Properties

Label 2280.1.cs.a.179.2
Level 22802280
Weight 11
Character 2280.179
Analytic conductor 1.1381.138
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(179,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 3, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.179"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2280.cs (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.137868228801.13786822880
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.1426233024000.1

Embedding invariants

Embedding label 179.2
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 2280.179
Dual form 2280.1.cs.a.1019.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+(0.866025+0.500000i)q31.00000q4+(0.866025+0.500000i)q5+(0.500000+0.866025i)q61.00000iq8+(0.500000+0.866025i)q9+(0.500000+0.866025i)q10+(0.8660250.500000i)q12+(0.500000+0.866025i)q15+1.00000q16+(0.8660251.50000i)q17+(0.866025+0.500000i)q18+(0.500000+0.866025i)q19+(0.8660250.500000i)q20+(1.73205+1.00000i)q23+(0.5000000.866025i)q24+(0.500000+0.866025i)q25+1.00000iq27+(0.866025+0.500000i)q30+1.00000q31+1.00000iq32+(1.50000+0.866025i)q34+(0.5000000.866025i)q36+(0.8660250.500000i)q38+(0.5000000.866025i)q40+1.00000iq45+(1.000001.73205i)q46+(0.8660250.500000i)q47+(0.866025+0.500000i)q481.00000q49+(0.866025+0.500000i)q50+(1.500000.866025i)q51+(0.8660251.50000i)q531.00000q54+(0.866025+0.500000i)q57+(0.5000000.866025i)q60+1.00000iq621.00000q64+(0.866025+1.50000i)q682.00000q69+(0.8660250.500000i)q72+1.00000iq75+(0.5000000.866025i)q76+(1.000001.73205i)q79+(0.866025+0.500000i)q80+(0.500000+0.866025i)q811.73205q83+(1.500000.866025i)q851.00000q90+(1.732051.00000i)q92+(0.866025+0.500000i)q93+(0.500000+0.866025i)q94+(0.866025+0.500000i)q95+(0.500000+0.866025i)q961.00000iq98+O(q100)q+1.00000i q^{2} +(0.866025 + 0.500000i) q^{3} -1.00000 q^{4} +(0.866025 + 0.500000i) q^{5} +(-0.500000 + 0.866025i) q^{6} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(-0.866025 - 0.500000i) q^{12} +(0.500000 + 0.866025i) q^{15} +1.00000 q^{16} +(0.866025 - 1.50000i) q^{17} +(-0.866025 + 0.500000i) q^{18} +(-0.500000 + 0.866025i) q^{19} +(-0.866025 - 0.500000i) q^{20} +(-1.73205 + 1.00000i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.500000 + 0.866025i) q^{25} +1.00000i q^{27} +(-0.866025 + 0.500000i) q^{30} +1.00000 q^{31} +1.00000i q^{32} +(1.50000 + 0.866025i) q^{34} +(-0.500000 - 0.866025i) q^{36} +(-0.866025 - 0.500000i) q^{38} +(0.500000 - 0.866025i) q^{40} +1.00000i q^{45} +(-1.00000 - 1.73205i) q^{46} +(0.866025 - 0.500000i) q^{47} +(0.866025 + 0.500000i) q^{48} -1.00000 q^{49} +(-0.866025 + 0.500000i) q^{50} +(1.50000 - 0.866025i) q^{51} +(-0.866025 - 1.50000i) q^{53} -1.00000 q^{54} +(-0.866025 + 0.500000i) q^{57} +(-0.500000 - 0.866025i) q^{60} +1.00000i q^{62} -1.00000 q^{64} +(-0.866025 + 1.50000i) q^{68} -2.00000 q^{69} +(0.866025 - 0.500000i) q^{72} +1.00000i q^{75} +(0.500000 - 0.866025i) q^{76} +(1.00000 - 1.73205i) q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.500000 + 0.866025i) q^{81} -1.73205 q^{83} +(1.50000 - 0.866025i) q^{85} -1.00000 q^{90} +(1.73205 - 1.00000i) q^{92} +(0.866025 + 0.500000i) q^{93} +(0.500000 + 0.866025i) q^{94} +(-0.866025 + 0.500000i) q^{95} +(-0.500000 + 0.866025i) q^{96} -1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q42q6+2q92q10+2q15+4q162q19+2q24+2q25+4q31+6q342q36+2q404q464q49+6q514q542q604q64+2q96+O(q100) 4 q - 4 q^{4} - 2 q^{6} + 2 q^{9} - 2 q^{10} + 2 q^{15} + 4 q^{16} - 2 q^{19} + 2 q^{24} + 2 q^{25} + 4 q^{31} + 6 q^{34} - 2 q^{36} + 2 q^{40} - 4 q^{46} - 4 q^{49} + 6 q^{51} - 4 q^{54} - 2 q^{60} - 4 q^{64}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2280Z)×\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times.

