Properties

Label 2268.2.w.j.1349.10
Level $2268$
Weight $2$
Character 2268.1349
Analytic conductor $18.110$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(269,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.10
Character \(\chi\) \(=\) 2268.1349
Dual form 2268.2.w.j.269.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.440135 + 0.762336i) q^{5} +(-2.46165 + 0.969691i) q^{7} +(-4.83660 - 2.79241i) q^{11} +(-2.24806 - 1.29792i) q^{13} +(2.35671 + 4.08193i) q^{17} +(0.537797 + 0.310497i) q^{19} +(3.15847 - 1.82354i) q^{23} +(2.11256 - 3.65906i) q^{25} +(4.62362 - 2.66945i) q^{29} +11.0393i q^{31} +(-1.82269 - 1.44981i) q^{35} +(4.28064 - 7.41428i) q^{37} +(3.41348 - 5.91232i) q^{41} +(-1.82931 - 3.16846i) q^{43} +7.77378 q^{47} +(5.11940 - 4.77407i) q^{49} +(5.87725 - 3.39323i) q^{53} -4.91616i q^{55} +10.7125 q^{59} +2.05202i q^{61} -2.28504i q^{65} +9.04199 q^{67} +12.3011i q^{71} +(-3.43707 + 1.98439i) q^{73} +(14.6138 + 2.18393i) q^{77} -12.0209 q^{79} +(-1.71972 - 2.97864i) q^{83} +(-2.07454 + 3.59321i) q^{85} +(3.40619 - 5.89969i) q^{89} +(6.79251 + 1.01509i) q^{91} +0.546643i q^{95} +(-14.0453 + 8.10908i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{13} - 16 q^{25} - 4 q^{37} - 4 q^{43} + 20 q^{49} - 8 q^{67} - 36 q^{73} - 56 q^{79} + 12 q^{85} - 36 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.440135 + 0.762336i 0.196834 + 0.340927i 0.947500 0.319755i \(-0.103601\pi\)
−0.750666 + 0.660682i \(0.770267\pi\)
\(6\) 0 0
\(7\) −2.46165 + 0.969691i −0.930415 + 0.366509i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.83660 2.79241i −1.45829 0.841944i −0.459362 0.888249i \(-0.651922\pi\)
−0.998927 + 0.0463050i \(0.985255\pi\)
\(12\) 0 0
\(13\) −2.24806 1.29792i −0.623500 0.359978i 0.154730 0.987957i \(-0.450549\pi\)
−0.778230 + 0.627979i \(0.783882\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.35671 + 4.08193i 0.571585 + 0.990015i 0.996403 + 0.0847359i \(0.0270047\pi\)
−0.424818 + 0.905279i \(0.639662\pi\)
\(18\) 0 0
\(19\) 0.537797 + 0.310497i 0.123379 + 0.0712330i 0.560419 0.828209i \(-0.310640\pi\)
−0.437040 + 0.899442i \(0.643973\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.15847 1.82354i 0.658586 0.380235i −0.133152 0.991096i \(-0.542510\pi\)
0.791738 + 0.610861i \(0.209177\pi\)
\(24\) 0 0
\(25\) 2.11256 3.65906i 0.422512 0.731813i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.62362 2.66945i 0.858586 0.495705i −0.00495283 0.999988i \(-0.501577\pi\)
0.863538 + 0.504283i \(0.168243\pi\)
\(30\) 0 0
\(31\) 11.0393i 1.98272i 0.131158 + 0.991361i \(0.458130\pi\)
−0.131158 + 0.991361i \(0.541870\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.82269 1.44981i −0.308090 0.245062i
\(36\) 0 0
\(37\) 4.28064 7.41428i 0.703732 1.21890i −0.263415 0.964683i \(-0.584849\pi\)
0.967147 0.254218i \(-0.0818179\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.41348 5.91232i 0.533096 0.923350i −0.466157 0.884702i \(-0.654362\pi\)
0.999253 0.0386476i \(-0.0123050\pi\)
\(42\) 0 0
\(43\) −1.82931 3.16846i −0.278967 0.483186i 0.692161 0.721743i \(-0.256659\pi\)
−0.971128 + 0.238557i \(0.923325\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.77378 1.13392 0.566961 0.823745i \(-0.308119\pi\)
0.566961 + 0.823745i \(0.308119\pi\)
\(48\) 0 0
\(49\) 5.11940 4.77407i 0.731343 0.682010i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.87725 3.39323i 0.807303 0.466096i −0.0387156 0.999250i \(-0.512327\pi\)
0.846018 + 0.533154i \(0.178993\pi\)
\(54\) 0 0
\(55\) 4.91616i 0.662894i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.7125 1.39465 0.697326 0.716754i \(-0.254373\pi\)
0.697326 + 0.716754i \(0.254373\pi\)
\(60\) 0 0
\(61\) 2.05202i 0.262734i 0.991334 + 0.131367i \(0.0419366\pi\)
−0.991334 + 0.131367i \(0.958063\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.28504i 0.283424i
\(66\) 0 0
\(67\) 9.04199 1.10465 0.552327 0.833627i \(-0.313740\pi\)
0.552327 + 0.833627i \(0.313740\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3011i 1.45988i 0.683514 + 0.729938i \(0.260451\pi\)
−0.683514 + 0.729938i \(0.739549\pi\)
\(72\) 0 0
\(73\) −3.43707 + 1.98439i −0.402278 + 0.232255i −0.687466 0.726216i \(-0.741277\pi\)
0.285188 + 0.958471i \(0.407944\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.6138 + 2.18393i 1.66539 + 0.248881i
\(78\) 0 0
\(79\) −12.0209 −1.35246 −0.676228 0.736692i \(-0.736387\pi\)
−0.676228 + 0.736692i \(0.736387\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.71972 2.97864i −0.188764 0.326948i 0.756075 0.654485i \(-0.227115\pi\)
−0.944838 + 0.327537i \(0.893781\pi\)
\(84\) 0 0
