Defining parameters
Level: | \( N \) | \(=\) | \( 228 = 2^{2} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 228.k (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 40 | 48 |
Cusp forms | 72 | 40 | 32 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
228.2.k.a | $20$ | $1.821$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-1\) | \(-10\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}-\beta _{12}q^{3}+\beta _{9}q^{4}+(\beta _{6}-\beta _{17}+\cdots)q^{5}+\cdots\) |
228.2.k.b | $20$ | $1.821$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(1\) | \(10\) | \(0\) | \(0\) | \(q+(-\beta _{8}-\beta _{16})q^{2}-\beta _{11}q^{3}+\beta _{17}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(228, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(228, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)