nn 457457 761761 11411141 17111711 19211921
χ(n)\chi(n) 1-1 1-1 1-1 1-1 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 0.866025 + 0.500000i 0.866025 + 0.500000i
44 −1.00000 −1.00000
55 0.866025 + 0.500000i 0.866025 + 0.500000i
66 −0.500000 + 0.866025i −0.500000 + 0.866025i
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 1.00000i 1.00000i
99 0.500000 + 0.866025i 0.500000 + 0.866025i
1010 −0.500000 + 0.866025i −0.500000 + 0.866025i
1111 0 0 1.00000 00
−1.00000 π\pi
1212 −0.866025 0.500000i −0.866025 0.500000i
1313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1414 0 0
1515 0.500000 + 0.866025i 0.500000 + 0.866025i
1616 1.00000 1.00000
1717 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
1818 −0.866025 + 0.500000i −0.866025 + 0.500000i
1919 −0.500000 + 0.866025i −0.500000 + 0.866025i
2020 −0.866025 0.500000i −0.866025 0.500000i
2121 0 0
2222 0 0
2323 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0.500000 0.866025i 0.500000 0.866025i
2525 0.500000 + 0.866025i 0.500000 + 0.866025i
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 −0.866025 + 0.500000i −0.866025 + 0.500000i
3131 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 1.00000i 1.00000i
3333 0 0
3434 1.50000 + 0.866025i 1.50000 + 0.866025i
3535 0 0
3636 −0.500000 0.866025i −0.500000 0.866025i
3737 0 0 1.00000 00
−1.00000 π\pi
3838 −0.866025 0.500000i −0.866025 0.500000i
3939 0 0
4040 0.500000 0.866025i 0.500000 0.866025i
4141 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4242 0 0
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 1.00000i 1.00000i
4646 −1.00000 1.73205i −1.00000 1.73205i
4747 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4848 0.866025 + 0.500000i 0.866025 + 0.500000i
4949 −1.00000 −1.00000
5050 −0.866025 + 0.500000i −0.866025 + 0.500000i
5151 1.50000 0.866025i 1.50000 0.866025i
5252 0 0
5353 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
5454 −1.00000 −1.00000
5555 0 0
5656 0 0
5757 −0.866025 + 0.500000i −0.866025 + 0.500000i
5858 0 0
5959 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 −0.500000 0.866025i −0.500000 0.866025i
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 1.00000i 1.00000i
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6868 −0.866025 + 1.50000i −0.866025 + 1.50000i
6969 −2.00000 −2.00000
7070 0 0
7171 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0.866025 0.500000i 0.866025 0.500000i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 1.00000i 1.00000i
7676 0.500000 0.866025i 0.500000 0.866025i
7777 0 0
7878 0 0
7979 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
8080 0.866025 + 0.500000i 0.866025 + 0.500000i
8181 −0.500000 + 0.866025i −0.500000 + 0.866025i
8282 0 0
8383 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
8484 0 0
8585 1.50000 0.866025i 1.50000 0.866025i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9090 −1.00000 −1.00000
9191 0 0
9292 1.73205 1.00000i 1.73205 1.00000i
9393 0.866025 + 0.500000i 0.866025 + 0.500000i
9494 0.500000 + 0.866025i 0.500000 + 0.866025i
9595 −0.866025 + 0.500000i −0.866025 + 0.500000i
9696 −0.500000 + 0.866025i −0.500000 + 0.866025i
9797 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
9898 1.00000i 1.00000i
9999 0 0
100100 −0.500000 0.866025i −0.500000 0.866025i
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0.866025 + 1.50000i 0.866025 + 1.50000i
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 1.50000 0.866025i 1.50000 0.866025i
107107 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
108108 1.00000i 1.00000i
109109 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
