Properties

Label 2275.2.a.t
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.134584629.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 8x^{4} + 4x^{3} + 14x^{2} - 3x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{5} q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + ( - \beta_{4} + \beta_1 + 1) q^{6} - q^{7} + ( - \beta_{3} - \beta_{2} - 2 \beta_1 - 1) q^{8} + ( - \beta_{2} + 1) q^{9} + ( - \beta_{5} + \beta_{4} - \beta_1 - 2) q^{11}+ \cdots + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 2 q^{3} + 5 q^{4} + 5 q^{6} - 6 q^{7} - 9 q^{8} + 8 q^{9} - 9 q^{11} - 10 q^{12} - 6 q^{13} + q^{14} + 11 q^{16} - 9 q^{17} - 8 q^{18} + 2 q^{21} + 10 q^{22} - 4 q^{23} + 14 q^{24} + q^{26}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 8x^{4} + 4x^{3} + 14x^{2} - 3x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 7\nu^{2} + 3\nu + 7 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 3\nu^{2} + 7\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 8\beta_{2} + 10\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 8\beta_{3} + 12\beta_{2} + 42\beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.79352
1.37422
0.872890
−0.705969
−1.17366
−2.16100
−2.79352 −1.41058 5.80378 0 3.94050 −1.00000 −10.6259 −1.01025 0
1.2 −1.37422 −2.54671 −0.111522 0 3.49974 −1.00000 2.90169 3.48574 0
1.3 −0.872890 2.66664 −1.23806 0 −2.32768 −1.00000 2.82647 4.11095 0
1.4 0.705969 −2.40741 −1.50161 0 −1.69956 −1.00000 −2.47203 2.79564 0
1.5 1.17366 2.10923 −0.622525 0 2.47552 −1.00000 −3.07795 1.44887 0
1.6 2.16100 −0.411161 2.66994 0 −0.888521 −1.00000 1.44775 −2.83095 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.t 6
5.b even 2 1 2275.2.a.u yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2275.2.a.t 6 1.a even 1 1 trivial
2275.2.a.u yes 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{6} + T_{2}^{5} - 8T_{2}^{4} - 4T_{2}^{3} + 14T_{2}^{2} + 3T_{2} - 6 \) Copy content Toggle raw display
\( T_{3}^{6} + 2T_{3}^{5} - 11T_{3}^{4} - 23T_{3}^{3} + 25T_{3}^{2} + 62T_{3} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} - 8 T^{4} + \cdots - 6 \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots + 20 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 9 T^{5} + \cdots + 48 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + \cdots - 24 \) Copy content Toggle raw display
$19$ \( T^{6} - 69 T^{4} + \cdots - 40 \) Copy content Toggle raw display
$23$ \( T^{6} + 4 T^{5} + \cdots + 10587 \) Copy content Toggle raw display
$29$ \( T^{6} - 3 T^{5} + \cdots - 75 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + \cdots - 3032 \) Copy content Toggle raw display
$37$ \( T^{6} - 9 T^{5} + \cdots - 62 \) Copy content Toggle raw display
$41$ \( T^{6} + 10 T^{5} + \cdots - 192 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots - 134488 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots - 2736 \) Copy content Toggle raw display
$53$ \( T^{6} + 34 T^{5} + \cdots - 154404 \) Copy content Toggle raw display
$59$ \( T^{6} - 18 T^{5} + \cdots - 24 \) Copy content Toggle raw display
$61$ \( T^{6} + 6 T^{5} + \cdots - 111340 \) Copy content Toggle raw display
$67$ \( T^{6} - 30 T^{5} + \cdots + 674 \) Copy content Toggle raw display
$71$ \( T^{6} + 25 T^{5} + \cdots - 14502 \) Copy content Toggle raw display
$73$ \( T^{6} - 8 T^{5} + \cdots + 221248 \) Copy content Toggle raw display
$79$ \( T^{6} + 14 T^{5} + \cdots + 2713 \) Copy content Toggle raw display
$83$ \( T^{6} + 3 T^{5} + \cdots - 1440 \) Copy content Toggle raw display
$89$ \( T^{6} - 9 T^{5} + \cdots - 214944 \) Copy content Toggle raw display
$97$ \( T^{6} + 33 T^{5} + \cdots - 497512 \) Copy content Toggle raw display
show more
show less