Properties

Label 2275.2.a.s
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.45853772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 10x^{3} + 23x^{2} - 14x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 455)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{5} q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{4} + (\beta_{5} + \beta_{4} + \beta_{2} + \cdots - 1) q^{6} - q^{7} + (\beta_{5} + \beta_{2} + \beta_1 - 1) q^{8} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{9}+ \cdots + (2 \beta_{5} + \beta_{4} + \beta_{3} + \cdots - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} - 6 q^{6} - 6 q^{7} - 9 q^{8} + 8 q^{9} - 2 q^{11} + 11 q^{12} - 6 q^{13} + 3 q^{14} + 3 q^{16} - 8 q^{17} - 16 q^{18} + 6 q^{19} + 2 q^{22} - 4 q^{23} - 37 q^{24} + 3 q^{26} + 6 q^{27}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 10x^{4} + 10x^{3} + 23x^{2} - 14x - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - 8\nu^{2} + 2\nu + 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - 9\nu^{3} + \nu^{2} + 14\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + \nu^{3} + 9\nu^{2} - 8\nu - 12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 10\nu^{2} + 8\nu - 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + \nu^{4} - 9\nu^{3} - 8\nu^{2} + 16\nu + 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 3\beta_{4} - 2\beta_{3} - 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{5} - \beta_{4} + \beta_{3} + 9\beta_{2} + 9\beta _1 + 23 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{5} + 20\beta_{4} - 11\beta_{3} - 29\beta_{2} - \beta _1 - 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.76118
−1.16074
1.55061
−2.73570
2.43655
−0.851902
−2.67080 3.23496 5.13320 0 −8.63994 −1.00000 −8.36815 7.46495 0
1.2 −2.28471 −0.432805 3.21989 0 0.988833 −1.00000 −2.78708 −2.81268 0
1.3 −1.35280 −2.76555 −0.169936 0 3.74123 −1.00000 2.93549 4.64827 0
1.4 −0.332820 0.594815 −1.88923 0 −0.197967 −1.00000 1.29442 −2.64619 0
1.5 1.62413 1.57457 0.637810 0 2.55731 −1.00000 −2.21238 −0.520730 0
1.6 2.01700 −2.20599 2.06828 0 −4.44947 −1.00000 0.137712 1.86638 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.s 6
5.b even 2 1 455.2.a.e 6
15.d odd 2 1 4095.2.a.bl 6
20.d odd 2 1 7280.2.a.ce 6
35.c odd 2 1 3185.2.a.r 6
65.d even 2 1 5915.2.a.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.a.e 6 5.b even 2 1
2275.2.a.s 6 1.a even 1 1 trivial
3185.2.a.r 6 35.c odd 2 1
4095.2.a.bl 6 15.d odd 2 1
5915.2.a.u 6 65.d even 2 1
7280.2.a.ce 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{6} + 3T_{2}^{5} - 6T_{2}^{4} - 20T_{2}^{3} + 6T_{2}^{2} + 31T_{2} + 9 \) Copy content Toggle raw display
\( T_{3}^{6} - 13T_{3}^{4} - 2T_{3}^{3} + 35T_{3}^{2} - 4T_{3} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} - 13 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + \cdots - 1152 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 8 T^{5} + \cdots + 9948 \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$23$ \( T^{6} + 4 T^{5} + \cdots - 1152 \) Copy content Toggle raw display
$29$ \( T^{6} + 14 T^{5} + \cdots - 5004 \) Copy content Toggle raw display
$31$ \( T^{6} + 6 T^{5} + \cdots - 24536 \) Copy content Toggle raw display
$37$ \( T^{6} + 20 T^{5} + \cdots - 4564 \) Copy content Toggle raw display
$41$ \( T^{6} + 4 T^{5} + \cdots + 89748 \) Copy content Toggle raw display
$43$ \( T^{6} + 10 T^{5} + \cdots - 105856 \) Copy content Toggle raw display
$47$ \( T^{6} - 6 T^{5} + \cdots + 36864 \) Copy content Toggle raw display
$53$ \( T^{6} + 2 T^{5} + \cdots + 4032 \) Copy content Toggle raw display
$59$ \( T^{6} + 18 T^{5} + \cdots - 8856 \) Copy content Toggle raw display
$61$ \( T^{6} - 92 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$67$ \( T^{6} + 20 T^{5} + \cdots + 15472 \) Copy content Toggle raw display
$71$ \( T^{6} + 4 T^{5} + \cdots - 169344 \) Copy content Toggle raw display
$73$ \( T^{6} + 6 T^{5} + \cdots - 10432 \) Copy content Toggle raw display
$79$ \( T^{6} + 4 T^{5} + \cdots - 1545312 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots + 2304 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots - 692316 \) Copy content Toggle raw display
$97$ \( T^{6} + 26 T^{5} + \cdots + 152512 \) Copy content Toggle raw display
show more
show less