Properties

Label 2268.2.l.g.109.1
Level $2268$
Weight $2$
Character 2268.109
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2268.109
Dual form 2268.2.l.g.541.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{5} +(-2.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+2.00000 q^{5} +(-2.50000 + 0.866025i) q^{7} -2.00000 q^{11} +(1.50000 - 2.59808i) q^{13} +(4.00000 - 6.92820i) q^{17} +(0.500000 + 0.866025i) q^{19} -8.00000 q^{23} -1.00000 q^{25} +(2.00000 + 3.46410i) q^{29} +(-1.50000 - 2.59808i) q^{31} +(-5.00000 + 1.73205i) q^{35} +(0.500000 + 0.866025i) q^{37} +(3.00000 - 5.19615i) q^{41} +(-5.50000 - 9.52628i) q^{43} +(3.00000 - 5.19615i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-6.00000 + 10.3923i) q^{53} -4.00000 q^{55} +(2.00000 + 3.46410i) q^{59} +(3.00000 - 5.19615i) q^{61} +(3.00000 - 5.19615i) q^{65} +(-6.50000 - 11.2583i) q^{67} +10.0000 q^{71} +(5.50000 - 9.52628i) q^{73} +(5.00000 - 1.73205i) q^{77} +(1.50000 - 2.59808i) q^{79} +(1.00000 + 1.73205i) q^{83} +(8.00000 - 13.8564i) q^{85} +(-1.50000 + 7.79423i) q^{91} +(1.00000 + 1.73205i) q^{95} +(-5.00000 - 8.66025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{5} - 5q^{7} + O(q^{10}) \) \( 2q + 4q^{5} - 5q^{7} - 4q^{11} + 3q^{13} + 8q^{17} + q^{19} - 16q^{23} - 2q^{25} + 4q^{29} - 3q^{31} - 10q^{35} + q^{37} + 6q^{41} - 11q^{43} + 6q^{47} + 11q^{49} - 12q^{53} - 8q^{55} + 4q^{59} + 6q^{61} + 6q^{65} - 13q^{67} + 20q^{71} + 11q^{73} + 10q^{77} + 3q^{79} + 2q^{83} + 16q^{85} - 3q^{91} + 2q^{95} - 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.50000 2.59808i 0.416025 0.720577i −0.579510 0.814965i \(-0.696756\pi\)
0.995535 + 0.0943882i \(0.0300895\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 6.92820i 0.970143 1.68034i 0.275029 0.961436i \(-0.411312\pi\)
0.695113 0.718900i \(-0.255354\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 + 3.46410i 0.371391 + 0.643268i 0.989780 0.142605i \(-0.0455477\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) 0 0
\(31\) −1.50000 2.59808i −0.269408 0.466628i 0.699301 0.714827i \(-0.253495\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.00000 + 1.73205i −0.845154 + 0.292770i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 + 10.3923i −0.824163 + 1.42749i 0.0783936 + 0.996922i \(0.475021\pi\)
−0.902557 + 0.430570i \(0.858312\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 3.00000 5.19615i 0.384111 0.665299i −0.607535 0.794293i \(-0.707841\pi\)
0.991645 + 0.128994i \(0.0411748\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 5.19615i 0.372104 0.644503i
\(66\) 0 0
\(67\) −6.50000 11.2583i −0.794101 1.37542i −0.923408 0.383819i \(-0.874609\pi\)
0.129307 0.991605i \(-0.458725\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.00000 1.73205i 0.569803 0.197386i
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.00000 + 1.73205i 0.109764 + 0.190117i 0.915675 0.401920i \(-0.131657\pi\)
−0.805910 + 0.592037i \(0.798324\pi\)
\(84\) 0 0
\(85\) 8.00000 13.8564i 0.867722 1.50294i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −1.50000 + 7.79423i −0.157243 + 0.817057i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 + 1.73205i 0.102598 + 0.177705i
\(96\) 0 0
\(97\) −5.00000 8.66025i −0.507673 0.879316i −0.999961 0.00888289i \(-0.997172\pi\)
0.492287 0.870433i \(-0.336161\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 5.50000 9.52628i 0.526804 0.912452i −0.472708 0.881219i \(-0.656723\pi\)
0.999512 0.0312328i \(-0.00994332\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.00000 + 12.1244i −0.658505 + 1.14056i 0.322498 + 0.946570i \(0.395477\pi\)
−0.981003 + 0.193993i \(0.937856\pi\)
\(114\) 0 0
\(115\) −16.0000 −1.49201
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 + 20.7846i −0.366679 + 1.90532i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 3.00000 0.266207 0.133103 0.991102i \(-0.457506\pi\)
0.133103 + 0.991102i \(0.457506\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 0 0
\(133\) −2.00000 1.73205i −0.173422 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 0 0