110110 0 0
111111 0 0
112112 0 0
113113 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
114114 −0.500000 0.866025i −0.500000 0.866025i
115115 −2.00000 −2.00000
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0.866025 0.500000i 0.866025 0.500000i
121121 1.00000 1.00000
122122 0 0
123123 0 0
124124 −1.00000 −1.00000
125125 1.00000i 1.00000i
126126 0 0
127127 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
128128 1.00000i 1.00000i
129129 0 0
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0 0
134134 0 0
135135 −0.500000 + 0.866025i −0.500000 + 0.866025i
136136 −1.50000 0.866025i −1.50000 0.866025i
137137 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
138138 2.00000i 2.00000i
139139 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 1.00000 1.00000
142142 0 0
143143 0 0
144144 0.500000 + 0.866025i 0.500000 + 0.866025i
145145 0 0
146146 0 0
147147 −0.866025 0.500000i −0.866025 0.500000i
148148 0 0
149149 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
150150 −1.00000 −1.00000
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0.866025 + 0.500000i 0.866025 + 0.500000i
153153 1.73205 1.73205
154154 0 0
155155 0.866025 + 0.500000i 0.866025 + 0.500000i
156156 0 0
157157 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
158158 1.73205 + 1.00000i 1.73205 + 1.00000i
159159 1.73205i 1.73205i
160160 −0.500000 + 0.866025i −0.500000 + 0.866025i
161161 0 0
162162 −0.866025 0.500000i −0.866025 0.500000i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 1.73205i 1.73205i
167167 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
168168 0 0
169169 −0.500000 + 0.866025i −0.500000 + 0.866025i
170170 0.866025 + 1.50000i 0.866025 + 1.50000i
171171 −1.00000 −1.00000
172172 0 0
173173 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 1.00000i 1.00000i
181181 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 0 0
183183 0 0
184184 1.00000 + 1.73205i 1.00000 + 1.73205i
185185 0 0
186186 −0.500000 + 0.866025i −0.500000 + 0.866025i
187187 0 0
188188 −0.866025 + 0.500000i −0.866025 + 0.500000i
189189 0 0
190190 −0.500000 0.866025i −0.500000 0.866025i
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 −0.866025 0.500000i −0.866025 0.500000i
193193 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0.866025 0.500000i 0.866025 0.500000i
201201 0 0
202202 0 0
203203 0 0
204204 −1.50000 + 0.866025i −1.50000 + 0.866025i
205205 0 0
206206 0 0
207207 −1.73205 1.00000i −1.73205 1.00000i
208208 0 0
209209 0 0
210210 0 0
211211 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0.866025 + 1.50000i 0.866025 + 1.50000i
213213 0 0
214214 −1.00000 −1.00000
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 0.866025 + 0.500000i 0.866025 + 0.500000i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 −0.500000 + 0.866025i −0.500000 + 0.866025i
226226 1.00000 1.00000
227227 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
228228 0.866025 0.500000i 0.866025 0.500000i
229229 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 2.00000i 2.00000i
231231 0 0
232232 0 0
233233 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
234234 0 0
235235 1.00000 1.00000
236236 0 0
237237 1.73205 1.00000i 1.73205 1.00000i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0.500000 + 0.866025i 0.500000 + 0.866025i
241241 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
242242 1.00000i 1.00000i
243243 −0.866025 + 0.500000i −0.866025 + 0.500000i
244244 0 0
245245 −0.866025 0.500000i −0.866025 0.500000i
246246 0 0
247247 0 0
248248 1.00000i 1.00000i
249249 −1.50000 0.866025i −1.50000 0.866025i
