Properties

Label 228.2.k
Level $228$
Weight $2$
Character orbit 228.k
Rep. character $\chi_{228}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $2$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).

Total New Old
Modular forms 88 40 48
Cusp forms 72 40 32
Eisenstein series 16 0 16

Trace form

\( 40 q + 2 q^{4} - 2 q^{6} - 20 q^{9} + O(q^{10}) \) \( 40 q + 2 q^{4} - 2 q^{6} - 20 q^{9} + 12 q^{10} + 12 q^{13} + 18 q^{14} + 2 q^{16} - 28 q^{20} + 12 q^{21} + 4 q^{24} - 20 q^{25} + 14 q^{28} - 60 q^{32} - 36 q^{34} + 2 q^{36} + 14 q^{38} - 72 q^{40} + 24 q^{41} + 18 q^{44} - 24 q^{48} - 48 q^{49} + 6 q^{52} - 24 q^{53} - 2 q^{54} + 12 q^{57} + 32 q^{58} + 6 q^{60} + 20 q^{61} - 26 q^{62} - 28 q^{64} - 16 q^{66} + 80 q^{68} + 72 q^{70} + 18 q^{72} - 12 q^{73} + 48 q^{74} - 66 q^{76} - 64 q^{77} + 66 q^{78} + 62 q^{80} - 20 q^{81} - 36 q^{82} + 16 q^{85} - 18 q^{86} - 48 q^{89} - 12 q^{90} + 18 q^{92} + 12 q^{93} + 4 q^{96} - 24 q^{97} - 12 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
228.2.k.a 228.k 76.f $20$ $1.821$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(-1\) \(-10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{4}q^{2}-\beta _{12}q^{3}+\beta _{9}q^{4}+(\beta _{6}-\beta _{17}+\cdots)q^{5}+\cdots\)
228.2.k.b 228.k 76.f $20$ $1.821$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(1\) \(10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{8}-\beta _{16})q^{2}-\beta _{11}q^{3}+\beta _{17}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(228, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(228, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)