\(85\) −2.07454 + 3.59321i −0.225015 + 0.389738i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.40619 5.89969i 0.361055 0.625366i −0.627080 0.778955i \(-0.715750\pi\)
0.988135 + 0.153589i \(0.0490833\pi\)
\(90\) 0 0
\(91\) 6.79251 + 1.01509i 0.712049 + 0.106411i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.546643i 0.0560844i
\(96\) 0 0
\(97\) −14.0453 + 8.10908i −1.42609 + 0.823352i −0.996809 0.0798195i \(-0.974566\pi\)
−0.429279 + 0.903172i \(0.641232\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.75727 11.7039i 0.672373 1.16458i −0.304856 0.952398i \(-0.598608\pi\)
0.977229 0.212186i \(-0.0680583\pi\)
\(102\) 0 0
\(103\) −10.9579 + 6.32656i −1.07972 + 0.623374i −0.930820 0.365479i \(-0.880905\pi\)
−0.148896 + 0.988853i \(0.547572\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.09662 1.21048i −0.202688 0.117022i 0.395221 0.918586i \(-0.370668\pi\)
−0.597909 + 0.801564i \(0.704001\pi\)
\(108\) 0 0
\(109\) 0.286415 + 0.496086i 0.0274336 + 0.0475164i 0.879416 0.476054i \(-0.157933\pi\)
−0.851983 + 0.523570i \(0.824600\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.18260 + 5.30158i 0.863827 + 0.498731i 0.865292 0.501268i \(-0.167133\pi\)
−0.00146526 + 0.999999i \(0.500466\pi\)
\(114\) 0 0
\(115\) 2.78030 + 1.60521i 0.259265 + 0.149687i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.75959 7.76300i −0.894660 0.711633i
\(120\) 0 0
\(121\) 10.0951 + 17.4853i 0.917739 + 1.58957i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.12060 0.726329
\(126\) 0 0
\(127\) 2.85582 0.253413 0.126707 0.991940i \(-0.459559\pi\)
0.126707 + 0.991940i \(0.459559\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.80788 10.0595i −0.507437 0.878906i −0.999963 0.00860838i \(-0.997260\pi\)
0.492526 0.870298i \(-0.336074\pi\)
\(132\) 0 0
\(133\) −1.62495 0.242838i −0.140901 0.0210567i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.41744 + 3.70511i 0.548279 + 0.316549i 0.748427 0.663217i \(-0.230809\pi\)
−0.200149 + 0.979766i \(0.564143\pi\)
\(138\) 0 0
\(139\) −2.95857 1.70813i −0.250943 0.144882i 0.369253 0.929329i \(-0.379614\pi\)
−0.620196 + 0.784447i \(0.712947\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.24865 + 12.5550i 0.606162 + 1.04990i
\(144\) 0 0
\(145\) 4.07004 + 2.34984i 0.337998 + 0.195143i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.81086 5.08695i 0.721814 0.416739i −0.0936062 0.995609i \(-0.529839\pi\)
0.815420 + 0.578870i \(0.196506\pi\)
\(150\) 0 0
\(151\) 2.15352 3.73001i 0.175251 0.303544i −0.764997 0.644034i \(-0.777260\pi\)
0.940248 + 0.340490i \(0.110593\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.41569 + 4.85880i −0.675964 + 0.390268i
\(156\) 0 0
\(157\) 11.7964i 0.941459i −0.882278 0.470729i \(-0.843991\pi\)
0.882278 0.470729i \(-0.156009\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00675 + 7.55165i −0.473399 + 0.595153i
\(162\) 0 0
\(163\) 5.81021 10.0636i 0.455090 0.788240i −0.543603 0.839342i \(-0.682940\pi\)
0.998693 + 0.0511028i \(0.0162736\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.88538 13.6579i 0.610189 1.05688i −0.381019 0.924567i \(-0.624427\pi\)
0.991208 0.132311i \(-0.0422398\pi\)
\(168\) 0 0
\(169\) −3.13081 5.42273i −0.240832 0.417133i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.77341 0.210858 0.105429 0.994427i \(-0.466378\pi\)
0.105429 + 0.994427i \(0.466378\pi\)
\(174\) 0 0
\(175\) −1.65222 + 11.0559i −0.124896 + 0.835744i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.94403 + 3.43179i −0.444278 + 0.256504i −0.705410 0.708799i \(-0.749237\pi\)
0.261133 + 0.965303i \(0.415904\pi\)
\(180\) 0 0
\(181\) 9.85094i 0.732215i 0.930573 + 0.366107i \(0.119310\pi\)
−0.930573 + 0.366107i \(0.880690\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.53624 0.554075
\(186\) 0 0
\(187\) 26.3236i 1.92497i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.9768i 1.30076i −0.759609 0.650380i \(-0.774610\pi\)
0.759609 0.650380i \(-0.225390\pi\)
\(192\) 0 0
\(193\) −3.76079 −0.270708 −0.135354 0.990797i \(-0.543217\pi\)
−0.135354 + 0.990797i \(0.543217\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.88342i 0.490424i −0.969470 0.245212i \(-0.921142\pi\)
0.969470 0.245212i \(-0.0788575\pi\)
\(198\) 0 0
\(199\) 12.0894 6.97981i 0.856993 0.494785i −0.00601088 0.999982i \(-0.501913\pi\)
0.863004 + 0.505197i \(0.168580\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.79319 + 11.0547i −0.617161 + 0.775890i
\(204\) 0 0
\(205\) 6.00957 0.419727
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.73407 3.00350i −0.119948 0.207757i
\(210\) 0 0
\(211\) 1.26047 2.18320i 0.0867744 0.150298i −0.819372 0.573263i \(-0.805677\pi\)
