Properties

Label 2275.2.a.i
Level $2275$
Weight $2$
Character orbit 2275.a
Self dual yes
Analytic conductor $18.166$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2275,2,Mod(1,2275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2275 = 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1659664598\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} - \beta q^{3} + ( - 2 \beta + 2) q^{4} + (\beta - 3) q^{6} + q^{7} + (2 \beta - 6) q^{8} + ( - \beta + 3) q^{11} + ( - 2 \beta + 6) q^{12} + q^{13} + (\beta - 1) q^{14} + ( - 4 \beta + 8) q^{16} + \cdots + (\beta - 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{4} - 6 q^{6} + 2 q^{7} - 12 q^{8} + 6 q^{11} + 12 q^{12} + 2 q^{13} - 2 q^{14} + 16 q^{16} - 8 q^{17} - 2 q^{19} - 12 q^{22} - 6 q^{23} - 12 q^{24} - 2 q^{26} + 4 q^{28} - 10 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−2.73205 1.73205 5.46410 0 −4.73205 1.00000 −9.46410 0 0
1.2 0.732051 −1.73205 −1.46410 0 −1.26795 1.00000 −2.53590 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2275.2.a.i 2
5.b even 2 1 2275.2.a.k yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2275.2.a.i 2 1.a even 1 1 trivial
2275.2.a.k yes 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\):

\( T_{2}^{2} + 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{3}^{2} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$23$ \( (T + 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 13 \) Copy content Toggle raw display
$31$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$43$ \( (T + 11)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8T - 32 \) Copy content Toggle raw display
$53$ \( T^{2} + 18T + 69 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T + 1 \) Copy content Toggle raw display
$67$ \( (T + 6)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$73$ \( (T - 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 6T - 3 \) Copy content Toggle raw display
$83$ \( T^{2} + 18T + 54 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 72 \) Copy content Toggle raw display
$97$ \( T^{2} + 32T + 244 \) Copy content Toggle raw display
show more
show less