250250 −1.00000 −1.00000
251251 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 0 0
253253 0 0
254254 0 0
255255 1.73205 1.73205
256256 1.00000 1.00000
257257 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 1.73205i 1.73205i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 −0.866025 0.500000i −0.866025 0.500000i
271271 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
272272 0.866025 1.50000i 0.866025 1.50000i
273273 0 0
274274 1.50000 0.866025i 1.50000 0.866025i
275275 0 0
276276 2.00000 2.00000
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 −0.866025 + 0.500000i −0.866025 + 0.500000i
279279 0.500000 + 0.866025i 0.500000 + 0.866025i
280280 0 0
281281 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
282282 1.00000i 1.00000i
283283 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 −1.00000 −1.00000
286286 0 0
287287 0 0
288288 −0.866025 + 0.500000i −0.866025 + 0.500000i
289289 −1.00000 1.73205i −1.00000 1.73205i
290290 0 0
291291 0 0
292292 0 0
293293 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 1.00000i 1.00000i
301301 0 0
302302 1.00000i 1.00000i
303303 0 0
304304 −0.500000 + 0.866025i −0.500000 + 0.866025i
305305 0 0
306306 1.73205i 1.73205i
307307 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
308308 0 0
309309 0 0
310310 −0.500000 + 0.866025i −0.500000 + 0.866025i
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0 0
315315 0 0
316316 −1.00000 + 1.73205i −1.00000 + 1.73205i
317317 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
318318 1.73205 1.73205
319319 0 0
320320 −0.866025 0.500000i −0.866025 0.500000i
321321 −0.500000 + 0.866025i −0.500000 + 0.866025i
322322 0 0
323323 0.866025 + 1.50000i 0.866025 + 1.50000i
324324 0.500000 0.866025i 0.500000 0.866025i
325325 0 0
326326 0 0
327327 0.866025 0.500000i 0.866025 0.500000i
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 1.73205 1.73205
333333 0 0
334334 1.50000 0.866025i 1.50000 0.866025i
335335 0 0
336336 0 0
337337 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
338338 −0.866025 0.500000i −0.866025 0.500000i
339339 0.500000 0.866025i 0.500000 0.866025i
340340 −1.50000 + 0.866025i −1.50000 + 0.866025i
341341 0 0
342342 1.00000i 1.00000i
343343 0 0
344344 0 0
345345 −1.73205 1.00000i −1.73205 1.00000i
346346 0 0
347347 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 0 0
349349 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
360360 1.00000 1.00000
361361 −0.500000 0.866025i −0.500000 0.866025i
362362 −0.866025 + 0.500000i −0.866025 + 0.500000i
363363 0.866025 + 0.500000i 0.866025 + 0.500000i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 −1.73205 + 1.00000i −1.73205 + 1.00000i
369369 0 0
370370 0 0
371371 0 0
372372 −0.866025 0.500000i −0.866025 0.500000i
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 −0.500000 + 0.866025i −0.500000 + 0.866025i
376376 −0.500000 0.866025i −0.500000 0.866025i
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0.866025 0.500000i 0.866025 0.500000i
381381 0 0
382382 0 0
383383 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
384384 0.500000 0.866025i 0.500000 0.866025i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
390390 0 0
391391 3.46410i 3.46410i
392392 1.00000i 1.00000i
393393 0 0
394394 1.00000 1.00000
395395 1.73205 1.00000i 1.73205 1.00000i
396396 0 0
397397 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 0 0
399399 0 0
400400 0.500000 + 0.866025i 0.500000 + 0.866025i
401401 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.866025 + 0.500000i −0.866025 + 0.500000i
406406 0 0
407407 0 0
