# Properties

 Label 2268.2.i.j Level $2268$ Weight $2$ Character orbit 2268.i Analytic conductor $18.110$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2268 = 2^{2} \cdot 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2268.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$18.1100711784$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.309123.1 Defining polynomial: $$x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$3^{2}$$ Twist minimal: no (minimal twist has level 756) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \beta_{1} + \beta_{2} + \beta_{4} - \beta_{5} ) q^{5} + ( 1 + \beta_{3} + \beta_{4} - \beta_{5} ) q^{7} +O(q^{10})$$ $$q + ( \beta_{1} + \beta_{2} + \beta_{4} - \beta_{5} ) q^{5} + ( 1 + \beta_{3} + \beta_{4} - \beta_{5} ) q^{7} + ( -2 - \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} ) q^{11} + ( -\beta_{2} - \beta_{3} + \beta_{5} ) q^{13} + ( \beta_{1} + \beta_{3} - \beta_{4} - \beta_{5} ) q^{17} + ( -2 - \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{19} + ( \beta_{2} - \beta_{3} + 5 \beta_{4} ) q^{23} + ( -5 - \beta_{1} - 3 \beta_{2} - 3 \beta_{3} - 5 \beta_{4} + 2 \beta_{5} ) q^{25} + ( -\beta_{1} - \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{29} + ( -\beta_{1} + \beta_{3} ) q^{31} + ( -5 + 2 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} ) q^{35} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} - 2 \beta_{5} ) q^{37} + ( -3 + \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 3 \beta_{4} - \beta_{5} ) q^{41} + ( -\beta_{1} - 2 \beta_{2} + \beta_{3} - 4 \beta_{4} + \beta_{5} ) q^{43} + ( -3 - \beta_{1} - 2 \beta_{2} + \beta_{3} - 2 \beta_{5} ) q^{47} + ( 1 + 3 \beta_{1} + 2 \beta_{2} - 2 \beta_{5} ) q^{49} + ( -3 \beta_{1} - 3 \beta_{2} + 3 \beta_{5} ) q^{53} + ( 5 - 4 \beta_{1} - \beta_{2} + 4 \beta_{3} - \beta_{5} ) q^{55} + ( -2 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} ) q^{59} + ( 3 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{5} ) q^{61} + ( 9 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{5} ) q^{65} + ( -5 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} ) q^{67} + ( 2 + 3 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{5} ) q^{71} + ( -3 \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + 3 \beta_{5} ) q^{73} + ( 7 - \beta_{1} - 3 \beta_{2} - 2 \beta_{3} + 3 \beta_{5} ) q^{77} + ( -3 - \beta_{1} - 3 \beta_{2} + \beta_{3} - 3 \beta_{5} ) q^{79} + ( -\beta_{1} - \beta_{2} + 5 \beta_{4} + \beta_{5} ) q^{83} + ( -2 + \beta_{1} - 2 \beta_{4} + \beta_{5} ) q^{85} + ( 3 - 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 3 \beta_{4} - 4 \beta_{5} ) q^{89} + ( -1 - 3 \beta_{1} - 2 \beta_{2} - 5 \beta_{4} ) q^{91} + ( 14 - 5 \beta_{1} + 5 \beta_{3} ) q^{95} + ( -2 \beta_{2} + 2 \beta_{3} + 4 \beta_{4} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - q^{5} + 2 q^{7} + O(q^{10})$$ $$6 q - q^{5} + 2 q^{7} - 5 q^{11} + 2 q^{13} + 4 q^{17} - 3 q^{19} - 14 q^{23} - 10 q^{25} + 5 q^{29} - 4 q^{31} - 26 q^{35} - 12 q^{41} + 9 q^{43} - 18 q^{47} + 12 q^{49} - 6 q^{53} + 16 q^{55} - 10 q^{59} + 14 q^{61} + 48 q^{65} - 32 q^{67} + 22 q^{71} + q^{73} + 44 q^{77} - 16 q^{79} - 17 q^{83} - 5 q^{85} + 3 q^{89} + 5 q^{91} + 64 q^{95} - 14 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-\nu^{5} + \nu^{4} - 