Properties

Label 2275.2.a.m
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( 1 - \beta_{1} + \beta_{2} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + ( 2 - 2 \beta_{1} ) q^{6} + q^{7} + ( -1 - \beta_{2} ) q^{8} + ( 3 - 2 \beta_{1} ) q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( 1 - \beta_{1} + \beta_{2} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + ( 2 - 2 \beta_{1} ) q^{6} + q^{7} + ( -1 - \beta_{2} ) q^{8} + ( 3 - 2 \beta_{1} ) q^{9} + ( 1 - \beta_{1} + \beta_{2} ) q^{11} + 4 q^{12} - q^{13} -\beta_{1} q^{14} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{16} + ( -1 - \beta_{1} - \beta_{2} ) q^{17} + ( 6 - 3 \beta_{1} + 2 \beta_{2} ) q^{18} + ( -1 - \beta_{1} ) q^{19} + ( 1 - \beta_{1} + \beta_{2} ) q^{21} + ( 2 - 2 \beta_{1} ) q^{22} + ( -4 + 2 \beta_{1} + \beta_{2} ) q^{23} -4 q^{24} + \beta_{1} q^{26} + ( 4 - 4 \beta_{1} ) q^{27} + ( 1 + \beta_{2} ) q^{28} + ( 8 + \beta_{2} ) q^{29} + ( -1 - \beta_{1} + 2 \beta_{2} ) q^{31} + ( -3 + 2 \beta_{1} + \beta_{2} ) q^{32} + ( 6 - 2 \beta_{1} ) q^{33} + ( 4 + 2 \beta_{1} + 2 \beta_{2} ) q^{34} + ( 1 - 4 \beta_{1} + \beta_{2} ) q^{36} + ( 1 - 3 \beta_{1} - \beta_{2} ) q^{37} + ( 3 + \beta_{1} + \beta_{2} ) q^{38} + ( -1 + \beta_{1} - \beta_{2} ) q^{39} + ( 2 \beta_{1} - 2 \beta_{2} ) q^{41} + ( 2 - 2 \beta_{1} ) q^{42} + ( -4 + 2 \beta_{1} + 3 \beta_{2} ) q^{43} + 4 q^{44} + ( -7 + 3 \beta_{1} - 3 \beta_{2} ) q^{46} + ( 3 - \beta_{1} + 4 \beta_{2} ) q^{47} + ( -8 + 4 \beta_{1} ) q^{48} + q^{49} + ( -2 - 2 \beta_{1} ) q^{51} + ( -1 - \beta_{2} ) q^{52} + ( -2 - 2 \beta_{1} + 3 \beta_{2} ) q^{53} + ( 12 - 4 \beta_{1} + 4 \beta_{2} ) q^{54} + ( -1 - \beta_{2} ) q^{56} + ( 1 - \beta_{1} - \beta_{2} ) q^{57} + ( -1 - 9 \beta_{1} - \beta_{2} ) q^{58} + ( -2 + 2 \beta_{1} + 4 \beta_{2} ) q^{59} -2 q^{61} + ( 1 - \beta_{1} - \beta_{2} ) q^{62} + ( 3 - 2 \beta_{1} ) q^{63} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{64} + ( 6 - 6 \beta_{1} + 2 \beta_{2} ) q^{66} + ( 2 + 6 \beta_{1} - 4 \beta_{2} ) q^{67} + ( -6 - 4 \beta_{1} - 2 \beta_{2} ) q^{68} + ( -5 + 9 \beta_{1} - 5 \beta_{2} ) q^{69} + ( -3 + 3 \beta_{1} - \beta_{2} ) q^{71} + ( -1 + 4 \beta_{1} - \beta_{2} ) q^{72} + ( 3 + \beta_{1} + 4 \beta_{2} ) q^{73} + ( 10 + 4 \beta_{2} ) q^{74} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{76} + ( 1 - \beta_{1} + \beta_{2} ) q^{77} + ( -2 + 2 \beta_{1} ) q^{78} + ( -6 + 4 \beta_{1} - \beta_{2} ) q^{79} + ( 3 - 6 \beta_{1} + 4 \beta_{2} ) q^{81} + ( -4 + 2 \beta_{1} ) q^{82} + ( 1 + 9 \beta_{1} - 4 \beta_{2} ) q^{83} + 4 q^{84} + ( -9 + \beta_{1} - 5 \beta_{2} ) q^{86} + ( 11 - 7 \beta_{1} + 7 \beta_{2} ) q^{87} -4 q^{88} + ( -1 + 5 \beta_{1} - 2 \beta_{2} ) q^{89} - q^{91} + ( 2 + 6 \beta_{1} - 2 \beta_{2} ) q^{92} + ( 7 + \beta_{1} - 3 \beta_{2} ) q^{93} + ( -1 - 7 \beta_{1} - 3 \beta_{2} ) q^{94} + ( -4 + 8 \beta_{1} - 4 \beta_{2} ) q^{96} + ( 3 + \beta_{1} ) q^{97} -\beta_{1} q^{98} + ( 7 - 7 \beta_{1} + 3 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - q^{2} + 