Properties

Label 228.2.w
Level $228$
Weight $2$
Character orbit 228.w
Rep. character $\chi_{228}(67,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $120$
Newform subspaces $2$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.w (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).

Total New Old
Modular forms 264 120 144
Cusp forms 216 120 96
Eisenstein series 48 0 48

Trace form

\( 120 q - 6 q^{4} + 6 q^{6} - 12 q^{10} - 12 q^{13} - 18 q^{14} - 6 q^{16} + 60 q^{20} - 12 q^{21} - 36 q^{28} - 30 q^{32} - 54 q^{34} - 6 q^{36} - 132 q^{38} - 54 q^{40} - 24 q^{41} - 60 q^{44} - 90 q^{46}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
228.2.w.a 228.w 76.k $60$ $1.821$ None 228.2.w.a \(-3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$
228.2.w.b 228.w 76.k $60$ $1.821$ None 228.2.w.a \(3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(228, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(228, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)