408408 −0.866025 1.50000i −0.866025 1.50000i
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 1.73205i 1.73205i
412412 0 0
413413 0 0
414414 1.00000 1.73205i 1.00000 1.73205i
415415 −1.50000 0.866025i −1.50000 0.866025i
416416 0 0
417417 1.00000i 1.00000i
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
422422 −0.866025 + 1.50000i −0.866025 + 1.50000i
423423 0.866025 + 0.500000i 0.866025 + 0.500000i
424424 −1.50000 + 0.866025i −1.50000 + 0.866025i
425425 1.73205 1.73205
426426 0 0
427427 0 0
428428 1.00000i 1.00000i
429429 0 0
430430 0 0
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 1.00000i 1.00000i
433433 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
434434 0 0
435435 0 0
436436 −0.500000 + 0.866025i −0.500000 + 0.866025i
437437 2.00000i 2.00000i
438438 0 0
439439 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
440440 0 0
441441 −0.500000 0.866025i −0.500000 0.866025i
442442 0 0
443443 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 −0.866025 0.500000i −0.866025 0.500000i
451451 0 0
452452 1.00000i 1.00000i
453453 −0.866025 0.500000i −0.866025 0.500000i
454454 2.00000 2.00000
455455 0 0
456456 0.500000 + 0.866025i 0.500000 + 0.866025i
457457 0 0 1.00000 00
−1.00000 π\pi
458458 −1.73205 −1.73205
459459 1.50000 + 0.866025i 1.50000 + 0.866025i
460460 2.00000 2.00000
461461 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0.500000 + 0.866025i 0.500000 + 0.866025i
466466 1.50000 + 0.866025i 1.50000 + 0.866025i
467467 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
468468 0 0
469469 0 0
470470 1.00000i 1.00000i
471471 0 0
472472 0 0
473473 0 0
474474 1.00000 + 1.73205i 1.00000 + 1.73205i
475475 −1.00000 −1.00000
476476 0 0
477477 0.866025 1.50000i 0.866025 1.50000i
478478 0 0
479479 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 −0.866025 + 0.500000i −0.866025 + 0.500000i
481481 0 0
482482 0.866025 + 1.50000i 0.866025 + 1.50000i
483483 0 0
484484 −1.00000 −1.00000
485485 0 0
486486 −0.500000 0.866025i −0.500000 0.866025i
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0.500000 0.866025i 0.500000 0.866025i
491491 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.00000 1.00000
497497 0 0
498498 0.866025 1.50000i 0.866025 1.50000i
499499 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
500500 1.00000i 1.00000i
501501 1.73205i 1.73205i
502502 0 0
503503 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
504504 0 0
505505 0 0
506506 0 0
507507 −0.866025 + 0.500000i −0.866025 + 0.500000i
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 1.73205i 1.73205i
511511 0 0
512512 1.00000i 1.00000i
513513 −0.866025 0.500000i −0.866025 0.500000i
514514 −1.00000 1.73205i −1.00000 1.73205i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
524524 0 0
525525 0 0
526526 −0.500000 + 0.866025i −0.500000 + 0.866025i
527527 0.866025 1.50000i 0.866025 1.50000i
528528 0 0
529529 1.50000 2.59808i 1.50000 2.59808i
530530 1.73205 1.73205
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 −0.500000 + 0.866025i −0.500000 + 0.866025i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0.500000 0.866025i 0.500000 0.866025i
541541 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
542542 0.866025 1.50000i 0.866025 1.50000i
543543 1.00000i 1.00000i
544544 1.50000 + 0.866025i 1.50000 + 0.866025i
545545 0.866025 0.500000i 0.866025 0.500000i
546546 0 0
547547 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
548548 0.866025 + 1.50000i 0.866025 + 1.50000i
549549 0 0
550550 0 0
551551 0 0
552552 2.00000i 2.00000i
553553 0 0
554554 0 0
555555 0 0
556556 −0.500000 0.866025i −0.500000 0.866025i