\(157\) −1.00000 1.73205i −0.0798087 0.138233i 0.823359 0.567521i \(-0.192098\pi\)
−0.903167 + 0.429289i \(0.858764\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.0000 6.92820i 1.57622 0.546019i
\(162\) 0 0
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 + 1.73205i −0.0773823 + 0.134030i −0.902120 0.431486i \(-0.857990\pi\)
0.824737 + 0.565516i \(0.191323\pi\)
\(168\) 0 0
\(169\) 2.00000 + 3.46410i 0.153846 + 0.266469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.00000 13.8564i 0.608229 1.05348i −0.383304 0.923622i \(-0.625214\pi\)
0.991532 0.129861i \(-0.0414530\pi\)
\(174\) 0 0
\(175\) 2.50000 0.866025i 0.188982 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.00000 5.19615i 0.224231 0.388379i −0.731858 0.681457i \(-0.761346\pi\)
0.956088 + 0.293079i \(0.0946798\pi\)
\(180\) 0 0
\(181\) −15.0000 −1.11494 −0.557471 0.830197i \(-0.688228\pi\)
−0.557471 + 0.830197i \(0.688228\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 + 1.73205i 0.0735215 + 0.127343i
\(186\) 0 0
\(187\) −8.00000 + 13.8564i −0.585018 + 1.01328i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.00000 6.92820i −0.561490 0.486265i
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.00000 1.73205i −0.0691714 0.119808i
\(210\) 0 0
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.0000 19.0526i −0.750194 1.29937i
\(216\) 0 0
\(217\) 6.00000 + 5.19615i 0.407307 + 0.352738i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 20.7846i −0.807207 1.39812i
\(222\) 0 0
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 1.00000 0.0660819 0.0330409 0.999454i \(-0.489481\pi\)
0.0330409 + 0.999454i \(0.489481\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.00000 + 12.1244i 0.458585 + 0.794293i 0.998886 0.0471787i \(-0.0150230\pi\)
−0.540301 + 0.841472i \(0.681690\pi\)
\(234\) 0 0
\(235\) 6.00000 10.3923i 0.391397 0.677919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.00000 15.5885i 0.582162 1.00833i −0.413061 0.910703i \(-0.635540\pi\)
0.995223 0.0976302i \(-0.0311262\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.0000 8.66025i 0.702764 0.553283i
\(246\) 0 0
\(247\) 3.00000 0.190885
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −2.00000 1.73205i −0.124274 0.107624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −12.0000 + 20.7846i −0.737154 + 1.27679i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 + 1.73205i −0.0609711 + 0.105605i −0.894900 0.446267i \(-0.852753\pi\)
0.833929 + 0.551872i \(0.186086\pi\)
\(270\) 0 0
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) 17.0000 1.02143 0.510716 0.859750i \(-0.329381\pi\)
0.510716 + 0.859750i \(0.329381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 + 17.3205i 0.596550 + 1.03325i 0.993326 + 0.115339i \(0.0367956\pi\)
−0.396776 + 0.917915i \(0.629871\pi\)
\(282\) 0 0
\(283\) −9.50000 16.4545i −0.564716 0.978117i −0.997076 0.0764162i \(-0.975652\pi\)
0.432360 0.901701i \(-0.357681\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 + 15.5885i −0.177084 + 0.920158i
\(288\) 0 0
\(289\) −23.5000 40.7032i −1.38235 2.39431i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.0000 + 20.7846i −0.701047 + 1.21425i 0.267052 + 0.963682i \(0.413951\pi\)
−0.968099 + 0.250568i \(0.919383\pi\)
\(294\) 0 0
\(295\) 4.00000 + 6.92820i 0.232889 + 0.403376i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 0 0
\(301\) 22.0000 + 19.0526i 1.26806 + 1.09817i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 10.3923i 0.343559 0.595062i
\(306\) 0 0
\(307\) −23.0000 −1.31268 −0.656340 0.754466i \(-0.727896\pi\)
−0.656340 + 0.754466i \(0.727896\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 1.73205i −0.0567048 0.0982156i 0.836280 0.548303i \(-0.184726\pi\)
−0.892984 + 0.450088i \(0.851393\pi\)
\(312\) 0 0
\(313\) 8.50000 14.7224i 0.480448 0.832161i −0.519300 0.854592i \(-0.673807\pi\)
0.999748 + 0.0224310i \(0.00714060\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 + 20.7846i −0.673987 + 1.16738i 0.302777 + 0.953062i \(0.402086\pi\)
−0.976764 + 0.214318i \(0.931247\pi\)
\(318\) 0 0