0.906146 + 0.422965i \(0.139011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.61029 2.78910i 0.109821 0.190215i
\(216\) 0 0
\(217\) −10.7047 27.1749i −0.726685 1.84475i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.2353i 0.823032i
\(222\) 0 0
\(223\) 10.6650 6.15742i 0.714179 0.412332i −0.0984273 0.995144i \(-0.531381\pi\)
0.812607 + 0.582813i \(0.198048\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.8806 + 22.3098i −0.854913 + 1.48075i 0.0218124 + 0.999762i \(0.493056\pi\)
−0.876726 + 0.480991i \(0.840277\pi\)
\(228\) 0 0
\(229\) 5.01900 2.89772i 0.331665 0.191487i −0.324915 0.945743i \(-0.605336\pi\)
0.656580 + 0.754256i \(0.272002\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.2280 15.1428i −1.71826 0.992036i −0.922107 0.386935i \(-0.873534\pi\)
−0.796149 0.605101i \(-0.793133\pi\)
\(234\) 0 0
\(235\) 3.42151 + 5.92623i 0.223195 + 0.386585i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.96081 + 1.70942i 0.191519 + 0.110573i 0.592693 0.805428i \(-0.298065\pi\)
−0.401175 + 0.916002i \(0.631398\pi\)
\(240\) 0 0
\(241\) 4.24030 + 2.44814i 0.273142 + 0.157699i 0.630315 0.776340i \(-0.282926\pi\)
−0.357173 + 0.934038i \(0.616259\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.89268 + 1.80147i 0.376469 + 0.115092i
\(246\) 0 0
\(247\) −0.806001 1.39603i −0.0512846 0.0888275i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.2710 1.72133 0.860667 0.509169i \(-0.170047\pi\)
0.860667 + 0.509169i \(0.170047\pi\)
\(252\) 0 0
\(253\) −20.3683 −1.28054
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.56317 + 4.43954i 0.159886 + 0.276931i 0.934827 0.355102i \(-0.115554\pi\)
−0.774941 + 0.632033i \(0.782221\pi\)
\(258\) 0 0
\(259\) −3.34785 + 22.4022i −0.208026 + 1.39201i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.13580 + 2.38780i 0.255024 + 0.147238i 0.622063 0.782967i \(-0.286295\pi\)
−0.367038 + 0.930206i \(0.619628\pi\)
\(264\) 0 0
\(265\) 5.17357 + 2.98696i 0.317810 + 0.183488i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.34405 + 12.7203i 0.447775 + 0.775569i 0.998241 0.0592889i \(-0.0188833\pi\)
−0.550466 + 0.834858i \(0.685550\pi\)
\(270\) 0 0
\(271\) 9.13087 + 5.27171i 0.554661 + 0.320233i 0.751000 0.660303i \(-0.229572\pi\)
−0.196339 + 0.980536i \(0.562905\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −20.4352 + 11.7983i −1.23229 + 0.711464i
\(276\) 0 0
\(277\) −13.7907 + 23.8862i −0.828602 + 1.43518i 0.0705327 + 0.997509i \(0.477530\pi\)
−0.899135 + 0.437672i \(0.855803\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.7563 14.2930i 1.47684 0.852652i 0.477178 0.878806i \(-0.341660\pi\)
0.999658 + 0.0261546i \(0.00832621\pi\)
\(282\) 0 0
\(283\) 18.8385i 1.11983i −0.828549 0.559917i \(-0.810833\pi\)
0.828549 0.559917i \(-0.189167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.66966 + 17.8641i −0.157585 + 1.05448i
\(288\) 0 0
\(289\) −2.60813 + 4.51741i −0.153419 + 0.265730i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.8083 + 29.1129i −0.981954 + 1.70079i −0.327193 + 0.944957i \(0.606103\pi\)
−0.654760 + 0.755837i \(0.727230\pi\)
\(294\) 0 0
\(295\) 4.71496 + 8.16655i 0.274516 + 0.475475i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.46723 −0.547504
\(300\) 0 0
\(301\) 7.57554 + 6.02576i 0.436647 + 0.347319i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.56433 + 0.903164i −0.0895731 + 0.0517150i
\(306\) 0 0
\(307\) 14.6814i 0.837913i 0.908006 + 0.418957i \(0.137604\pi\)
−0.908006 + 0.418957i \(0.862396\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.9147 0.675620 0.337810 0.941214i \(-0.390314\pi\)
0.337810 + 0.941214i \(0.390314\pi\)
\(312\) 0 0
\(313\) 6.16244i 0.348322i 0.984717 + 0.174161i \(0.0557213\pi\)
−0.984717 + 0.174161i \(0.944279\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.84953i 0.216211i −0.994139 0.108105i \(-0.965522\pi\)
0.994139 0.108105i \(-0.0344784\pi\)
\(318\) 0 0
\(319\) −29.8168 −1.66942
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.92700i 0.162863i
\(324\) 0 0
\(325\) −9.49834 + 5.48387i −0.526873 + 0.304190i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.1363 + 7.53816i −1.05502 + 0.415592i
\(330\) 0 0
\(331\) −17.6316 −0.969118 −0.484559 0.874759i \(-0.661020\pi\)
−0.484559 + 0.874759i \(0.661020\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.97970 + 6.89304i 0.217434 + 0.376607i
\(336\) 0 0
\(337\) 9.83450 17.0339i 0.535720 0.927894i −0.463409 0.886145i \(-0.653374\pi\)
0.999128 0.0417488i \(-0.0132929\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.8264 53.3928i 1.66934 2.89138i
\(342\) 0 0
\(343\) −7.97278 + 16.7163i −0.430490 + 0.902595i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.5284i 0.779923i −0.920831 0.389962i \(-0.872488\pi\)
