Properties

Label 2275.2.a.m
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} - \beta_1 + 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - 2 \beta_1 + 2) q^{6} + q^{7} + ( - \beta_{2} - 1) q^{8} + ( - 2 \beta_1 + 3) q^{9} + (\beta_{2} - \beta_1 + 1) q^{11}+ \cdots + (3 \beta_{2} - 7 \beta_1 + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{3} + 3 q^{4} + 4 q^{6} + 3 q^{7} - 3 q^{8} + 7 q^{9} + 2 q^{11} + 12 q^{12} - 3 q^{13} - q^{14} - q^{16} - 4 q^{17} + 15 q^{18} - 4 q^{19} + 2 q^{21} + 4 q^{22} - 10 q^{23} - 12 q^{24}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.34292
0.470683
−1.81361
−2.34292 1.14637 3.48929 0 −2.68585 1.00000 −3.48929 −1.68585 0
1.2 −0.470683 −2.24914 −1.77846 0 1.05863 1.00000 1.77846 2.05863 0
1.3 1.81361 3.10278 1.28917 0 5.62721 1.00000 −1.28917 6.62721 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.m 3
5.b even 2 1 91.2.a.d 3
15.d odd 2 1 819.2.a.i 3
20.d odd 2 1 1456.2.a.t 3
35.c odd 2 1 637.2.a.j 3
35.i odd 6 2 637.2.e.i 6
35.j even 6 2 637.2.e.j 6
40.e odd 2 1 5824.2.a.bs 3
40.f even 2 1 5824.2.a.by 3
65.d even 2 1 1183.2.a.i 3
65.g odd 4 2 1183.2.c.f 6
105.g even 2 1 5733.2.a.x 3
455.h odd 2 1 8281.2.a.bg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 5.b even 2 1
637.2.a.j 3 35.c odd 2 1
637.2.e.i 6 35.i odd 6 2
637.2.e.j 6 35.j even 6 2
819.2.a.i 3 15.d odd 2 1
1183.2.a.i 3 65.d even 2 1
1183.2.c.f 6 65.g odd 4 2
1456.2.a.t 3 20.d odd 2 1
2275.2.a.m 3 1.a even 1 1 trivial
5733.2.a.x 3 105.g even 2 1
5824.2.a.bs 3 40.e odd 2 1
5824.2.a.by 3 40.f even 2 1
8281.2.a.bg 3 455.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{3} + T_{2}^{2} - 4T_{2} - 2 \) Copy content Toggle raw display
\( T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 4T - 2 \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( T^{3} + 4T^{2} + T - 4 \) Copy content Toggle raw display
$23$ \( T^{3} + 10 T^{2} + \cdots - 136 \) Copy content Toggle raw display
$29$ \( T^{3} - 24 T^{2} + \cdots - 454 \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{3} - 58T + 124 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots - 628 \) Copy content Toggle raw display
$47$ \( T^{3} - 8 T^{2} + \cdots + 544 \) Copy content Toggle raw display
$53$ \( T^{3} + 8 T^{2} + \cdots + 22 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots - 688 \) Copy content Toggle raw display
$61$ \( (T + 2)^{3} \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 976 \) Copy content Toggle raw display
$71$ \( T^{3} + 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$73$ \( T^{3} - 10 T^{2} + \cdots + 274 \) Copy content Toggle raw display
$79$ \( T^{3} + 14 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$83$ \( T^{3} - 12 T^{2} + \cdots + 3268 \) Copy content Toggle raw display
$89$ \( T^{3} - 2 T^{2} + \cdots + 422 \) Copy content Toggle raw display
$97$ \( T^{3} - 10 T^{2} + \cdots - 22 \) Copy content Toggle raw display
show more
show less