Properties

Label 2275.2.a.l
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + ( - \beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + (2 \beta_{2} - 2 \beta_1 + 3) q^{6} + q^{7} + ( - 2 \beta_{2} + \beta_1 - 2) q^{8} + (\beta_{2} - 2 \beta_1 + 1) q^{9}+ \cdots + (\beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - q^{3} + 4 q^{4} + 5 q^{6} + 3 q^{7} - 3 q^{8} - 5 q^{11} - 10 q^{12} + 3 q^{13} - 2 q^{14} - 6 q^{16} + 3 q^{17} - 13 q^{18} - q^{21} - q^{22} - 9 q^{23} + 14 q^{24} - 2 q^{26} - 10 q^{27}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.37720
−0.273891
2.65109
−2.37720 −2.65109 3.65109 0 6.30219 1.00000 −3.92498 4.02830 0
1.2 −1.27389 1.37720 −0.377203 0 −1.75441 1.00000 3.02830 −1.10331 0
1.3 1.65109 0.273891 0.726109 0 0.452219 1.00000 −2.10331 −2.92498 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.l 3
5.b even 2 1 2275.2.a.n yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2275.2.a.l 3 1.a even 1 1 trivial
2275.2.a.n yes 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{3} + 2T_{2}^{2} - 3T_{2} - 5 \) Copy content Toggle raw display
\( T_{3}^{3} + T_{3}^{2} - 4T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 4T + 1 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 5 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 3 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$19$ \( T^{3} - 39T + 65 \) Copy content Toggle raw display
$23$ \( T^{3} + 9 T^{2} + \cdots - 25 \) Copy content Toggle raw display
$29$ \( T^{3} - 13T - 13 \) Copy content Toggle raw display
$31$ \( T^{3} + 5 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$37$ \( T^{3} + 25 T^{2} + \cdots + 415 \) Copy content Toggle raw display
$41$ \( T^{3} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$47$ \( T^{3} + 3 T^{2} + \cdots - 467 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} + \cdots + 25 \) Copy content Toggle raw display
$59$ \( T^{3} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$61$ \( T^{3} + 19 T^{2} + \cdots + 125 \) Copy content Toggle raw display
$67$ \( T^{3} - 8 T^{2} + \cdots + 125 \) Copy content Toggle raw display
$71$ \( T^{3} - T^{2} + \cdots - 53 \) Copy content Toggle raw display
$73$ \( T^{3} + 14 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{3} - 11 T^{2} + \cdots - 109 \) Copy content Toggle raw display
$83$ \( T^{3} - 9 T^{2} + \cdots + 181 \) Copy content Toggle raw display
$89$ \( (T - 5)^{3} \) Copy content Toggle raw display
$97$ \( T^{3} - 15 T^{2} + \cdots + 265 \) Copy content Toggle raw display
show more
show less