0.920831 0.389962i \(-0.127512\pi\)
\(348\) 0 0
\(349\) 26.9608 15.5658i 1.44318 0.833218i 0.445116 0.895473i \(-0.353162\pi\)
0.998060 + 0.0622544i \(0.0198290\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.11432 + 7.12621i −0.218983 + 0.379290i −0.954497 0.298219i \(-0.903607\pi\)
0.735514 + 0.677509i \(0.236941\pi\)
\(354\) 0 0
\(355\) −9.37760 + 5.41416i −0.497711 + 0.287354i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.3084 14.6118i −1.33573 0.771183i −0.349557 0.936915i \(-0.613668\pi\)
−0.986171 + 0.165732i \(0.947001\pi\)
\(360\) 0 0
\(361\) −9.30718 16.1205i −0.489852 0.848448i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.02555 1.74680i −0.158364 0.0914317i
\(366\) 0 0
\(367\) −0.491228 0.283610i −0.0256419 0.0148043i 0.487124 0.873333i \(-0.338046\pi\)
−0.512766 + 0.858528i \(0.671379\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.1773 + 14.0521i −0.580298 + 0.729546i
\(372\) 0 0
\(373\) −0.901927 1.56218i −0.0467000 0.0808868i 0.841731 0.539898i \(-0.181537\pi\)
−0.888431 + 0.459011i \(0.848204\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13.8589 −0.713771
\(378\) 0 0
\(379\) −2.38270 −0.122391 −0.0611956 0.998126i \(-0.519491\pi\)
−0.0611956 + 0.998126i \(0.519491\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.6264 20.1375i −0.594080 1.02898i −0.993676 0.112286i \(-0.964183\pi\)
0.399596 0.916691i \(-0.369150\pi\)
\(384\) 0 0
\(385\) 4.76715 + 12.1018i 0.242956 + 0.616767i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.2236 + 10.5214i 0.923976 + 0.533458i 0.884901 0.465779i \(-0.154226\pi\)
0.0390745 + 0.999236i \(0.487559\pi\)
\(390\) 0 0
\(391\) 14.8872 + 8.59510i 0.752876 + 0.434673i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.29082 9.16397i −0.266210 0.461089i
\(396\) 0 0
\(397\) 23.7334 + 13.7025i 1.19114 + 0.687708i 0.958566 0.284870i \(-0.0919505\pi\)
0.232578 + 0.972578i \(0.425284\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.8620 + 18.3955i −1.59111 + 0.918629i −0.597995 + 0.801500i \(0.704036\pi\)
−0.993117 + 0.117129i \(0.962631\pi\)
\(402\) 0 0
\(403\) 14.3282 24.8171i 0.713736 1.23623i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −41.4075 + 23.9066i −2.05249 + 1.18501i
\(408\) 0 0
\(409\) 33.6694i 1.66484i −0.554142 0.832422i \(-0.686954\pi\)
0.554142 0.832422i \(-0.313046\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −26.3705 + 10.3878i −1.29761 + 0.511152i
\(414\) 0 0
\(415\) 1.51382 2.62201i 0.0743104 0.128709i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.59691 7.96209i 0.224574 0.388973i −0.731618 0.681715i \(-0.761234\pi\)
0.956192 + 0.292742i \(0.0945677\pi\)
\(420\) 0 0
\(421\) 4.30373 + 7.45427i 0.209751 + 0.363299i 0.951636 0.307228i \(-0.0994014\pi\)
−0.741885 + 0.670527i \(0.766068\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.9148 0.966007
\(426\) 0 0
\(427\) −1.98982 5.05134i −0.0962942 0.244451i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.90554 3.98691i 0.332628 0.192043i −0.324379 0.945927i \(-0.605155\pi\)
0.657007 + 0.753884i \(0.271822\pi\)
\(432\) 0 0
\(433\) 1.42915i 0.0686806i 0.999410 + 0.0343403i \(0.0109330\pi\)
−0.999410 + 0.0343403i \(0.989067\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.26482 0.108341
\(438\) 0 0
\(439\) 25.4827i 1.21622i −0.793852 0.608110i \(-0.791928\pi\)
0.793852 0.608110i \(-0.208072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.56489i 0.264396i 0.991223 + 0.132198i \(0.0422035\pi\)
−0.991223 + 0.132198i \(0.957797\pi\)
\(444\) 0 0
\(445\) 5.99673 0.284272
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.4132i 1.24652i 0.782016 + 0.623259i \(0.214192\pi\)
−0.782016 + 0.623259i \(0.785808\pi\)
\(450\) 0 0
\(451\) −33.0193 + 19.0637i −1.55482 + 0.897674i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.21578 + 5.62496i 0.103877 + 0.263702i
\(456\) 0 0
\(457\) 22.3618 1.04604 0.523021 0.852320i \(-0.324805\pi\)
0.523021 + 0.852320i \(0.324805\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.2503 + 22.9501i 0.617126 + 1.06889i 0.990007 + 0.141015i \(0.0450365\pi\)
−0.372881 + 0.927879i \(0.621630\pi\)
\(462\) 0 0
\(463\) 7.24376 12.5466i 0.336646 0.583088i −0.647153 0.762360i \(-0.724041\pi\)
0.983800 + 0.179271i \(0.0573740\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.21034 + 12.4887i −0.333655 + 0.577907i −0.983226 0.182394i \(-0.941615\pi\)
0.649571 + 0.760301i \(0.274949\pi\)
\(468\) 0 0
\(469\) −22.2582 + 8.76793i −1.02779 + 0.404865i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.4328i 0.939500i
\(474\) 0 0
