# Properties

 Label 2275.2.a.m Level $2275$ Weight $2$ Character orbit 2275.a Self dual yes Analytic conductor $18.166$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2275,2,Mod(1,2275)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2275, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2275.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2275 = 5^{2} \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2275.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.1659664598$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.316.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 4x + 2$$ x^3 - x^2 - 4*x + 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} + (\beta_{2} - \beta_1 + 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - 2 \beta_1 + 2) q^{6} + q^{7} + ( - \beta_{2} - 1) q^{8} + ( - 2 \beta_1 + 3) q^{9}+O(q^{10})$$ q - b1 * q^2 + (b2 - b1 + 1) * q^3 + (b2 + 1) * q^4 + (-2*b1 + 2) * q^6 + q^7 + (-b2 - 1) * q^8 + (-2*b1 + 3) * q^9 $$q - \beta_1 q^{2} + (\beta_{2} - \beta_1 + 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - 2 \beta_1 + 2) q^{6} + q^{7} + ( - \beta_{2} - 1) q^{8} + ( - 2 \beta_1 + 3) q^{9} + (\beta_{2} - \beta_1 + 1) q^{11} + 4 q^{12} - q^{13} - \beta_1 q^{14} + ( - \beta_{2} + 2 \beta_1 - 1) q^{16} + ( - \beta_{2} - \beta_1 - 1) q^{17} + (2 \beta_{2} - 3 \beta_1 + 6) q^{18} + ( - \beta_1 - 1) q^{19} + (\beta_{2} - \beta_1 + 1) q^{21} + ( - 2 \beta_1 + 2) q^{22} + (\beta_{2} + 2 \beta_1 - 4) q^{23} - 4 q^{24} + \beta_1 q^{26} + ( - 4 \beta_1 + 4) q^{27} + (\beta_{2} + 1) q^{28} + (\beta_{2} + 8) q^{29} + (2 \beta_{2} - \beta_1 - 1) q^{31} + (\beta_{2} + 2 \beta_1 - 3) q^{32} + ( - 2 \beta_1 + 6) q^{33} + (2 \beta_{2} + 2 \beta_1 + 4) q^{34} + (\beta_{2} - 4 \beta_1 + 1) q^{36} + ( - \beta_{2} - 3 \beta_1 + 1) q^{37} + (\beta_{2} + \beta_1 + 3) q^{38} + ( - \beta_{2} + \beta_1 - 1) q^{39} + ( - 2 \beta_{2} + 2 \beta_1) q^{41} + ( - 2 \beta_1 + 2) q^{42} + (3 \beta_{2} + 2 \beta_1 - 4) q^{43} + 4 q^{44} + ( - 3 \beta_{2} + 3 \beta_1 - 7) q^{46} + (4 \beta_{2} - \beta_1 + 3) q^{47} + (4 \beta_1 - 8) q^{48} + q^{49} + ( - 2 \beta_1 - 2) q^{51} + ( - \beta_{2} - 1) q^{52} + (3 \beta_{2} - 2 \beta_1 - 2) q^{53} + (4 \beta_{2} - 4 \beta_1 + 12) q^{54} + ( - \beta_{2} - 1) q^{56} + ( - \beta_{2} - \beta_1 + 1) q^{57} + ( - \beta_{2} - 9 \beta_1 - 1) q^{58} + (4 \beta_{2} + 2 \beta_1 - 2) q^{59} - 2 q^{61} + ( - \beta_{2} - \beta_1 + 1) q^{62} + ( - 2 \beta_1 + 3) q^{63} + ( - \beta_{2} - 2 \beta_1 - 5) q^{64} + (2 \beta_{2} - 6 \beta_1 + 6) q^{66} + ( - 4 \beta_{2} + 6 \beta_1 + 2) q^{67} + ( - 2 \beta_{2} - 4 \beta_1 - 6) q^{68} + ( - 5 \beta_{2} + 9 \beta_1 - 5) q^{69} + ( - \beta_{2} + 3 \beta_1 - 3) q^{71} + ( - \beta_{2} + 4 \beta_1 - 1) q^{72} + (4 \beta_{2} + \beta_1 + 3) q^{73} + (4 \beta_{2} + 10) q^{74} + ( - 2 \beta_{2} - 2 \beta_1 - 2) q^{76} + (\beta_{2} - \beta_1 + 1) q^{77} + (2 \beta_1 - 2) q^{78} + ( - \beta_{2} + 4 \beta_1 - 6) q^{79} + (4 \beta_{2} - 6 \beta_1 + 3) q^{81} + (2 \beta_1 - 4) q^{82} + ( - 4 \beta_{2} + 9 \beta_1 + 1) q^{83} + 4 q^{84} + ( - 5 \beta_{2} + \beta_1 - 9) q^{86} + (7 \beta_{2} - 7 \beta_1 + 11) q^{87} - 4 q^{88} + ( - 2 \beta_{2} + 5 \beta_1 - 1) q^{89} - q^{91} + ( - 2 \beta_{2} + 6 \beta_1 + 2) q^{92} + ( - 3 \beta_{2} + \beta_1 + 7) q^{93} + ( - 3 \beta_{2} - 7 \beta_1 - 1) q^{94} + ( - 4 \beta_{2} + 8 \beta_1 - 4) q^{96} + (\beta_1 + 3) q^{97} - \beta_1 q^{98} + (3 \beta_{2} - 7 \beta_1 + 7) q^{99}+O(q^{100})$$ q - b1 * q^2 + (b2 - b1 + 1) * q^3 + (b2 + 1) * q^4 + (-2*b1 + 2) * q^6 + q^7 + (-b2 - 1) * q^8 + (-2*b1 + 3) * q^9 + (b2 - b1 + 1) * q^11 + 4 * q^12 - q^13 - b1 * q^14 + (-b2 + 2*b1 - 1) * q^16 + (-b2 - b1 - 1) * q^17 + (2*b2 - 3*b1 + 6) * q^18 + (-b1 - 1) * q^19 + (b2 - b1 + 1) * q^21 + (-2*b1 + 2) * q^22 + (b2 + 2*b1 - 4) * q^23 - 4 * q^24 + b1 * q^26 + (-4*b1 + 4) * q^27 + (b2 + 1) * q^28 + (b2 + 8) * q^29 + (2*b2 - b1 - 1) * q^31 + (b2 + 2*b1 - 3) * q^32 + (-2*b1 + 6) * q^33 + (2*b2 + 2*b1 + 4) * q^34 + (b2 - 4*b1 + 1) * q^36 + (-b2 - 3*b1 + 1) * q^37 + (b2 + b1 + 3) * q^38 + (-b2 + b1 - 1) * q^39 + (-2*b2 + 2*b1) * q^41 + (-2*b1 + 2) * q^42 + (3*b2 + 2*b1 - 4) * q^43 + 4 * q^44 + (-3*b2 + 3*b1 - 7) * q^46 + (4*b2 - b1 + 3) * q^47 + (4*b1 - 8) * q^48 + q^49 + (-2*b1 - 2) * q^51 + (-b2 - 1) * q^52 + (3*b2 - 2*b1 - 2) * q^53 + (4*b2 - 4*b1 + 12) * q^54 + (-b2 - 1) * q^56 + (-b2 - b1 + 1) * q^57 + (-b2 - 9*b1 - 1) * q^58 + (4*b2 + 2*b1 - 2) * q^59 - 2 * q^61 + (-b2 - b1 + 1) * q^62 + (-2*b1 + 3) * q^63 + (-b2 - 2*b1 - 5) * q^64 + (2*b2 - 6*b1 + 6) * q^66 + (-4*b2 + 6*b1 + 2) * q^67 + (-2*b2 - 4*b1 - 6) * q^68 + (-5*b2 + 9*b1 - 5) * q^69 + (-b2 + 3*b1 - 3) * q^71 + (-b2 + 4*b1 - 1) * q^72 + (4*b2 + b1 + 3) * q^73 + (4*b2 + 10) * q^74 + (-2*b2 - 