Properties

Label 2275.2.a.z
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 6x^{5} + 22x^{4} - 31x^{2} + 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{6} q^{3} + ( - \beta_{6} + \beta_{5} - \beta_{3}) q^{4} + ( - \beta_{5} + \beta_{4} + \cdots + 2 \beta_1) q^{6} - q^{7} + (\beta_{5} + \beta_{4} + \beta_1) q^{8} + ( - \beta_{6} - \beta_{4} + \cdots - \beta_{2}) q^{9}+ \cdots + ( - 2 \beta_{6} - 5 \beta_{5} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + 3 q^{3} + 7 q^{4} - q^{6} - 7 q^{7} + 3 q^{8} + 6 q^{9} - 3 q^{11} + 14 q^{12} + 7 q^{13} - 3 q^{14} + 7 q^{16} + 17 q^{17} - 6 q^{19} - 3 q^{21} + 10 q^{22} + 17 q^{23} - 8 q^{24} + 3 q^{26}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 6x^{5} + 22x^{4} - 31x^{2} + 12x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{6} - \nu^{5} - 8\nu^{4} + 5\nu^{3} + 12\nu^{2} - \nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\nu^{6} + 2\nu^{5} + 17\nu^{4} - 11\nu^{3} - 31\nu^{2} + 7\nu + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{6} + 3\nu^{5} + 16\nu^{4} - 19\nu^{3} - 25\nu^{2} + 19\nu + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{6} - 3\nu^{5} - 16\nu^{4} + 20\nu^{3} + 25\nu^{2} - 24\nu - 1 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 4\nu^{6} - 5\nu^{5} - 33\nu^{4} + 31\nu^{3} + 55\nu^{2} - 31\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{6} + \beta_{5} - \beta_{3} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{6} + 8\beta_{5} + \beta_{4} - 6\beta_{3} + 2\beta_{2} + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{6} + 10\beta_{5} + 10\beta_{4} - \beta_{3} + 2\beta_{2} + 28\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -45\beta_{6} + 57\beta_{5} + 13\beta_{4} - 37\beta_{3} + 19\beta_{2} + 4\beta _1 + 41 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.35435
−1.31857
−0.126080
0.628034
1.70895
1.76583
2.69619
−2.35435 2.71231 3.54297 0 −6.38573 −1.00000 −3.63269 4.35663 0
1.2 −1.31857 −1.63091 −0.261378 0 2.15046 −1.00000 2.98178 −0.340140 0
1.3 −0.126080 0.287532 −1.98410 0 −0.0362519 −1.00000 0.502315 −2.91733 0
1.4 0.628034 0.473449 −1.60557 0 0.297342 −1.00000 −2.26442 −2.77585 0
1.5 1.70895 −2.66143 0.920509 0 −4.54825 −1.00000 −1.84480 4.08322 0
1.6 1.76583 2.98211 1.11814 0 5.26589 −1.00000 −1.55721 5.89299 0
1.7 2.69619 0.836937 5.26943 0 2.25654 −1.00000 8.81501 −2.29954 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.z yes 7
5.b even 2 1 2275.2.a.v 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2275.2.a.v 7 5.b even 2 1
2275.2.a.z yes 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{7} - 3T_{2}^{6} - 6T_{2}^{5} + 22T_{2}^{4} - 31T_{2}^{2} + 12T_{2} + 2 \) Copy content Toggle raw display
\( T_{3}^{7} - 3T_{3}^{6} - 9T_{3}^{5} + 28T_{3}^{4} + 10T_{3}^{3} - 47T_{3}^{2} + 26T_{3} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 3 T^{6} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{7} - 3 T^{6} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( (T + 1)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + 3 T^{6} + \cdots - 1346 \) Copy content Toggle raw display
$13$ \( (T - 1)^{7} \) Copy content Toggle raw display
$17$ \( T^{7} - 17 T^{6} + \cdots - 272 \) Copy content Toggle raw display
$19$ \( T^{7} + 6 T^{6} + \cdots - 3768 \) Copy content Toggle raw display
$23$ \( T^{7} - 17 T^{6} + \cdots - 21639 \) Copy content Toggle raw display
$29$ \( T^{7} - 4 T^{6} + \cdots + 33487 \) Copy content Toggle raw display
$31$ \( T^{7} - 3 T^{6} + \cdots + 38264 \) Copy content Toggle raw display
$37$ \( T^{7} + 3 T^{6} + \cdots - 151132 \) Copy content Toggle raw display
$41$ \( T^{7} + 16 T^{6} + \cdots - 66432 \) Copy content Toggle raw display
$43$ \( T^{7} - 8 T^{6} + \cdots + 8 \) Copy content Toggle raw display
$47$ \( T^{7} - T^{6} + \cdots - 25664 \) Copy content Toggle raw display
$53$ \( T^{7} - 23 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$59$ \( T^{7} + 22 T^{6} + \cdots - 56976 \) Copy content Toggle raw display
$61$ \( T^{7} - 13 T^{6} + \cdots - 52 \) Copy content Toggle raw display
$67$ \( T^{7} - 12 T^{6} + \cdots - 77236 \) Copy content Toggle raw display
$71$ \( T^{7} + 3 T^{6} + \cdots + 684 \) Copy content Toggle raw display
$73$ \( T^{7} - 14 T^{6} + \cdots - 1536 \) Copy content Toggle raw display
$79$ \( T^{7} - T^{6} + \cdots - 552723 \) Copy content Toggle raw display
$83$ \( T^{7} - 33 T^{6} + \cdots - 238424 \) Copy content Toggle raw display
$89$ \( T^{7} + 11 T^{6} + \cdots + 2970592 \) Copy content Toggle raw display
$97$ \( T^{7} + 5 T^{6} + \cdots + 808496 \) Copy content Toggle raw display
show more
show less