\(475\) 2.27226 1.31189i 0.104258 0.0601936i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.6311 + 25.3418i −0.668513 + 1.15790i 0.309807 + 0.950799i \(0.399736\pi\)
−0.978320 + 0.207099i \(0.933598\pi\)
\(480\) 0 0
\(481\) −19.2463 + 11.1118i −0.877554 + 0.506656i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.3637 7.13818i −0.561407 0.324128i
\(486\) 0 0
\(487\) −3.23843 5.60913i −0.146747 0.254174i 0.783276 0.621674i \(-0.213547\pi\)
−0.930024 + 0.367500i \(0.880214\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.7683 17.7641i −1.38856 0.801683i −0.395403 0.918508i \(-0.629395\pi\)
−0.993153 + 0.116825i \(0.962728\pi\)
\(492\) 0 0
\(493\) 21.7930 + 12.5822i 0.981510 + 0.566675i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.9283 30.2810i −0.535057 1.35829i
\(498\) 0 0
\(499\) 16.0108 + 27.7315i 0.716742 + 1.24143i 0.962284 + 0.272047i \(0.0877006\pi\)
−0.245542 + 0.969386i \(0.578966\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.2012 −0.499437 −0.249718 0.968319i \(-0.580338\pi\)
−0.249718 + 0.968319i \(0.580338\pi\)
\(504\) 0 0
\(505\) 11.8964 0.529385
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.9860 32.8848i −0.841541 1.45759i −0.888591 0.458699i \(-0.848315\pi\)
0.0470504 0.998893i \(-0.485018\pi\)
\(510\) 0 0
\(511\) 6.53659 8.21776i 0.289162 0.363532i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.64593 5.56908i −0.425050 0.245403i
\(516\) 0 0
\(517\) −37.5987 21.7076i −1.65359 0.954699i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.318682 + 0.551974i 0.0139617 + 0.0241824i 0.872922 0.487860i \(-0.162222\pi\)
−0.858960 + 0.512042i \(0.828889\pi\)
\(522\) 0 0
\(523\) 15.4557 + 8.92337i 0.675832 + 0.390192i 0.798283 0.602283i \(-0.205742\pi\)
−0.122451 + 0.992475i \(0.539075\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −45.0618 + 26.0165i −1.96292 + 1.13330i
\(528\) 0 0
\(529\) −4.84940 + 8.39940i −0.210843 + 0.365191i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.3474 + 8.86084i −0.664771 + 0.383806i
\(534\) 0 0
\(535\) 2.13111i 0.0921358i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −38.0917 + 8.79479i −1.64072 + 0.378818i
\(540\) 0 0
\(541\) 6.65241 11.5223i 0.286009 0.495383i −0.686844 0.726805i \(-0.741004\pi\)
0.972853 + 0.231422i \(0.0743378\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.252123 + 0.436690i −0.0107998 + 0.0187057i
\(546\) 0 0
\(547\) 7.69646 + 13.3307i 0.329077 + 0.569978i 0.982329 0.187162i \(-0.0599291\pi\)
−0.653252 + 0.757141i \(0.726596\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.31543 0.141242
\(552\) 0 0
\(553\) 29.5912 11.6565i 1.25835 0.495687i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.1119 10.4569i 0.767426 0.443074i −0.0645293 0.997916i \(-0.520555\pi\)
0.831956 + 0.554842i \(0.187221\pi\)
\(558\) 0 0
\(559\) 9.49719i 0.401688i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.4727 −0.820678 −0.410339 0.911933i \(-0.634590\pi\)
−0.410339 + 0.911933i \(0.634590\pi\)
\(564\) 0 0
\(565\) 9.33364i 0.392669i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.16022i 0.132483i −0.997804 0.0662417i \(-0.978899\pi\)
0.997804 0.0662417i \(-0.0211008\pi\)
\(570\) 0 0
\(571\) −23.0586 −0.964972 −0.482486 0.875904i \(-0.660266\pi\)
−0.482486 + 0.875904i \(0.660266\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15.4094i 0.642615i
\(576\) 0 0
\(577\) −37.6033 + 21.7103i −1.56545 + 0.903810i −0.568756 + 0.822506i \(0.692575\pi\)
−0.996689 + 0.0813040i \(0.974092\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.12170 + 5.66476i 0.295458 + 0.235014i
\(582\) 0 0
\(583\) −37.9012 −1.56971
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.02425 8.70226i −0.207373 0.359181i 0.743513 0.668721i \(-0.233158\pi\)
−0.950886 + 0.309541i \(0.899825\pi\)
\(588\) 0 0
\(589\) −3.42768 + 5.93692i −0.141235 + 0.244627i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.9110 32.7547i 0.776580 1.34508i −0.157322 0.987547i \(-0.550286\pi\)
0.933902 0.357528i \(-0.116380\pi\)
\(594\) 0 0
\(595\) 1.62248 10.8569i 0.0665152 0.445088i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.3527i 1.48533i 0.669663 + 0.742665i \(0.266439\pi\)
−0.669663 + 0.742665i \(0.733561\pi\)
\(600\) 0 0
\(601\) 2.72502 1.57329i 0.111156 0.0641760i −0.443391 0.896328i \(-0.646225\pi\)
0.554547 + 0.832152i \(0.312891\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.88645 + 15.3918i −0.361285 + 0.625765i
\(606\) 0 0
\(607\) 5.26589 3.04026i 0.213736 0.123400i −0.389311 0.921107i \(-0.627287\pi\)
0.603046 + 0.797706i \(0.293953\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.4759 10.0897i −0.707000 0.408187i
\(612\) 0 0
