Defining parameters
Level: | \( N \) | \(=\) | \( 228 = 2^{2} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 228.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(228, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 86 | 6 | 80 |
Cusp forms | 74 | 6 | 68 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(228, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
228.3.h.a | $6$ | $6.213$ | 6.0.219615408.1 | None | \(0\) | \(0\) | \(-2\) | \(-2\) | \(q+\beta _{2}q^{3}-\beta _{3}q^{5}+\beta _{1}q^{7}-3q^{9}+(-4+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(228, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(228, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)