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) −1.50000 + 2.59808i −0.0832050 + 0.144115i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.00000 + 15.5885i −0.165395 + 0.859419i
\(330\) 0 0
\(331\) −8.50000 + 14.7224i −0.467202 + 0.809218i −0.999298 0.0374662i \(-0.988071\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.0000 22.5167i −0.710266 1.23022i
\(336\) 0 0
\(337\) −10.5000 + 18.1865i −0.571971 + 0.990684i 0.424392 + 0.905479i \(0.360488\pi\)
−0.996363 + 0.0852050i \(0.972845\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.00000 + 5.19615i 0.162459 + 0.281387i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 + 20.7846i 0.644194 + 1.11578i 0.984487 + 0.175457i \(0.0561403\pi\)
−0.340293 + 0.940319i \(0.610526\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 20.0000 1.06149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 17.3205i −0.527780 0.914141i −0.999476 0.0323801i \(-0.989691\pi\)
0.471696 0.881761i \(-0.343642\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.0000 19.0526i 0.575766 0.997257i
\(366\) 0 0
\(367\) 5.00000 0.260998 0.130499 0.991448i \(-0.458342\pi\)
0.130499 + 0.991448i \(0.458342\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.00000 31.1769i 0.311504 1.61862i
\(372\) 0 0
\(373\) −5.00000 −0.258890 −0.129445 0.991587i \(-0.541320\pi\)
−0.129445 + 0.991587i \(0.541320\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 28.0000 1.43073 0.715367 0.698749i \(-0.246260\pi\)
0.715367 + 0.698749i \(0.246260\pi\)
\(384\) 0 0
\(385\) 10.0000 3.46410i 0.509647 0.176547i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) −32.0000 + 55.4256i −1.61831 + 2.80299i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.00000 5.19615i 0.150946 0.261447i
\(396\) 0 0
\(397\) −1.50000 2.59808i −0.0752828 0.130394i 0.825926 0.563778i \(-0.190653\pi\)
−0.901209 + 0.433384i \(0.857319\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) −9.00000 −0.448322
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 1.73205i −0.0495682 0.0858546i
\(408\) 0 0
\(409\) 9.50000 + 16.4545i 0.469745 + 0.813622i 0.999402 0.0345902i \(-0.0110126\pi\)
−0.529657 + 0.848212i \(0.677679\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 6.92820i −0.393654 0.340915i
\(414\) 0 0
\(415\) 2.00000 + 3.46410i 0.0981761 + 0.170046i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000 15.5885i 0.439679 0.761546i −0.557986 0.829851i \(-0.688426\pi\)
0.997665 + 0.0683046i \(0.0217590\pi\)
\(420\) 0 0
\(421\) 13.5000 + 23.3827i 0.657950 + 1.13960i 0.981146 + 0.193270i \(0.0619094\pi\)
−0.323196 + 0.946332i \(0.604757\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.00000 + 6.92820i −0.194029 + 0.336067i
\(426\) 0 0
\(427\) −3.00000 + 15.5885i −0.145180 + 0.754378i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.0000 + 25.9808i −0.722525 + 1.25145i 0.237460 + 0.971397i \(0.423685\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.00000 6.92820i −0.191346 0.331421i
\(438\) 0 0
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) −6.00000 + 10.3923i −0.282529 + 0.489355i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.00000 + 15.5885i −0.140642 + 0.730798i
\(456\) 0 0
\(457\) −6.50000 + 11.2583i −0.304057 + 0.526642i −0.977051 0.213006i \(-0.931675\pi\)
0.672994 + 0.739648i \(0.265008\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 + 3.46410i 0.0931493 + 0.161339i 0.908835 0.417156i \(-0.136973\pi\)
−0.815685 + 0.578496i \(0.803640\pi\)
\(462\) 0 0
\(463\) 5.50000 9.52628i 0.255607 0.442724i −0.709453 0.704752i \(-0.751058\pi\)
0.965060 + 0.262029i \(0.0843915\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.0000 + 29.4449i 0.786666 + 1.36255i 0.927999 + 0.372584i \(0.121528\pi\)
−0.141332 + 0.989962i \(0.545139\pi\)
\(468\) 0 0
\(469\) 26.0000 + 22.5167i 1.20057 + 1.03972i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.0000 + 19.0526i 0.505781 + 0.876038i
\(474\) 0 0
\(475\) −0.500000 0.866025i −0.0229416 0.0397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 3.00000 0.136788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.0000 17.3205i −0.454077 0.786484i
