Newspace parameters
Level: | \( N \) | \(=\) | \( 228 = 2^{2} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 228.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.82058916609\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | −1.41330 | − | 0.0507215i | −0.756793 | − | 1.55797i | 1.99485 | + | 0.143370i | 0.762708i | 0.990556 | + | 2.24027i | 3.87706i | −2.81206 | − | 0.303807i | −1.85453 | + | 2.35812i | 0.0386857 | − | 1.07794i | ||||
191.2 | −1.41330 | + | 0.0507215i | −0.756793 | + | 1.55797i | 1.99485 | − | 0.143370i | − | 0.762708i | 0.990556 | − | 2.24027i | − | 3.87706i | −2.81206 | + | 0.303807i | −1.85453 | − | 2.35812i | 0.0386857 | + | 1.07794i | ||
191.3 | −1.39068 | − | 0.256903i | 1.58499 | − | 0.698441i | 1.86800 | + | 0.714541i | − | 3.19367i | −2.38365 | + | 0.564123i | − | 0.170940i | −2.41423 | − | 1.47359i | 2.02436 | − | 2.21404i | −0.820463 | + | 4.44139i | ||
191.4 | −1.39068 | + | 0.256903i | 1.58499 | + | 0.698441i | 1.86800 | − | 0.714541i | 3.19367i | −2.38365 | − | 0.564123i | 0.170940i | −2.41423 | + | 1.47359i | 2.02436 | + | 2.21404i | −0.820463 | − | 4.44139i | ||||
191.5 | −1.17379 | − | 0.788801i | 0.726100 | − | 1.57251i | 0.755587 | + | 1.85178i | 2.76393i | −2.09269 | + | 1.27305i | − | 4.18351i | 0.573780 | − | 2.76962i | −1.94556 | − | 2.28359i | 2.18019 | − | 3.24429i | |||
191.6 | −1.17379 | + | 0.788801i | 0.726100 | + | 1.57251i | 0.755587 | − | 1.85178i | − | 2.76393i | −2.09269 | − | 1.27305i | 4.18351i | 0.573780 | + | 2.76962i | −1.94556 | + | 2.28359i | 2.18019 | + | 3.24429i | |||
191.7 | −1.13655 | − | 0.841583i | 0.0680243 | + | 1.73071i | 0.583476 | + | 1.91300i | 1.36832i | 1.37923 | − | 2.02429i | 1.12940i | 0.946798 | − | 2.66525i | −2.99075 | + | 0.235461i | 1.15156 | − | 1.55516i | ||||
191.8 | −1.13655 | + | 0.841583i | 0.0680243 | − | 1.73071i | 0.583476 | − | 1.91300i | − | 1.36832i | 1.37923 | + | 2.02429i | − | 1.12940i | 0.946798 | + | 2.66525i | −2.99075 | − | 0.235461i | 1.15156 | + | 1.55516i | ||
191.9 | −1.08992 | − | 0.901156i | −1.45940 | − | 0.932823i | 0.375835 | + | 1.96437i | − | 2.01739i | 0.750003 | + | 2.33184i | − | 2.54076i | 1.36058 | − | 2.47968i | 1.25968 | + | 2.72272i | −1.81798 | + | 2.19879i | ||
191.10 | −1.08992 | + | 0.901156i | −1.45940 | + | 0.932823i | 0.375835 | − | 1.96437i | 2.01739i | 0.750003 | − | 2.33184i | 2.54076i | 1.36058 | + | 2.47968i | 1.25968 | − | 2.72272i | −1.81798 | − | 2.19879i | ||||
191.11 | −0.791500 | − | 1.17198i | 1.69893 | − | 0.337110i | −0.747055 | + | 1.85524i | 0.951020i | −1.73979 | − | 1.72428i | 4.82396i | 2.76559 | − | 0.592892i | 2.77271 | − | 1.14545i | 1.11457 | − | 0.752732i | ||||
191.12 | −0.791500 | + | 1.17198i | 1.69893 | + | 0.337110i | −0.747055 | − | 1.85524i | − | 0.951020i | −1.73979 | + | 1.72428i | − | 4.82396i | 2.76559 | + | 0.592892i | 2.77271 | + | 1.14545i | 1.11457 | + | 0.752732i | ||
191.13 | −0.557018 | − | 1.29990i | 1.17516 | + | 1.27240i | −1.37946 | + | 1.44813i | − | 3.63294i | 0.999396 | − | 2.23634i | − | 2.62764i | 2.65081 | + | 0.986525i | −0.237980 | + | 2.99055i | −4.72245 | + | 2.02361i | ||
191.14 | −0.557018 | + | 1.29990i | 1.17516 | − | 1.27240i | −1.37946 | − | 1.44813i | 3.63294i | 0.999396 | + | 2.23634i | 2.62764i | 2.65081 | − | 0.986525i | −0.237980 | − | 2.99055i | −4.72245 | − | 2.02361i | ||||
191.15 | −0.474569 | − | 1.33221i | −1.60213 | + | 0.658173i | −1.54957 | + | 1.26445i | − | 0.191837i | 1.63714 | + | 1.82202i | 0.733628i | 2.41989 | + | 1.46428i | 2.13362 | − | 2.10895i | −0.255567 | + | 0.0910397i | |||
191.16 | −0.474569 | + | 1.33221i | −1.60213 | − | 0.658173i | −1.54957 | − | 1.26445i | 0.191837i | 1.63714 | − | 1.82202i | − | 0.733628i | 2.41989 | − | 1.46428i | 2.13362 | + | 2.10895i | −0.255567 | − | 0.0910397i | |||
191.17 | −0.221733 | − | 1.39672i | −0.958759 | − | 1.44249i | −1.90167 | + | 0.619399i | 3.67393i | −1.80217 | + | 1.65897i | 1.73008i | 1.28679 | + | 2.51876i | −1.16156 | + | 2.76600i | 5.13146 | − | 0.814631i | ||||
191.18 | −0.221733 | + | 1.39672i | −0.958759 | + | 1.44249i | −1.90167 | − | 0.619399i | − | 3.67393i | −1.80217 | − | 1.65897i | − | 1.73008i | 1.28679 | − | 2.51876i | −1.16156 | − | 2.76600i | 5.13146 | + | 0.814631i | ||
191.19 | 0.221733 | − | 1.39672i | 0.958759 | + | 1.44249i | −1.90167 | − | 0.619399i | 3.67393i | 2.22735 | − | 1.01927i | − | 1.73008i | −1.28679 | + | 2.51876i | −1.16156 | + | 2.76600i | 5.13146 | + | 0.814631i | |||
191.20 | 0.221733 | + | 1.39672i | 0.958759 | − | 1.44249i | −1.90167 | + | 0.619399i | − | 3.67393i | 2.22735 | + | 1.01927i | 1.73008i | −1.28679 | − | 2.51876i | −1.16156 | − | 2.76600i | 5.13146 | − | 0.814631i | |||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 228.2.c.a | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 228.2.c.a | ✓ | 36 |
4.b | odd | 2 | 1 | inner | 228.2.c.a | ✓ | 36 |
12.b | even | 2 | 1 | inner | 228.2.c.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
228.2.c.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
228.2.c.a | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
228.2.c.a | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
228.2.c.a | ✓ | 36 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(228, [\chi])\).