557557 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
558558 −0.866025 + 0.500000i −0.866025 + 0.500000i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
564564 −1.00000 −1.00000
565565 0.500000 0.866025i 0.500000 0.866025i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 1.00000i 1.00000i
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.73205 1.00000i −1.73205 1.00000i
576576 −0.500000 0.866025i −0.500000 0.866025i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 1.73205 1.00000i 1.73205 1.00000i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 1.73205i 1.73205i
587587 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
588588 0.866025 + 0.500000i 0.866025 + 0.500000i
589589 −0.500000 + 0.866025i −0.500000 + 0.866025i
590590 0 0
591591 0.500000 0.866025i 0.500000 0.866025i
592592 0 0
593593 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 1.00000 1.00000
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 1.00000 1.00000
605605 0.866025 + 0.500000i 0.866025 + 0.500000i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 −0.866025 0.500000i −0.866025 0.500000i
609609 0 0
610610 0 0
611611 0 0
612612 −1.73205 −1.73205
613613 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 −0.866025 0.500000i −0.866025 0.500000i
621621 −1.00000 1.73205i −1.00000 1.73205i
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
632632 −1.73205 1.00000i −1.73205 1.00000i
633633 0.866025 + 1.50000i 0.866025 + 1.50000i
634634 −1.50000 + 0.866025i −1.50000 + 0.866025i
635635 0 0
636636 1.73205i 1.73205i
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 0.866025i 0.500000 0.866025i
641641 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
642642 −0.866025 0.500000i −0.866025 0.500000i
643643 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 −1.50000 + 0.866025i −1.50000 + 0.866025i
647647 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
648648 0.866025 + 0.500000i 0.866025 + 0.500000i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
654654 0.500000 + 0.866025i 0.500000 + 0.866025i
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 1.73205i 1.73205i
665665 0 0
666666 0 0
667667 0 0
668668 0.866025 + 1.50000i 0.866025 + 1.50000i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 −0.866025 + 0.500000i −0.866025 + 0.500000i
676676 0.500000 0.866025i 0.500000 0.866025i
677677 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 0.866025 + 0.500000i 0.866025 + 0.500000i
679679 0 0
680680 −0.866025 1.50000i −0.866025 1.50000i
681681 1.00000 1.73205i 1.00000 1.73205i
682682 0 0
683683 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
684684 1.00000 1.00000
685685 1.73205i 1.73205i
686686 0 0
687687 −0.866025 + 1.50000i −0.866025 + 1.50000i
688688 0 0
689689 0 0
690690 1.00000 1.73205i 1.00000 1.73205i
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −1.50000 0.866025i −1.50000 0.866025i
695695 1.00000i 1.00000i
696696 0 0
697697 0 0
698698 −1.73205 −1.73205
699699 1.50000 0.866025i 1.50000 0.866025i
700700 0 0
701701 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.866025 + 0.500000i 0.866025 + 0.500000i
706706 0 0
707707 0 0
708708 0 0
709709 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
710710 0 0
711711 2.00000 2.00000
712712 0 0
713713 −1.73205 + 1.00000i −1.73205 + 1.00000i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
720720 1.00000i 1.00000i
721721 0 0
722722 0.866025 0.500000i 0.866025 0.500000i
723723 1.73205 1.73205
724724 −0.500000 0.866025i −0.500000 0.866025i
725725 0 0
726726 −0.500000 + 0.866025i −0.500000 + 0.866025i