\(486\) 0 0
\(487\) 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i \(-0.691675\pi\)
0.996915 + 0.0784867i \(0.0250088\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.0000 + 31.1769i −0.812329 + 1.40699i 0.0989017 + 0.995097i \(0.468467\pi\)
−0.911230 + 0.411897i \(0.864866\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −25.0000 + 8.66025i −1.12140 + 0.388465i
\(498\) 0 0
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −5.50000 + 28.5788i −0.243306 + 1.26425i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.0000 0.969436
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 + 31.1769i −0.788594 + 1.36589i 0.138234 + 0.990400i \(0.455857\pi\)
−0.926828 + 0.375486i \(0.877476\pi\)
\(522\) 0 0
\(523\) 15.5000 + 26.8468i 0.677768 + 1.17393i 0.975652 + 0.219326i \(0.0703858\pi\)
−0.297884 + 0.954602i \(0.596281\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.00000 15.5885i −0.389833 0.675211i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.0000 + 8.66025i −0.473804 + 0.373024i
\(540\) 0 0
\(541\) 7.50000 + 12.9904i 0.322450 + 0.558500i 0.980993 0.194043i \(-0.0621602\pi\)
−0.658543 + 0.752543i \(0.728827\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0000 19.0526i 0.471188 0.816122i
\(546\) 0 0
\(547\) 6.00000 + 10.3923i 0.256541 + 0.444343i 0.965313 0.261095i \(-0.0840836\pi\)
−0.708772 + 0.705438i \(0.750750\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.00000 + 3.46410i −0.0852029 + 0.147576i
\(552\) 0 0
\(553\) −1.50000 + 7.79423i −0.0637865 + 0.331444i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000 19.0526i 0.466085 0.807283i −0.533165 0.846011i \(-0.678997\pi\)
0.999250 + 0.0387286i \(0.0123308\pi\)
\(558\) 0 0
\(559\) −33.0000 −1.39575
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.0000 39.8372i −0.969334 1.67894i −0.697489 0.716596i \(-0.745699\pi\)
−0.271846 0.962341i \(-0.587634\pi\)
\(564\) 0 0
\(565\) −14.0000 + 24.2487i −0.588984 + 1.02015i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 0 0
\(571\) 10.5000 + 18.1865i 0.439411 + 0.761083i 0.997644 0.0686016i \(-0.0218537\pi\)
−0.558233 + 0.829684i \(0.688520\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 20.5000 35.5070i 0.853426 1.47818i −0.0246713 0.999696i \(-0.507854\pi\)
0.878097 0.478482i \(-0.158813\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 3.46410i −0.165948 0.143715i
\(582\) 0 0
\(583\) 12.0000 20.7846i 0.496989 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.0000 + 27.7128i 0.660391 + 1.14383i 0.980513 + 0.196454i \(0.0629426\pi\)
−0.320122 + 0.947376i \(0.603724\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) −8.00000 + 41.5692i −0.327968 + 1.70417i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.00000 10.3923i −0.245153 0.424618i 0.717021 0.697051i \(-0.245505\pi\)
−0.962175 + 0.272433i \(0.912172\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.0203954 + 0.0353259i 0.876043 0.482233i \(-0.160174\pi\)
−0.855648 + 0.517559i \(0.826841\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) −3.00000 −0.121766 −0.0608831 0.998145i \(-0.519392\pi\)
−0.0608831 + 0.998145i \(0.519392\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.00000 15.5885i −0.364101 0.630641i
\(612\) 0 0
\(613\) 15.0000 25.9808i 0.605844 1.04935i −0.386073 0.922468i \(-0.626169\pi\)
0.991917 0.126885i \(-0.0404979\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.0000 22.5167i 0.523360 0.906487i −0.476270 0.879299i \(-0.658012\pi\)
0.999630 0.0271876i \(-0.00865514\pi\)
\(618\) 0 0
\(619\) −11.0000 −0.442127 −0.221064 0.975259i \(-0.570953\pi\)
−0.221064 + 0.975259i \(0.570953\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.00000 0.238103
\(636\) 0 0
\(637\) −3.00000 20.7846i −0.118864 0.823516i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.0000 1.57991 0.789953 0.613168i \(-0.210105\pi\)
0.789953 + 0.613168i \(0.210105\pi\)
\(642\) 0 0
\(643\) −17.5000 + 30.3109i −0.690133 + 1.19534i 0.281661 + 0.959514i \(0.409114\pi\)