2*b1 - 2) * q^76 + (b2 - b1 + 1) * q^77 + (2*b1 - 2) * q^78 + (-b2 + 4*b1 - 6) * q^79 + (4*b2 - 6*b1 + 3) * q^81 + (2*b1 - 4) * q^82 + (-4*b2 + 9*b1 + 1) * q^83 + 4 * q^84 + (-5*b2 + b1 - 9) * q^86 + (7*b2 - 7*b1 + 11) * q^87 - 4 * q^88 + (-2*b2 + 5*b1 - 1) * q^89 - q^91 + (-2*b2 + 6*b1 + 2) * q^92 + (-3*b2 + b1 + 7) * q^93 + (-3*b2 - 7*b1 - 1) * q^94 + (-4*b2 + 8*b1 - 4) * q^96 + (b1 + 3) * q^97 - b1 * q^98 + (3*b2 - 7*b1 + 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{2} + 2 q^{3} + 3 q^{4} + 4 q^{6} + 3 q^{7} - 3 q^{8} + 7 q^{9}+O(q^{10})$$ 3 * q - q^2 + 2 * q^3 + 3 * q^4 + 4 * q^6 + 3 * q^7 - 3 * q^8 + 7 * q^9 $$3 q - q^{2} + 2 q^{3} + 3 q^{4} + 4 q^{6} + 3 q^{7} - 3 q^{8} + 7 q^{9} + 2 q^{11} + 12 q^{12} - 3 q^{13} - q^{14} - q^{16} - 4 q^{17} + 15 q^{18} - 4 q^{19} + 2 q^{21} + 4 q^{22} - 10 q^{23} - 12 q^{24} + q^{26} + 8 q^{27} + 3 q^{28} + 24 q^{29} - 4 q^{31} - 7 q^{32} + 16 q^{33} + 14 q^{34} - q^{36} + 10 q^{38} - 2 q^{39} + 2 q^{41} + 4 q^{42} - 10 q^{43} + 12 q^{44} - 18 q^{46} + 8 q^{47} - 20 q^{48} + 3 q^{49} - 8 q^{51} - 3 q^{52} - 8 q^{53} + 32 q^{54} - 3 q^{56} + 2 q^{57} - 12 q^{58} - 4 q^{59} - 6 q^{61} + 2 q^{62} + 7 q^{63} - 17 q^{64} + 12 q^{66} + 12 q^{67} - 22 q^{68} - 6 q^{69} - 6 q^{71} + q^{72} + 10 q^{73} + 30 q^{74} - 8 q^{76} + 2 q^{77} - 4 q^{78} - 14 q^{79} + 3 q^{81} - 10 q^{82} + 12 q^{83} + 12 q^{84} - 26 q^{86} + 26 q^{87} - 12 q^{88} + 2 q^{89} - 3 q^{91} + 12 q^{92} + 22 q^{93} - 10 q^{94} - 4 q^{96} + 10 q^{97} - q^{98} + 14 q^{99}+O(q^{100})$$ 3 * q - q^2 + 2 * q^3 + 3 * q^4 + 4 * q^6 + 3 * q^7 - 3 * q^8 + 7 * q^9 + 2 * q^11 + 12 * q^12 - 3 * q^13 - q^14 - q^16 - 4 * q^17 + 15 * q^18 - 4 * q^19 + 2 * q^21 + 4 * q^22 - 10 * q^23 - 12 * q^24 + q^26 + 8 * q^27 + 3 * q^28 + 24 * q^29 - 4 * q^31 - 7 * q^32 + 16 * q^33 + 14 * q^34 - q^36 + 10 * q^38 - 2 * q^39 + 2 * q^41 + 4 * q^42 - 10 * q^43 + 12 * q^44 - 18 * q^46 + 8 * q^47 - 20 * q^48 + 3 * q^49 - 8 * q^51 - 3 * q^52 - 8 * q^53 + 32 * q^54 - 3 * q^56 + 2 * q^57 - 12 * q^58 - 4 * q^59 - 6 * q^61 + 2 * q^62 + 7 * q^63 - 17 * q^64 + 12 * q^66 + 12 * q^67 - 22 * q^68 - 6 * q^69 - 6 * q^71 + q^72 + 10 * q^73 + 30 * q^74 - 8 * q^76 + 2 * q^77 - 4 * q^78 - 14 * q^79 + 3 * q^81 - 10 * q^82 + 12 * q^83 + 12 * q^84 - 26 * q^86 + 26 * q^87 - 12 * q^88 + 2 * q^89 - 3 * q^91 + 12 * q^92 + 22 * q^93 - 10 * q^94 - 4 * q^96 + 10 * q^97 - q^98 + 14 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4x + 2$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ v^2 - 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ b2 + 3