727727 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 −0.500000 0.866025i −0.500000 0.866025i
736736 −1.00000 1.73205i −1.00000 1.73205i
737737 0 0
738738 0 0
739739 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
744744 0.500000 0.866025i 0.500000 0.866025i
745745 0 0
746746 0 0
747747 −0.866025 1.50000i −0.866025 1.50000i
748748 0 0
749749 0 0
750750 −0.866025 0.500000i −0.866025 0.500000i
751751 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
752752 0.866025 0.500000i 0.866025 0.500000i
753753 0 0
754754 0 0
755755 −0.866025 0.500000i −0.866025 0.500000i
756756 0 0
757757 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
758758 0 0
759759 0 0
760760 0.500000 + 0.866025i 0.500000 + 0.866025i
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 1.50000 + 0.866025i 1.50000 + 0.866025i
766766 −1.50000 0.866025i −1.50000 0.866025i
767767 0 0
768768 0.866025 + 0.500000i 0.866025 + 0.500000i
769769 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
770770 0 0
771771 −2.00000 −2.00000
772772 0 0
773773 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0.500000 + 0.866025i 0.500000 + 0.866025i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −3.46410 −3.46410
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 1.00000i 1.00000i
789789 0.500000 + 0.866025i 0.500000 + 0.866025i
790790 1.00000 + 1.73205i 1.00000 + 1.73205i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0.866025 1.50000i 0.866025 1.50000i
796796 0 0
797797 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 1.73205i 1.73205i
800800 −0.866025 + 0.500000i −0.866025 + 0.500000i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −0.500000 0.866025i −0.500000 0.866025i
811811 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
812812 0 0
813813 −0.866025 1.50000i −0.866025 1.50000i
814814 0 0
815815 0 0
816816 1.50000 0.866025i 1.50000 0.866025i
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
822822 1.73205 1.73205
823823 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
828828 1.73205 + 1.00000i 1.73205 + 1.00000i
829829 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0.866025 1.50000i 0.866025 1.50000i
831831 0 0
832832 0 0
833833 −0.866025 + 1.50000i −0.866025 + 1.50000i
834834 −1.00000 −1.00000
835835 1.73205i 1.73205i
836836 0 0
837837 1.00000i 1.00000i
838838 0 0
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 1.73205 + 1.00000i 1.73205 + 1.00000i
843843 0 0
844844 −1.50000 0.866025i −1.50000 0.866025i
845845 −0.866025 + 0.500000i −0.866025 + 0.500000i
846846 −0.500000 + 0.866025i −0.500000 + 0.866025i
847847 0 0
848848 −0.866025 1.50000i −0.866025 1.50000i
849849 0 0
850850 1.73205i 1.73205i
851851 0 0
852852 0 0
853853 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
854854 0 0
855855 −0.866025 0.500000i −0.866025 0.500000i
856856 1.00000 1.00000
857857 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
858858 0 0
859859 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 −1.00000 −1.00000
865865 0 0
866866 0 0
867867 2.00000i 2.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.866025 0.500000i −0.866025 0.500000i
873873 0 0
874874 2.00000 2.00000
875875 0 0
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0.866025 + 0.500000i 0.866025 + 0.500000i
879879 1.50000 + 0.866025i 1.50000 + 0.866025i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0.866025 0.500000i 0.866025 0.500000i
883883 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
884884 0 0
885885 0 0
886886 1.50000 0.866025i 1.50000 0.866025i