−0.971794 + 0.235831i \(0.924219\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00000 5.19615i 0.117942 0.204282i −0.801010 0.598651i \(-0.795704\pi\)
0.918952 + 0.394369i \(0.129037\pi\)
\(648\) 0 0
\(649\) −4.00000 6.92820i −0.157014 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 4.00000 0.156293
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.0000 24.2487i −0.545363 0.944596i −0.998584 0.0531977i \(-0.983059\pi\)
0.453221 0.891398i \(-0.350275\pi\)
\(660\) 0 0
\(661\) 14.5000 + 25.1147i 0.563985 + 0.976850i 0.997143 + 0.0755324i \(0.0240656\pi\)
−0.433159 + 0.901318i \(0.642601\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.00000 3.46410i −0.155113 0.134332i
\(666\) 0 0
\(667\) −16.0000 27.7128i −0.619522 1.07304i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.00000 + 10.3923i −0.231627 + 0.401190i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 10.3923i 0.230599 0.399409i −0.727386 0.686229i \(-0.759265\pi\)
0.957984 + 0.286820i \(0.0925982\pi\)
\(678\) 0 0
\(679\) 20.0000 + 17.3205i 0.767530 + 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18.0000 31.1769i 0.688751 1.19295i −0.283491 0.958975i \(-0.591493\pi\)
0.972242 0.233977i \(-0.0751739\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.0000 + 31.1769i 0.685745 + 1.18775i
\(690\) 0 0
\(691\) 21.5000 37.2391i 0.817899 1.41664i −0.0893292 0.996002i \(-0.528472\pi\)
0.907228 0.420640i \(-0.138194\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.00000 8.66025i 0.189661 0.328502i
\(696\) 0 0
\(697\) −24.0000 41.5692i −0.909065 1.57455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) −0.500000 + 0.866025i −0.0188579 + 0.0326628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25.0000 8.66025i 0.940222 0.325702i
\(708\) 0 0
\(709\) −7.00000 + 12.1244i −0.262891 + 0.455340i −0.967009 0.254743i \(-0.918009\pi\)
0.704118 + 0.710083i \(0.251342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000 + 20.7846i 0.449404 + 0.778390i
\(714\) 0 0
\(715\) −6.00000 + 10.3923i −0.224387 + 0.388650i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) 0 0
\(721\) −27.5000 + 9.52628i −1.02415 + 0.354777i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) 0 0
\(727\) 11.5000 + 19.9186i 0.426511 + 0.738739i 0.996560 0.0828714i \(-0.0264091\pi\)
−0.570049 + 0.821611i \(0.693076\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −88.0000 −3.25480
\(732\) 0 0
\(733\) 45.0000 1.66211 0.831056 0.556188i \(-0.187737\pi\)
0.831056 + 0.556188i \(0.187737\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.0000 + 22.5167i 0.478861 + 0.829412i
\(738\) 0 0
\(739\) 4.50000 7.79423i 0.165535 0.286715i −0.771310 0.636460i \(-0.780398\pi\)
0.936845 + 0.349744i \(0.113732\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.00000 + 15.5885i −0.330178 + 0.571885i −0.982547 0.186017i \(-0.940442\pi\)
0.652369 + 0.757902i \(0.273775\pi\)
\(744\) 0 0
\(745\) 24.0000 0.879292
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.0000 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) −5.50000 + 28.5788i −0.199113 + 1.03462i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −15.5000 + 26.8468i −0.558944 + 0.968120i 0.438641 + 0.898663i \(0.355460\pi\)
−0.997585 + 0.0694574i \(0.977873\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.0000 19.0526i 0.395643 0.685273i −0.597540 0.801839i \(-0.703855\pi\)
0.993183 + 0.116566i \(0.0371886\pi\)
\(774\) 0 0
\(775\) 1.50000 + 2.59808i 0.0538816 + 0.0933257i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.00000 3.46410i −0.0713831 0.123639i
\(786\) 0 0
\(787\) −12.0000 20.7846i −0.427754 0.740891i 0.568919 0.822393i \(-0.307362\pi\)
−0.996673 + 0.0815020i \(0.974028\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.00000 36.3731i 0.248891 1.29328i
\(792\) 0 0
\(793\) −9.00000 15.5885i −0.319599 0.553562i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.0000 + 41.5692i −0.850124 + 1.47246i 0.0309726 + 0.999520i \(0.490140\pi\)
−0.881096 + 0.472937i \(0.843194\pi\)
\(798\) 0 0
\(799\) −24.0000 41.5692i −0.849059 1.47061i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) <