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.34292 0.470683 −1.81361
−2.34292 1.14637 3.48929 0 −2.68585 1.00000 −3.48929 −1.68585 0
1.2 −0.470683 −2.24914 −1.77846 0 1.05863 1.00000 1.77846 2.05863 0
1.3 1.81361 3.10278 1.28917 0 5.62721 1.00000 −1.28917 6.62721 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$1$$
$$7$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.m 3
5.b even 2 1 91.2.a.d 3
15.d odd 2 1 819.2.a.i 3
20.d odd 2 1 1456.2.a.t 3
35.c odd 2 1 637.2.a.j 3
35.i odd 6 2 637.2.e.i 6
35.j even 6 2 637.2.e.j 6
40.e odd 2 1 5824.2.a.bs 3
40.f even 2 1 5824.2.a.by 3
65.d even 2 1 1183.2.a.i 3
65.g odd 4 2 1183.2.c.f 6
105.g even 2 1 5733.2.a.x 3
455.h odd 2 1 8281.2.a.bg 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 5.b even 2 1
637.2.a.j 3 35.c odd 2 1
637.2.e.i 6 35.i odd 6 2
637.2.e.j 6 35.j even 6 2
819.2.a.i 3 15.d odd 2 1
1183.2.a.i 3 65.d even 2 1
1183.2.c.f 6 65.g odd 4 2
1456.2.a.t 3 20.d odd 2 1
2275.2.a.m 3 1.a even 1 1 trivial
5733.2.a.x 3 105.g even 2 1
5824.2.a.bs 3 40.e odd 2 1
5824.2.a.by 3 40.f even 2 1
8281.2.a.bg 3 455.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2275))$$:

 $$T_{2}^{3} + T_{2}^{2} - 4T_{2} - 2$$ T2^3 + T2^2 - 4*T2 - 2 $$T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 8$$ T3^3 - 2*T3^2 - 6*T3 + 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} + T^{2} - 4T - 2$$
$3$ $$T^{3} - 2 T^{2} - 6 T + 8$$
$5$ $$T^{3}$$
$7$ $$(T - 1)^{3}$$
$11$ $$T^{3} - 2 T^{2} - 6 T + 8$$
$13$ $$(T + 1)^{3}$$
$17$ $$T^{3} + 4 T^{2} - 10 T + 4$$
$19$ $$T^{3} + 4T^{2} + T - 4$$
$23$ $$T^{3} + 10 T^{2} + T - 136$$
$29$ $$T^{3} - 24 T^{2} + 185 T - 454$$
$31$ $$T^{3} + 4 T^{2} - 19 T + 16$$
$37$ $$T^{3} - 58T + 124$$
$41$ $$T^{3} - 2 T^{2} - 28 T - 8$$
$43$ $$T^{3} + 10 T^{2} - 71 T - 628$$
$47$ $$T^{3} - 8 T^{2} - 79 T + 544$$
$53$ $$T^{3} + 8 T^{2} - 35 T + 22$$
$59$ $$T^{3} + 4 T^{2} - 156 T - 688$$
$61$ $$(T + 2)^{3}$$
$67$ $$T^{3} - 12 T^{2} - 124 T + 976$$
$71$ $$T^{3} + 6 T^{2} - 22 T + 16$$
$73$ $$T^{3} - 10 T^{2} - 99 T + 274$$
$79$ $$T^{3} + 14 T^{2} + 5 T - 16$$
$83$ $$T^{3} - 12 T^{2} - 271 T + 3268$$
$89$ $$T^{3} - 2 T^{2} - 95 T + 422$$
$97$ $$T^{3} - 10 T^{2} + 29 T - 22$$