Newspace parameters
Level: | \( N \) | \(=\) | \( 228 = 2^{2} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 228.w (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.82058916609\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 | −1.41419 | + | 0.00878762i | 0.766044 | − | 0.642788i | 1.99985 | − | 0.0248547i | 3.39140 | + | 1.23437i | −1.07768 | + | 0.915753i | 1.70277 | + | 0.983096i | −2.82794 | + | 0.0527230i | 0.173648 | − | 0.984808i | −4.80692 | − | 1.71582i |
67.2 | −1.18161 | + | 0.777041i | 0.766044 | − | 0.642788i | 0.792416 | − | 1.83632i | −1.25586 | − | 0.457097i | −0.405696 | + | 1.35477i | 1.18216 | + | 0.682521i | 0.490568 | + | 2.78556i | 0.173648 | − | 0.984808i | 1.83913 | − | 0.435746i |
67.3 | −1.05000 | − | 0.947369i | 0.766044 | − | 0.642788i | 0.204983 | + | 1.98947i | 1.27204 | + | 0.462984i | −1.41330 | − | 0.0508027i | −3.79268 | − | 2.18970i | 1.66953 | − | 2.28313i | 0.173648 | − | 0.984808i | −0.897018 | − | 1.69122i |
67.4 | −0.203595 | + | 1.39948i | 0.766044 | − | 0.642788i | −1.91710 | − | 0.569856i | −2.74412 | − | 0.998777i | 0.743606 | + | 1.20293i | −3.79172 | − | 2.18915i | 1.18781 | − | 2.56692i | 0.173648 | − | 0.984808i | 1.95646 | − | 3.63700i |
67.5 | −0.109693 | + | 1.40995i | 0.766044 | − | 0.642788i | −1.97593 | − | 0.309324i | 0.378363 | + | 0.137713i | 0.822271 | + | 1.15060i | 3.35222 | + | 1.93540i | 0.652879 | − | 2.75204i | 0.173648 | − | 0.984808i | −0.235673 | + | 0.518369i |
67.6 | 0.0625414 | − | 1.41283i | 0.766044 | − | 0.642788i | −1.99218 | − | 0.176721i | −3.72560 | − | 1.35601i | −0.860240 | − | 1.12249i | −0.752955 | − | 0.434719i | −0.374270 | + | 2.80356i | 0.173648 | − | 0.984808i | −2.14881 | + | 5.17883i |
67.7 | 0.803261 | − | 1.16395i | 0.766044 | − | 0.642788i | −0.709544 | − | 1.86991i | 1.35681 | + | 0.493837i | −0.132837 | − | 1.40796i | 0.113130 | + | 0.0653155i | −2.74642 | − | 0.676151i | 0.173648 | − | 0.984808i | 1.66467 | − | 1.18257i |
67.8 | 0.814750 | + | 1.15593i | 0.766044 | − | 0.642788i | −0.672365 | + | 1.88359i | 3.29537 | + | 1.19942i | 1.36715 | + | 0.361785i | −2.21173 | − | 1.27694i | −2.72512 | + | 0.757450i | 0.173648 | − | 0.984808i | 1.29846 | + | 4.78645i |
67.9 | 1.19665 | + | 0.753681i | 0.766044 | − | 0.642788i | 0.863929 | + | 1.80378i | −2.00728 | − | 0.730589i | 1.40114 | − | 0.191837i | 3.36529 | + | 1.94295i | −0.325658 | + | 2.80962i | 0.173648 | − | 0.984808i | −1.85137 | − | 2.38710i |
67.10 | 1.40824 | − | 0.129898i | 0.766044 | − | 0.642788i | 1.96625 | − | 0.365855i | 0.0388803 | + | 0.0141513i | 0.995274 | − | 1.00470i | −1.39317 | − | 0.804345i | 2.72142 | − | 0.770623i | 0.173648 | − | 0.984808i | 0.0565908 | + | 0.0148778i |
79.1 | −1.37514 | + | 0.330144i | −0.939693 | + | 0.342020i | 1.78201 | − | 0.907986i | 0.432248 | − | 2.45140i | 1.17929 | − | 0.780559i | −1.95860 | + | 1.13080i | −2.15074 | + | 1.83693i | 0.766044 | − | 0.642788i | 0.214913 | + | 3.51371i |
79.2 | −1.11501 | + | 0.869917i | −0.939693 | + | 0.342020i | 0.486490 | − | 1.93993i | −0.379809 | + | 2.15400i | 0.750237 | − | 1.19881i | 3.95398 | − | 2.28283i | 1.14514 | + | 2.58625i | 0.766044 | − | 0.642788i | −1.45031 | − | 2.73213i |