\(613\) 23.6217 + 40.9140i 0.954072 + 1.65250i 0.736478 + 0.676461i \(0.236487\pi\)
0.217593 + 0.976040i \(0.430179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.4011 + 14.0880i 0.982350 + 0.567160i 0.902979 0.429685i \(-0.141375\pi\)
0.0793713 + 0.996845i \(0.474709\pi\)
\(618\) 0 0
\(619\) 30.8831 + 17.8304i 1.24130 + 0.716663i 0.969358 0.245651i \(-0.0790018\pi\)
0.271939 + 0.962314i \(0.412335\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.66395 + 17.8259i −0.106729 + 0.714179i
\(624\) 0 0
\(625\) −6.98865 12.1047i −0.279546 0.484188i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.3528 1.60897
\(630\) 0 0
\(631\) 12.7686 0.508311 0.254155 0.967163i \(-0.418203\pi\)
0.254155 + 0.967163i \(0.418203\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.25695 + 2.17710i 0.0498805 + 0.0863956i
\(636\) 0 0
\(637\) −17.7051 + 4.08783i −0.701501 + 0.161966i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.6617 6.15551i −0.421110 0.243128i 0.274442 0.961604i \(-0.411507\pi\)
−0.695552 + 0.718476i \(0.744840\pi\)
\(642\) 0 0
\(643\) −39.2940 22.6864i −1.54960 0.894664i −0.998172 0.0604447i \(-0.980748\pi\)
−0.551432 0.834220i \(-0.685919\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.9646 + 41.5079i 0.942145 + 1.63184i 0.761369 + 0.648319i \(0.224527\pi\)
0.180776 + 0.983524i \(0.442139\pi\)
\(648\) 0 0
\(649\) −51.8122 29.9138i −2.03381 1.17422i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.07258 + 4.66071i −0.315905 + 0.182388i −0.649566 0.760305i \(-0.725049\pi\)
0.333661 + 0.942693i \(0.391716\pi\)
\(654\) 0 0
\(655\) 5.11250 8.85511i 0.199762 0.345998i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.2981 5.94563i 0.401158 0.231609i −0.285825 0.958282i \(-0.592268\pi\)
0.686984 + 0.726673i \(0.258934\pi\)
\(660\) 0 0
\(661\) 9.61549i 0.373999i −0.982360 0.187000i \(-0.940124\pi\)
0.982360 0.187000i \(-0.0598763\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.530075 1.34564i −0.0205554 0.0521818i
\(666\) 0 0
\(667\) 9.73571 16.8627i 0.376968 0.652928i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.73007 9.92478i 0.221207 0.383142i
\(672\) 0 0
\(673\) 11.2898 + 19.5544i 0.435188 + 0.753768i 0.997311 0.0732855i \(-0.0233484\pi\)
−0.562123 + 0.827054i \(0.690015\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.9357 1.65015 0.825077 0.565021i \(-0.191132\pi\)
0.825077 + 0.565021i \(0.191132\pi\)
\(678\) 0 0
\(679\) 26.7114 33.5813i 1.02509 1.28873i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.66677 + 0.962311i −0.0637772 + 0.0368218i −0.531550 0.847027i \(-0.678390\pi\)
0.467772 + 0.883849i \(0.345057\pi\)
\(684\) 0 0
\(685\) 6.52300i 0.249231i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.6166 −0.671138
\(690\) 0 0
\(691\) 6.46796i 0.246053i −0.992403 0.123026i \(-0.960740\pi\)
0.992403 0.123026i \(-0.0392600\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.00724i 0.114071i
\(696\) 0 0
\(697\) 32.1783 1.21884
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.1067i 0.986036i −0.870019 0.493018i \(-0.835894\pi\)
0.870019 0.493018i \(-0.164106\pi\)
\(702\) 0 0
\(703\) 4.60423 2.65825i 0.173652 0.100258i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.28481 + 35.3634i −0.198756 + 1.32998i
\(708\) 0 0
\(709\) −34.8342 −1.30823 −0.654113 0.756397i \(-0.726958\pi\)
−0.654113 + 0.756397i \(0.726958\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.1307 + 34.8674i 0.753900 + 1.30579i
\(714\) 0 0
\(715\) −6.38077 + 11.0518i −0.238627 + 0.413315i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.5506 32.1306i 0.691822 1.19827i −0.279418 0.960169i \(-0.590142\pi\)
0.971240 0.238101i \(-0.0765250\pi\)
\(720\) 0 0
\(721\) 20.8397 26.1995i 0.776111 0.975721i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.5575i 0.837765i
\(726\) 0 0
\(727\) 5.17832 2.98970i 0.192053 0.110882i −0.400890 0.916126i \(-0.631299\pi\)
0.592943 + 0.805244i \(0.297966\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.62230 14.9343i 0.318907 0.552364i
\(732\) 0 0
\(733\) −13.7934 + 7.96362i −0.509471 + 0.294143i −0.732616 0.680642i \(-0.761701\pi\)
0.223145 + 0.974785i \(0.428368\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −43.7325 25.2490i −1.61091 0.930057i
\(738\) 0 0
\(739\) 3.41719 + 5.91875i 0.125704 + 0.217725i 0.922008 0.387171i \(-0.126548\pi\)
−0.796304 + 0.604896i \(0.793215\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.7681 11.9905i −0.761907 0.439887i 0.0680728 0.997680i \(-0.478315\pi\)
−0.829980 + 0.557793i \(0.811648\pi\)
\(744\) 0 0
\(745\) 7.75594 + 4.47789i 0.284156 + 0.164057i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.33493 + 0.946711i 0.231473 + 0.0345921i
