Properties

Label 228.2.c.a
Level $228$
Weight $2$
Character orbit 228.c
Analytic conductor $1.821$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,2,Mod(191,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.82058916609\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 6 q^{6} + 8 q^{10} + 4 q^{12} - 8 q^{16} + 16 q^{18} + 8 q^{21} - 12 q^{22} - 2 q^{24} - 28 q^{25} + 12 q^{28} - 12 q^{30} - 28 q^{34} - 22 q^{36} - 16 q^{37} - 12 q^{40} + 10 q^{42} + 16 q^{45}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1 −1.41330 0.0507215i −0.756793 1.55797i 1.99485 + 0.143370i 0.762708i 0.990556 + 2.24027i 3.87706i −2.81206 0.303807i −1.85453 + 2.35812i 0.0386857 1.07794i
191.2 −1.41330 + 0.0507215i −0.756793 + 1.55797i 1.99485 0.143370i 0.762708i 0.990556 2.24027i 3.87706i −2.81206 + 0.303807i −1.85453 2.35812i 0.0386857 + 1.07794i
191.3 −1.39068 0.256903i 1.58499 0.698441i 1.86800 + 0.714541i 3.19367i −2.38365 + 0.564123i 0.170940i −2.41423 1.47359i 2.02436 2.21404i −0.820463 + 4.44139i
191.4 −1.39068 + 0.256903i 1.58499 + 0.698441i 1.86800 0.714541i 3.19367i −2.38365 0.564123i 0.170940i −2.41423 + 1.47359i 2.02436 + 2.21404i −0.820463 4.44139i
191.5 −1.17379 0.788801i 0.726100 1.57251i 0.755587 + 1.85178i 2.76393i −2.09269 + 1.27305i 4.18351i 0.573780 2.76962i −1.94556 2.28359i 2.18019 3.24429i
191.6 −1.17379 + 0.788801i 0.726100 + 1.57251i 0.755587 1.85178i 2.76393i −2.09269 1.27305i 4.18351i 0.573780 + 2.76962i −1.94556 + 2.28359i 2.18019 + 3.24429i
191.7 −1.13655 0.841583i 0.0680243 + 1.73071i 0.583476 + 1.91300i 1.36832i 1.37923 2.02429i 1.12940i 0.946798 2.66525i −2.99075 + 0.235461i 1.15156 1.55516i
191.8 −1.13655 + 0.841583i 0.0680243 1.73071i 0.583476 1.91300i 1.36832i 1.37923 + 2.02429i 1.12940i 0.946798 + 2.66525i −2.99075 0.235461i 1.15156 + 1.55516i
191.9 −1.08992 0.901156i −1.45940 0.932823i 0.375835 + 1.96437i 2.01739i 0.750003 + 2.33184i 2.54076i 1.36058 2.47968i 1.25968 + 2.72272i −1.81798 + 2.19879i
191.10 −1.08992 + 0.901156i −1.45940 + 0.932823i 0.375835 1.96437i 2.01739i 0.750003 2.33184i 2.54076i 1.36058 + 2.47968i 1.25968 2.72272i −1.81798 2.19879i
191.11 −0.791500 1.17198i 1.69893 0.337110i −0.747055 + 1.85524i 0.951020i −1.73979 1.72428i 4.82396i 2.76559 0.592892i 2.77271 1.14545i 1.11457 0.752732i
191.12 −0.791500 + 1.17198i 1.69893 + 0.337110i −0.747055 1.85524i 0.951020i −1.73979 + 1.72428i 4.82396i 2.76559 + 0.592892i 2.77271 + 1.14545i 1.11457 + 0.752732i
191.13 −0.557018 1.29990i 1.17516 + 1.27240i −1.37946 + 1.44813i 3.63294i 0.999396 2.23634i 2.62764i 2.65081 + 0.986525i −0.237980 + 2.99055i −4.72245 + 2.02361i
191.14 −0.557018 + 1.29990i 1.17516 1.27240i −1.37946 1.44813i 3.63294i 0.999396 + 2.23634i 2.62764i 2.65081 0.986525i −0.237980 2.99055i −4.72245 2.02361i
191.15 −0.474569 1.33221i −1.60213 + 0.658173i −1.54957 + 1.26445i 0.191837i 1.63714 + 1.82202i 0.733628i 2.41989 + 1.46428i 2.13362 2.10895i −0.255567 + 0.0910397i
191.16 −0.474569 + 1.33221i −1.60213 0.658173i −1.54957 1.26445i 0.191837i 1.63714 1.82202i 0.733628i 2.41989 1.46428i 2.13362 + 2.10895i −0.255567 0.0910397i
191.17 −0.221733 1.39672i −0.958759 1.44249i −1.90167 + 0.619399i 3.67393i −1.80217 + 1.65897i 1.73008i 1.28679 + 2.51876i −1.16156 + 2.76600i 5.13146 0.814631i
191.18 −0.221733 + 1.39672i −0.958759 + 1.44249i −1.90167 0.619399i 3.67393i −1.80217 1.65897i 1.73008i 1.28679 2.51876i −1.16156 2.76600i 5.13146 + 0.814631i
191.19 0.221733 1.39672i 0.958759 + 1.44249i −1.90167 0.619399i 3.67393i 2.22735 1.01927i 1.73008i −1.28679 + 2.51876i −1.16156 + 2.76600i 5.13146 + 0.814631i
191.20 0.221733 + 1.39672i 0.958759 1.44249i −1.90167 + 0.619399i 3.67393i 2.22735 + 1.01927i 1.73008i −1.28679 2.51876i −1.16156 2.76600i 5.13146 0.814631i
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 228.2.c.a 36
3.b odd 2 1 inner 228.2.c.a 36
4.b odd 2 1 inner 228.2.c.a 36
12.b even 2 1 inner 228.2.c.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.2.c.a 36 1.a even 1 1 trivial
228.2.c.a 36 3.b odd 2 1 inner
228.2.c.a 36 4.b odd 2 1 inner
228.2.c.a 36 12.b even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(228, [\chi])\).