Properties

Label 2275.2.a.y
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 455)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{4} q^{3} + \beta_{2} q^{4} + ( - \beta_{3} - \beta_{2} - 1) q^{6} - q^{7} + (\beta_{6} - \beta_{5} + \beta_{2}) q^{8} + ( - \beta_{4} + \beta_{3} + \beta_1) q^{9} + ( - \beta_{6} + \beta_{5} + \cdots - 2 \beta_1) q^{11}+ \cdots + ( - \beta_{6} + 5 \beta_{5} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{3} + 2 q^{4} - 8 q^{6} - 7 q^{7} + 6 q^{8} + q^{9} - 6 q^{11} - 3 q^{12} + 7 q^{13} - 4 q^{16} - 2 q^{17} + q^{18} - 10 q^{19} - 2 q^{21} - 18 q^{22} - 10 q^{23} - 5 q^{24} + 8 q^{27} - 2 q^{28}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 8\nu^{4} - \nu^{3} + 15\nu^{2} + \nu - 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - \nu^{5} - 7\nu^{4} + 4\nu^{3} + 13\nu^{2} - 3\nu - 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - \nu^{5} - 7\nu^{4} + 5\nu^{3} + 12\nu^{2} - 7\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} - \beta_{5} + \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - \beta_{5} + \beta_{3} + 6\beta_{2} + 2\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{6} - 7\beta_{5} + \beta_{4} + \beta_{3} + 9\beta_{2} + 18\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{6} - 9\beta_{5} + \beta_{4} + 8\beta_{3} + 34\beta_{2} + 19\beta _1 + 30 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.92480
−1.71085
−0.687115
−0.340436
0.700339
1.51372
2.44914
−1.92480 2.17582 1.70485 0 −4.18801 −1.00000 0.568104 1.73417 0
1.2 −1.71085 0.260291 0.927009 0 −0.445320 −1.00000 1.83573 −2.93225 0
1.3 −0.687115 −1.04121 −1.52787 0 0.715431 −1.00000 2.42406 −1.91588 0
1.4 −0.340436 2.66843 −1.88410 0 −0.908430 −1.00000 1.32229 4.12053 0
1.5 0.700339 −1.90743 −1.50953 0 −1.33585 −1.00000 −2.45786 0.638282 0
1.6 1.51372 1.55652 0.291349 0 2.35614 −1.00000 −2.58642 −0.577244 0
1.7 2.44914 −1.71242 3.99829 0 −4.19396 −1.00000 4.89410 −0.0676101 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.y 7
5.b even 2 1 2275.2.a.w 7
5.c odd 4 2 455.2.c.b 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.c.b 14 5.c odd 4 2
2275.2.a.w 7 5.b even 2 1
2275.2.a.y 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{7} - 8T_{2}^{5} - 2T_{2}^{4} + 16T_{2}^{3} + 5T_{2}^{2} - 6T_{2} - 2 \) Copy content Toggle raw display
\( T_{3}^{7} - 2T_{3}^{6} - 9T_{3}^{5} + 14T_{3}^{4} + 27T_{3}^{3} - 26T_{3}^{2} - 26T_{3} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 8 T^{5} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( T^{7} - 2 T^{6} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( (T + 1)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + 6 T^{6} + \cdots - 512 \) Copy content Toggle raw display
$13$ \( (T - 1)^{7} \) Copy content Toggle raw display
$17$ \( T^{7} + 2 T^{6} + \cdots - 4 \) Copy content Toggle raw display
$19$ \( T^{7} + 10 T^{6} + \cdots + 15782 \) Copy content Toggle raw display
$23$ \( T^{7} + 10 T^{6} + \cdots + 12832 \) Copy content Toggle raw display
$29$ \( T^{7} + 26 T^{6} + \cdots + 302 \) Copy content Toggle raw display
$31$ \( T^{7} + 6 T^{6} + \cdots - 43898 \) Copy content Toggle raw display
$37$ \( T^{7} - 4 T^{6} + \cdots - 29668 \) Copy content Toggle raw display
$41$ \( T^{7} + 28 T^{6} + \cdots - 46208 \) Copy content Toggle raw display
$43$ \( T^{7} + 2 T^{6} + \cdots - 22432 \) Copy content Toggle raw display
$47$ \( T^{7} - 20 T^{6} + \cdots - 2048 \) Copy content Toggle raw display
$53$ \( T^{7} + 8 T^{6} + \cdots + 95552 \) Copy content Toggle raw display
$59$ \( T^{7} + 28 T^{6} + \cdots + 54848 \) Copy content Toggle raw display
$61$ \( T^{7} + 26 T^{6} + \cdots - 1967744 \) Copy content Toggle raw display
$67$ \( T^{7} + 2 T^{6} + \cdots - 621536 \) Copy content Toggle raw display
$71$ \( T^{7} + 14 T^{6} + \cdots + 794624 \) Copy content Toggle raw display
$73$ \( T^{7} - 2 T^{6} + \cdots + 14816 \) Copy content Toggle raw display
$79$ \( T^{7} - 14 T^{6} + \cdots - 436112 \) Copy content Toggle raw display
$83$ \( T^{7} - 28 T^{6} + \cdots - 29530048 \) Copy content Toggle raw display
$89$ \( T^{7} + 30 T^{6} + \cdots + 32188 \) Copy content Toggle raw display
$97$ \( T^{7} - 18 T^{6} + \cdots + 1139296 \) Copy content Toggle raw display
show more
show less