\(750\) 0 0
\(751\) −3.13906 5.43702i −0.114546 0.198400i 0.803052 0.595909i \(-0.203208\pi\)
−0.917598 + 0.397509i \(0.869875\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.79137 0.137982
\(756\) 0 0
\(757\) −43.9573 −1.59766 −0.798828 0.601559i \(-0.794546\pi\)
−0.798828 + 0.601559i \(0.794546\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.85711 13.6089i −0.284820 0.493323i 0.687745 0.725952i \(-0.258601\pi\)
−0.972566 + 0.232629i \(0.925267\pi\)
\(762\) 0 0
\(763\) −1.18610 0.943454i −0.0429398 0.0341553i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0824 13.9040i −0.869566 0.502044i
\(768\) 0 0
\(769\) 29.3970 + 16.9724i 1.06008 + 0.612040i 0.925455 0.378857i \(-0.123683\pi\)
0.134628 + 0.990896i \(0.457016\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.4346 + 42.3220i 0.878852 + 1.52222i 0.852602 + 0.522562i \(0.175024\pi\)
0.0262509 + 0.999655i \(0.491643\pi\)
\(774\) 0 0
\(775\) 40.3936 + 23.3213i 1.45098 + 0.837725i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.67152 2.11975i 0.131546 0.0759481i
\(780\) 0 0
\(781\) 34.3498 59.4956i 1.22913 2.12892i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.99286 5.19203i 0.320969 0.185312i
\(786\) 0 0
\(787\) 36.3244i 1.29483i 0.762139 + 0.647413i \(0.224149\pi\)
−0.762139 + 0.647413i \(0.775851\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −27.7452 4.14633i −0.986506 0.147426i
\(792\) 0 0
\(793\) 2.66335 4.61306i 0.0945783 0.163814i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.0153 24.2753i 0.496449 0.859875i −0.503543 0.863970i \(-0.667970\pi\)
0.999992 + 0.00409568i \(0.00130370\pi\)
\(798\) 0 0
\(799\) 18.3205 + 31.7321i 0.648133 + 1.12260i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 22.1650 0.782184
\(804\) 0 0
\(805\) −8.40068 1.25542i −0.296085 0.0442478i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.9591 + 6.32725i −0.385302 + 0.222454i −0.680123 0.733098i \(-0.738074\pi\)
0.294820 + 0.955553i \(0.404740\pi\)
\(810\) 0 0
\(811\) 33.7585i 1.18542i −0.805415 0.592711i \(-0.798057\pi\)
0.805415 0.592711i \(-0.201943\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.2291 0.358310
\(816\) 0 0
\(817\) 2.27199i 0.0794867i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.87082i 0.204893i −0.994739 0.102447i \(-0.967333\pi\)
0.994739 0.102447i \(-0.0326671\pi\)
\(822\) 0 0
\(823\) 30.9017 1.07717 0.538583 0.842572i \(-0.318960\pi\)
0.538583 + 0.842572i \(0.318960\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.0586i 1.53207i 0.642800 + 0.766034i \(0.277773\pi\)
−0.642800 + 0.766034i \(0.722227\pi\)
\(828\) 0 0
\(829\) 5.47912 3.16337i 0.190298 0.109868i −0.401824 0.915717i \(-0.631624\pi\)
0.592122 + 0.805848i \(0.298290\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.5524 + 9.64598i 1.09322 + 0.334213i
\(834\) 0 0
\(835\) 13.8825 0.480425
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.29837 9.17704i −0.182920 0.316827i 0.759954 0.649977i \(-0.225222\pi\)
−0.942874 + 0.333151i \(0.891888\pi\)
\(840\) 0 0
\(841\) −0.248064 + 0.429659i −0.00855392 + 0.0148158i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.75596 4.77347i 0.0948080 0.164212i
\(846\) 0 0
\(847\) −41.8060 33.2534i −1.43647 1.14260i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.2237i 1.07033i
\(852\) 0 0
\(853\) 19.0713 11.0108i 0.652989 0.377003i −0.136611 0.990625i \(-0.543621\pi\)
0.789600 + 0.613621i \(0.210288\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.76205 3.05197i 0.0601906 0.104253i −0.834360 0.551220i \(-0.814162\pi\)
0.894551 + 0.446967i \(0.147496\pi\)
\(858\) 0 0
\(859\) −32.0730 + 18.5174i −1.09432 + 0.631805i −0.934723 0.355378i \(-0.884352\pi\)
−0.159595 + 0.987183i \(0.551019\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.5411 7.81797i −0.460945 0.266127i 0.251496 0.967858i \(-0.419077\pi\)
−0.712442 + 0.701731i \(0.752411\pi\)
\(864\) 0 0
\(865\) 1.22067 + 2.11427i 0.0415042 + 0.0718873i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 58.1403 + 33.5673i 1.97227 + 1.13869i
\(870\) 0 0
\(871\) −20.3269 11.7358i −0.688752 0.397651i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −19.9900 + 7.87447i −0.675787 + 0.266206i
\(876\) 0 0
\(877\) 1.92641 + 3.33664i 0.0650502 + 0.112670i 0.896716 0.442606i \(-0.145946\pi\)
−0.831666 + 0.555276i \(0.812613\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.3493 −1.49417 −0.747084 0.664730i \(-0.768547\pi\)
−0.747084 + 0.664730i \(0.768547\pi\)
\(882\) 0 0
\(883\) −20.5569 −0.691795 −0.345897 0.938272i \(-0.612425\pi\)