2q^{3} + 3q^{4} + 4q^{6} + 3q^{7} - 3q^{8} + 7q^{9} + O(q^{10}) \) \( 3q - q^{2} + 2q^{3} + 3q^{4} + 4q^{6} + 3q^{7} - 3q^{8} + 7q^{9} + 2q^{11} + 12q^{12} - 3q^{13} - q^{14} - q^{16} - 4q^{17} + 15q^{18} - 4q^{19} + 2q^{21} + 4q^{22} - 10q^{23} - 12q^{24} + q^{26} + 8q^{27} + 3q^{28} + 24q^{29} - 4q^{31} - 7q^{32} + 16q^{33} + 14q^{34} - q^{36} + 10q^{38} - 2q^{39} + 2q^{41} + 4q^{42} - 10q^{43} + 12q^{44} - 18q^{46} + 8q^{47} - 20q^{48} + 3q^{49} - 8q^{51} - 3q^{52} - 8q^{53} + 32q^{54} - 3q^{56} + 2q^{57} - 12q^{58} - 4q^{59} - 6q^{61} + 2q^{62} + 7q^{63} - 17q^{64} + 12q^{66} + 12q^{67} - 22q^{68} - 6q^{69} - 6q^{71} + q^{72} + 10q^{73} + 30q^{74} - 8q^{76} + 2q^{77} - 4q^{78} - 14q^{79} + 3q^{81} - 10q^{82} + 12q^{83} + 12q^{84} - 26q^{86} + 26q^{87} - 12q^{88} + 2q^{89} - 3q^{91} + 12q^{92} + 22q^{93} - 10q^{94} - 4q^{96} + 10q^{97} - q^{98} + 14q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.34292
0.470683
−1.81361
−2.34292 1.14637 3.48929 0 −2.68585 1.00000 −3.48929 −1.68585 0
1.2 −0.470683 −2.24914 −1.77846 0 1.05863 1.00000 1.77846 2.05863 0
1.3 1.81361 3.10278 1.28917 0 5.62721 1.00000 −1.28917 6.62721 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.m 3
5.b even 2 1 91.2.a.d 3
15.d odd 2 1 819.2.a.i 3
20.d odd 2 1 1456.2.a.t 3
35.c odd 2 1 637.2.a.j 3
35.i odd 6 2 637.2.e.i 6
35.j even 6 2 637.2.e.j 6
40.e odd 2 1 5824.2.a.bs 3
40.f even 2 1 5824.2.a.by 3
65.d even 2 1 1183.2.a.i 3
65.g odd 4 2 1183.2.c.f 6
105.g even 2 1 5733.2.a.x 3
455.h odd 2 1 8281.2.a.bg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 5.b even 2 1
637.2.a.j 3 35.c odd 2 1
637.2.e.i 6 35.i odd 6 2
637.2.e.j 6 35.j even 6 2
819.2.a.i 3 15.d odd 2 1
1183.2.a.i 3 65.d even 2 1
1183.2.c.f 6 65.g odd 4 2
1456.2.a.t 3 20.d odd 2 1
2275.2.a.m 3 1.a even 1 1 trivial
5733.2.a.x 3 105.g even 2 1
5824.2.a.bs 3 40.e odd 2 1
5824.2.a.by 3 40.f even 2 1
8281.2.a.bg 3 455.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{3} + T_{2}^{2} - 4 T_{2} - 2 \)
\( T_{3}^{3} - 2 T_{3}^{2} - 6 T_{3} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 - 4 T + T^{2} + T^{3} \)
$3$ \( 8 - 6 T - 2 T^{2} + T^{3} \)
$5$ \( T^{3} \)
$7$ \( ( -1 + T )^{3} \)
$11$ \( 8 - 6 T - 2 T^{2} + T^{3} \)
$13$ \( ( 1 + T )^{3} \)
$17$ \( 4 - 10 T + 4 T^{2} + T^{3} \)
$19$ \( -4 + T + 4 T^{2} + T^{3} \)
$23$ \( -136 + T + 10 T^{2} + T^{3} \)
$29$ \( -454 + 185 T - 24 T^{2} + T^{3} \)
$31$ \( 16 - 19 T + 4 T^{2} + T^{3} \)
$37$ \( 124 - 58 T + T^{3} \)
$41$ \( -8 - 28 T - 2 T^{2} + T^{3} \)
$43$ \( -628 - 71 T + 10 T^{2} + T^{3} \)
$47$ \( 544 - 79 T - 8 T^{2} + T^{3} \)
$53$ \( 22 - 35 T + 8 T^{2} + T^{3} \)
$59$ \( -688 - 156 T + 4 T^{2} + T^{3} \)
$61$ \( ( 2 + T )^{3} \)
$67$ \( 976 - 124 T - 12 T^{2} + T^{3} \)
$71$ \( 16 - 22 T + 6 T^{2} + T^{3} \)
$73$ \( 274 - 99 T - 10 T^{2} + T^{3} \)
$79$ \( -16 + 5 T + 14 T^{2} + T^{3} \)
$83$ \( 3268 - 271 T - 12 T^{2} + T^{3} \)
$89$ \( 422 - 95 T - 2 T^{2} + T^{3} \)
$97$ \( -22 + 29 T - 10 T^{2} + T^{3} \)
show more
show less