Properties

Label 2275.2.a.p
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.12197.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 455)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + \beta_1) q^{3} + ( - \beta_{3} + \beta_{2} + 1) q^{4} + ( - \beta_{3} + \beta_{2} - \beta_1 + 2) q^{6} + q^{7} + (\beta_{2} + \beta_1 + 1) q^{8} + (\beta_{3} - \beta_1 + 2) q^{9}+ \cdots + ( - 8 \beta_{3} + 2 \beta_{2} + \cdots - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 3 q^{4} + 6 q^{6} + 4 q^{7} + 3 q^{8} + 6 q^{9} + 2 q^{11} - 5 q^{12} - 4 q^{13} + q^{14} + 5 q^{16} - 14 q^{18} + 18 q^{19} + 10 q^{22} + 12 q^{23} + 13 q^{24} - q^{26} + 6 q^{27} + 3 q^{28}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.04515
−0.241765
0.819751
2.46717
−2.04515 −2.55619 2.18265 0 5.22780 1.00000 −0.373543 3.53411 0
1.2 −0.241765 2.89448 −1.94155 0 −0.699784 1.00000 0.952930 5.37801 0
1.3 0.819751 −1.40013 −1.32801 0 −1.14776 1.00000 −2.72814 −1.03963 0
1.4 2.46717 1.06184 4.08691 0 2.61974 1.00000 5.14875 −1.87249 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.p 4
5.b even 2 1 455.2.a.c 4
15.d odd 2 1 4095.2.a.bf 4
20.d odd 2 1 7280.2.a.bw 4
35.c odd 2 1 3185.2.a.l 4
65.d even 2 1 5915.2.a.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
455.2.a.c 4 5.b even 2 1
2275.2.a.p 4 1.a even 1 1 trivial
3185.2.a.l 4 35.c odd 2 1
4095.2.a.bf 4 15.d odd 2 1
5915.2.a.n 4 65.d even 2 1
7280.2.a.bw 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{4} - T_{2}^{3} - 5T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} - 9T_{3}^{2} - 2T_{3} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - 5 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 9 T^{2} + \cdots + 11 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots - 80 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 41 T^{2} + \cdots + 163 \) Copy content Toggle raw display
$19$ \( T^{4} - 18 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots - 880 \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{3} + \cdots + 61 \) Copy content Toggle raw display
$31$ \( T^{4} - 18 T^{3} + \cdots + 85 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 895 \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots + 405 \) Copy content Toggle raw display
$43$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{4} - 18 T^{3} + \cdots - 304 \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 2704 \) Copy content Toggle raw display
$59$ \( T^{4} - 30 T^{3} + \cdots + 2221 \) Copy content Toggle raw display
$61$ \( T^{4} - 120 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots - 977 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 1168 \) Copy content Toggle raw display
$73$ \( T^{4} + 34 T^{3} + \cdots - 1648 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots + 17 \) Copy content Toggle raw display
$83$ \( T^{4} + 2 T^{3} + \cdots + 10768 \) Copy content Toggle raw display
$89$ \( T^{4} - 24 T^{3} + \cdots - 6215 \) Copy content Toggle raw display
$97$ \( T^{4} + 14 T^{3} + \cdots - 10000 \) Copy content Toggle raw display
show more
show less