−0.345897 + 0.938272i \(0.612425\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.05890 + 3.56612i 0.0691311 + 0.119739i 0.898519 0.438934i \(-0.144644\pi\)
−0.829388 + 0.558673i \(0.811311\pi\)
\(888\) 0 0
\(889\) −7.03003 + 2.76927i −0.235780 + 0.0928782i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.18072 + 2.41374i 0.139902 + 0.0807726i
\(894\) 0 0
\(895\) −5.23235 3.02090i −0.174898 0.100978i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.4690 + 51.0417i 0.982845 + 1.70234i
\(900\) 0 0
\(901\) 27.7019 + 15.9937i 0.922884 + 0.532828i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.50973 + 4.33575i −0.249632 + 0.144125i
\(906\) 0 0
\(907\) −21.1401 + 36.6158i −0.701946 + 1.21581i 0.265836 + 0.964018i \(0.414352\pi\)
−0.967782 + 0.251789i \(0.918981\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.6408 + 9.60760i −0.551336 + 0.318314i −0.749661 0.661822i \(-0.769783\pi\)
0.198325 + 0.980136i \(0.436450\pi\)
\(912\) 0 0
\(913\) 19.2087i 0.635714i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0516 + 19.1312i 0.794253 + 0.631767i
\(918\) 0 0
\(919\) 6.02706 10.4392i 0.198814 0.344357i −0.749330 0.662197i \(-0.769624\pi\)
0.948144 + 0.317840i \(0.102958\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.9659 27.6537i 0.525523 0.910232i
\(924\) 0 0
\(925\) −18.0862 31.3263i −0.594671 1.03000i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −36.5814 −1.20020 −0.600099 0.799926i \(-0.704872\pi\)
−0.600099 + 0.799926i \(0.704872\pi\)
\(930\) 0 0
\(931\) 4.23553 0.977921i 0.138814 0.0320501i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.0674 11.5859i 0.656275 0.378901i
\(936\) 0 0
\(937\) 39.4119i 1.28753i 0.765222 + 0.643766i \(0.222629\pi\)
−0.765222 + 0.643766i \(0.777371\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.4350 0.405371 0.202685 0.979244i \(-0.435033\pi\)
0.202685 + 0.979244i \(0.435033\pi\)
\(942\) 0 0
\(943\) 24.8985i 0.810807i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.8649i 0.970478i −0.874382 0.485239i \(-0.838733\pi\)
0.874382 0.485239i \(-0.161267\pi\)
\(948\) 0 0
\(949\) 10.3023 0.334427
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.4851i 0.728365i 0.931328 + 0.364183i \(0.118652\pi\)
−0.931328 + 0.364183i \(0.881348\pi\)
\(954\) 0 0
\(955\) 13.7044 7.91224i 0.443464 0.256034i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −19.3903 2.89774i −0.626144 0.0935729i
\(960\) 0 0
\(961\) −90.8669 −2.93119
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.65526 2.86699i −0.0532846 0.0922916i
\(966\) 0 0
\(967\) 1.91372 3.31466i 0.0615411 0.106592i −0.833613 0.552348i \(-0.813732\pi\)
0.895154 + 0.445756i \(0.147065\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.4317 50.9773i 0.944509 1.63594i 0.187779 0.982211i \(-0.439871\pi\)
0.756731 0.653727i \(-0.226795\pi\)
\(972\) 0 0
\(973\) 8.93932 + 1.33592i 0.286581 + 0.0428276i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.6006i 0.339145i 0.985518 + 0.169572i \(0.0542387\pi\)
−0.985518 + 0.169572i \(0.945761\pi\)
\(978\) 0 0
\(979\) −32.9487 + 19.0230i −1.05305 + 0.607976i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.3230 28.2723i 0.520624 0.901747i −0.479089 0.877766i \(-0.659033\pi\)
0.999712 0.0239802i \(-0.00763386\pi\)
\(984\) 0 0
\(985\) 5.24749 3.02964i 0.167199 0.0965323i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.5556 6.67165i −0.367448 0.212146i
\(990\) 0 0
\(991\) 16.3697 + 28.3531i 0.520000 + 0.900666i 0.999730 + 0.0232498i \(0.00740131\pi\)
−0.479730 + 0.877416i \(0.659265\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.6419 + 6.14412i 0.337372 + 0.194782i
\(996\) 0 0
\(997\) 39.3141 + 22.6980i 1.24509 + 0.718854i 0.970126 0.242601i \(-0.0780004\pi\)
0.274965 + 0.961454i \(0.411334\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.w.j.1349.10 32
3.2 odd 2 inner 2268.2.w.j.1349.7 32
7.3 odd 6 2268.2.bm.j.1025.10 32
9.2 odd 6 2268.2.bm.j.593.10 32
9.4 even 3 2268.2.t.c.2105.10 yes 32
9.5 odd 6 2268.2.t.c.2105.7 yes 32
9.7 even 3 2268.2.bm.j.593.7 32
21.17 even 6 2268.2.bm.j.1025.7 32
63.31 odd 6 2268.2.t.c.1781.7 32
63.38 even 6 inner 2268.2.w.j.269.10 32
63.52 odd 6 inner 2268.2.w.j.269.7 32
63.59 even 6 2268.2.t.c.1781.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.t.c.1781.7 32 63.31 odd 6
2268.2.t.c.1781.10 yes 32 63.59 even 6
2268.2.t.c.2105.7 yes 32 9.5 odd 6
2268.2.t.c.2105.10 yes 32 9.4 even 3
2268.2.w.j.269.7 32 63.52 odd 6 inner
2268.2.w.j.269.10 32 63.38 even 6 inner
2268.2.w.j.1349.7 32 3.2 odd 2 inner
2268.2.w.j.1349.10 32 1.1 even 1 trivial
2268.2.bm.j.593.7 32 9.7 even 3
2268.2.bm.j.593.10 32 9.2 odd 6
2268.2.bm.j.1025.7 32 21.17 even 6
2268.2.bm.j.1025.10 32 7.3 odd 6