79.3 | −1.02960 | − | 0.969499i | −0.939693 | + | 0.342020i | 0.120142 | + | 1.99639i | 0.162908 | − | 0.923898i | 1.29909 | + | 0.558888i | −2.27351 | + | 1.31261i | 1.81180 | − | 2.17195i | 0.766044 | − | 0.642788i | −1.06345 | + | 0.793304i |
79.4 | −0.626457 | + | 1.26789i | −0.939693 | + | 0.342020i | −1.21510 | − | 1.58856i | 0.316000 | − | 1.79212i | 0.155032 | − | 1.40569i | −0.258690 | + | 0.149354i | 2.77533 | − | 0.545458i | 0.766044 | − | 0.642788i | 2.07426 | + | 1.52334i |
79.5 | −0.526616 | − | 1.31251i | −0.939693 | + | 0.342020i | −1.44535 | + | 1.38238i | −0.0217506 | + | 0.123354i | 0.943762 | + | 1.05324i | 3.23383 | − | 1.86705i | 2.57552 | + | 1.16905i | 0.766044 | − | 0.642788i | 0.173357 | − | 0.0364123i |
79.6 | 0.260406 | + | 1.39003i | −0.939693 | + | 0.342020i | −1.86438 | + | 0.723946i | −0.175493 | + | 0.995269i | −0.720121 | − | 1.21714i | −2.28954 | + | 1.32186i | −1.49180 | − | 2.40302i | 0.766044 | − | 0.642788i | −1.42916 | + | 0.0152335i |
79.7 | 0.436096 | − | 1.34530i | −0.939693 | + | 0.342020i | −1.61964 | − | 1.17336i | −0.711633 | + | 4.03587i | 0.0503222 | + | 1.41332i | −1.83842 | + | 1.06142i | −2.28483 | + | 1.66720i | 0.766044 | − | 0.642788i | 5.11910 | + | 2.71738i |
79.8 | 0.947134 | − | 1.05021i | −0.939693 | + | 0.342020i | −0.205875 | − | 1.98938i | 0.234529 | − | 1.33008i | −0.530822 | + | 1.31081i | 1.38264 | − | 0.798268i | −2.28425 | − | 1.66799i | 0.766044 | − | 0.642788i | −1.17473 | − | 1.50607i |
79.9 | 1.37128 | + | 0.345809i | −0.939693 | + | 0.342020i | 1.76083 | + | 0.948403i | −0.540387 | + | 3.06469i | −1.40686 | + | 0.144052i | −1.31815 | + | 0.761035i | 2.08663 | + | 1.90944i | 0.766044 | − | 0.642788i | −1.80082 | + | 4.01568i |
79.10 | 1.39185 | + | 0.250479i | −0.939693 | + | 0.342020i | 1.87452 | + | 0.697261i | 0.683388 | − | 3.87569i | −1.39358 | + | 0.240669i | 0.181667 | − | 0.104885i | 2.43441 | + | 1.44001i | 0.766044 | − | 0.642788i | 1.92196 | − | 5.22322i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
76.k | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 228.2.w.b | yes | 60 |
3.b | odd | 2 | 1 | 684.2.cf.b | 60 | ||
4.b | odd | 2 | 1 | 228.2.w.a | ✓ | 60 | |
12.b | even | 2 | 1 | 684.2.cf.c | 60 | ||
19.f | odd | 18 | 1 | 228.2.w.a | ✓ | 60 | |
57.j | even | 18 | 1 | 684.2.cf.c | 60 | ||
76.k | even | 18 | 1 | inner | 228.2.w.b | yes | 60 |
228.u | odd | 18 | 1 | 684.2.cf.b | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
228.2.w.a | ✓ | 60 | 4.b | odd | 2 | 1 | |
228.2.w.a | ✓ | 60 | 19.f | odd | 18 | 1 | |
228.2.w.b | yes | 60 | 1.a | even | 1 | 1 | trivial |
228.2.w.b | yes | 60 | 76.k | even | 18 | 1 | inner |
684.2.cf.b | 60 | 3.b | odd | 2 | 1 | ||
684.2.cf.b | 60 | 228.u | odd | 18 | 1 | ||
684.2.cf.c | 60 | 12.b | even | 2 | 1 | ||
684.2.cf.c | 60 | 57.j | even | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{60} - 120 T_{7}^{58} + 8037 T_{7}^{56} + 234 T_{7}^{55} - 370070 T_{7}^{54} + \cdots + 54\!\cdots\!89 \)
acting on \(S_{2}^{\mathrm{new}}(228, [\chi])\).