887887 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.00000i 1.00000i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0.500000 0.866025i 0.500000 0.866025i
901901 −3.00000 −3.00000
902902 0 0
903903 0 0
904904 −1.00000 −1.00000
905905 1.00000i 1.00000i
906906 0.500000 0.866025i 0.500000 0.866025i
907907 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
908908 2.00000i 2.00000i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −0.866025 + 0.500000i −0.866025 + 0.500000i
913913 0 0
914914 0 0
915915 0 0
916916 1.73205i 1.73205i
917917 0 0
918918 −0.866025 + 1.50000i −0.866025 + 1.50000i
919919 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 2.00000i 2.00000i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 −0.866025 + 0.500000i −0.866025 + 0.500000i
931931 0.500000 0.866025i 0.500000 0.866025i
932932 −0.866025 + 1.50000i −0.866025 + 1.50000i
933933 0 0
934934 1.73205i 1.73205i
935935 0 0
936936 0 0
937937 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
938938 0 0
939939 0 0
940940 −1.00000 −1.00000
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
948948 −1.73205 + 1.00000i −1.73205 + 1.00000i
949949 0 0
950950 1.00000i 1.00000i
951951 1.73205i 1.73205i
952952 0 0
953953 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
954954 1.50000 + 0.866025i 1.50000 + 0.866025i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −0.500000 0.866025i −0.500000 0.866025i
961961 0 0
962962 0 0
963963 −0.866025 + 0.500000i −0.866025 + 0.500000i
964964 −1.50000 + 0.866025i −1.50000 + 0.866025i
965965 0 0
966966 0 0
967967 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 1.00000i 1.00000i
969969 1.73205i 1.73205i
970970 0 0
971971 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
972972 0.866025 0.500000i 0.866025 0.500000i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
978978 0 0
979979 0 0
980980 0.866025 + 0.500000i 0.866025 + 0.500000i
981981 1.00000 1.00000
982982 0 0
983983 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 0 0
985985 0.500000 0.866025i 0.500000 0.866025i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
992992 1.00000i 1.00000i
993993 0 0
994994 0 0
995995 0 0
996996 1.50000 + 0.866025i 1.50000 + 0.866025i
997997 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
998998 −0.866025 0.500000i −0.866025 0.500000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.cs.a.179.2 yes 4
3.2 odd 2 inner 2280.1.cs.a.179.1 4
5.4 even 2 inner 2280.1.cs.a.179.1 4
8.3 odd 2 2280.1.cs.b.179.2 yes 4
15.14 odd 2 CM 2280.1.cs.a.179.2 yes 4
19.12 odd 6 2280.1.cs.b.1019.2 yes 4
24.11 even 2 2280.1.cs.b.179.1 yes 4
40.19 odd 2 2280.1.cs.b.179.1 yes 4
57.50 even 6 2280.1.cs.b.1019.1 yes 4
95.69 odd 6 2280.1.cs.b.1019.1 yes 4
120.59 even 2 2280.1.cs.b.179.2 yes 4
152.107 even 6 inner 2280.1.cs.a.1019.1 yes 4
285.164 even 6 2280.1.cs.b.1019.2 yes 4
456.107 odd 6 inner 2280.1.cs.a.1019.2 yes 4
760.259 even 6 inner 2280.1.cs.a.1019.2 yes 4
2280.1019 odd 6 inner 2280.1.cs.a.1019.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.cs.a.179.1 4 3.2 odd 2 inner
2280.1.cs.a.179.1 4 5.4 even 2 inner
2280.1.cs.a.179.2 yes 4 1.1 even 1 trivial
2280.1.cs.a.179.2 yes 4 15.14 odd 2 CM
2280.1.cs.a.1019.1 yes 4 152.107 even 6 inner
2280.1.cs.a.1019.1 yes 4 2280.1019 odd 6 inner
2280.1.cs.a.1019.2 yes 4 456.107 odd 6 inner
2280.1.cs.a.1019.2 yes 4 760.259 even 6 inner
2280.1.cs.b.179.1 yes 4 24.11 even 2
2280.1.cs.b.179.1 yes 4 40.19 odd 2
2280.1.cs.b.179.2 yes 4 8.3 odd 2
2280.1.cs.b.179.2 yes 4 120.59 even 2
2280.1.cs.b.1019.1 yes 4 57.50 even 6
2280.1.cs.b.1019.1 yes 4 95.69 odd 6
2280.1.cs.b.1019.2 yes 4 19.12 odd 6
2280.1.cs.b.1019.2 yes 4 285.164 even 6