 1.26604i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 0 0
985985 0.326352 0.118782i 0.326352 0.118782i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
992992 −1.20805 + 1.43969i −1.20805 + 1.43969i
993993 −0.300767 + 1.70574i −0.300767 + 1.70574i
994994 0 0
995995 −0.866025 + 0.500000i −0.866025 + 0.500000i
996996 1.43969 1.20805i 1.43969 1.20805i
997997 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
998998 0.984808 + 1.70574i 0.984808 + 1.70574i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.el.a.149.2 yes 12
3.2 odd 2 inner 2280.1.el.a.149.1 12
5.4 even 2 inner 2280.1.el.a.149.1 12
8.5 even 2 2280.1.el.b.149.2 yes 12
15.14 odd 2 CM 2280.1.el.a.149.2 yes 12
19.6 even 9 2280.1.el.b.1469.2 yes 12
24.5 odd 2 2280.1.el.b.149.1 yes 12
40.29 even 2 2280.1.el.b.149.1 yes 12
57.44 odd 18 2280.1.el.b.1469.1 yes 12
95.44 even 18 2280.1.el.b.1469.1 yes 12
120.29 odd 2 2280.1.el.b.149.2 yes 12
152.101 even 18 inner 2280.1.el.a.1469.2 yes 12
285.44 odd 18 2280.1.el.b.1469.2 yes 12
456.101 odd 18 inner 2280.1.el.a.1469.1 yes 12
760.709 even 18 inner 2280.1.el.a.1469.1 yes 12
2280.1469 odd 18 inner 2280.1.el.a.1469.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.el.a.149.1 12 3.2 odd 2 inner
2280.1.el.a.149.1 12 5.4 even 2 inner
2280.1.el.a.149.2 yes 12 1.1 even 1 trivial
2280.1.el.a.149.2 yes 12 15.14 odd 2 CM
2280.1.el.a.1469.1 yes 12 456.101 odd 18 inner
2280.1.el.a.1469.1 yes 12 760.709 even 18 inner
2280.1.el.a.1469.2 yes 12 152.101 even 18 inner
2280.1.el.a.1469.2 yes 12 2280.1469 odd 18 inner
2280.1.el.b.149.1 yes 12 24.5 odd 2
2280.1.el.b.149.1 yes 12 40.29 even 2
2280.1.el.b.149.2 yes 12 8.5 even 2
2280.1.el.b.149.2 yes 12 120.29 odd 2
2280.1.el.b.1469.1 yes 12 57.44 odd 18
2280.1.el.b.1469.1 yes 12 95.44 even 18
2280.1.el.b.1469.2 yes 12 19.6 even 9
2280.1.el.b.1469.2 yes 12 285.44 odd 18