Defining parameters
Level: | \( N \) | \(=\) | \( 228 = 2^{2} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 228.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 12 | 80 |
Cusp forms | 68 | 12 | 56 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
228.2.p.a | $2$ | $1.821$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(-3\) | \(0\) | \(-10\) | \(q+(-1-\zeta_{6})q^{3}-5q^{7}+3\zeta_{6}q^{9}+(-6+\cdots)q^{13}+\cdots\) |
228.2.p.b | $2$ | $1.821$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(3\) | \(0\) | \(2\) | \(q+(1+\zeta_{6})q^{3}+q^{7}+3\zeta_{6}q^{9}+(2-\zeta_{6})q^{13}+\cdots\) |
228.2.p.c | $4$ | $1.821$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(-2\) | \(9\) | \(2\) | \(q+(-\beta _{1}+\beta _{3})q^{3}+(2-\beta _{1}+\beta _{2})q^{5}+\cdots\) |
228.2.p.d | $4$ | $1.821$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(-1\) | \(-9\) | \(2\) | \(q-\beta _{1}q^{3}+(-3+2\beta _{2}+\beta _{3})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(228, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(228, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)