5 \nu^{3} - \nu^{2} + 3 \nu - 6$$$$)/3$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{5} + \nu^{4} - 8 \nu^{3} + 8 \nu^{2} - 21 \nu + 12$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{5} + 4 \nu^{4} - 11 \nu^{3} + 20 \nu^{2} - 15 \nu + 9$$$$)/3$$ $$\beta_{4}$$ $$=$$ $$($$$$-2 \nu^{5} + 5 \nu^{4} - 16 \nu^{3} + 19 \nu^{2} - 21 \nu + 6$$$$)/3$$ $$\beta_{5}$$ $$=$$ $$($$$$\nu^{5} - 4 \nu^{4} + 14 \nu^{3} - 20 \nu^{2} + 30 \nu - 9$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$-\beta_{4} + \beta_{3} + \beta_{1} + 1$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{5} - \beta_{4} + 2 \beta_{3} + \beta_{2} - 5$$$$)/3$$ $$\nu^{3}$$ $$=$$ $$($$$$3 \beta_{5} + 5 \beta_{4} - 2 \beta_{3} - 5 \beta_{1} - 5$$$$)/3$$ $$\nu^{4}$$ $$=$$ $$($$$$-\beta_{5} + 11 \beta_{4} - 9 \beta_{3} - 7 \beta_{2} - 7 \beta_{1} + 16$$$$)/3$$ $$\nu^{5}$$ $$=$$ $$($$$$-17 \beta_{5} - 16 \beta_{4} + 2 \beta_{3} - 8 \beta_{2} + 12 \beta_{1} + 31$$$$)/3$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1541$$ $$\chi(n)$$ $$-1 - \beta_{4}$$ $$1$$ $$-1 - \beta_{4}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
865.1
 0.5 − 0.224437i 0.5 − 2.05195i 0.5 + 1.41036i 0.5 + 0.224437i 0.5 + 2.05195i 0.5 − 1.41036i
0 0 0 −2.14400 + 3.71351i 0 1.23855 + 2.33795i 0 0 0
865.2 0 0 0 0.433463 0.750780i 0 2.32383 1.26483i 0 0 0
865.3 0 0 0 1.21053 2.09671i 0 −2.56238 + 0.658939i 0 0 0
2053.1 0 0 0 −2.14400 3.71351i 0 1.23855 2.33795i 0 0 0
2053.2 0 0 0 0.433463 + 0.750780i 0 2.32383 + 1.26483i 0 0 0
2053.3 0 0 0 1.21053 + 2.09671i 0 −2.56238 0.658939i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2053.3 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.i.j 6
3.b odd 2 1 2268.2.i.k 6
7.c even 3 1 2268.2.l.k 6
9.c even 3 1 756.2.k.e 6
9.c even 3 1 2268.2.l.k 6
9.d odd 6 1 756.2.k.f yes 6
9.d odd 6 1 2268.2.l.j 6
21.h odd 6 1 2268.2.l.j 6
63.g even 3 1 756.2.k.e 6
63.h even 3 1 inner 2268.2.i.j 6
63.h even 3 1 5292.2.a.x 3
63.i even 6 1 5292.2.a.w 3
63.j odd 6 1 2268.2.i.k 6
63.j odd 6 1 5292.2.a.u 3
63.n odd 6 1 756.2.k.f yes 6
63.t odd 6 1 5292.2.a.v 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.k.e 6 9.c even 3 1
756.2.k.e 6 63.g even 3 1
756.2.k.f yes 6 9.d odd 6 1
756.2.k.f yes 6 63.n odd 6 1
2268.2.i.j 6 1.a even 1 1 trivial
2268.2.i.j 6 63.h even 3 1 inner
2268.2.i.k 6 3.b odd 2 1
2268.2.i.k 6 63.j odd 6 1
2268.2.l.j 6 9.d odd 6 1
2268.2.l.j 6 21.h odd 6 1
2268.2.l.k 6 7.c even 3 1
2268.2.l.k 6 9.c even 3 1
5292.2.a.u 3 63.j odd 6 1
5292.2.a.v 3 63.t odd 6 1
5292.2.a.w 3 63.i even 6 1
5292.2.a.x 3 63.h even 3 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2268, [\chi])$$:

 $$T_{5}^{6} + T_{5}^{5} + 13 T_{5}^{4} - 30 T_{5}^{3} + 135 T_{5}^{2} - 108 T_{5} + 81$$ $$T_{13}^{6} - 2 T_{13}^{5} + 15 T_{13}^{4} - 20 T_{13}^{3} + 163 T_{13}^{2} - 231 T_{13} + 441$$ $$T_{19}^{6} + 3 T_{19}^{5} + 45 T_{19}^{4} - 10 T_{19}^{3} + 1443 T_{19}^{2} + 1764 T_{19} + 2401$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6}$$
$3$ $$T^{6}$$
$5$ $$81 - 108 T + 135 T^{2} - 30 T^{3} + 13 T^{4} + T^{5} + T^{6}$$
$7$ $$343 - 98 T - 28 T^{2} + 31 T^{3} - 4 T^{4} - 2 T^{5} + T^{6}$$
$11$ $$3969 + 756 T + 459 T^{2} + 66 T^{3} + 37 T^{4} + 5 T^{5} + T^{6}$$
$13$ $$441 - 231 T + 163 T^{2} - 20 T^{3} + 15 T^{4} - 2 T^{5} + T^{6}$$
$17$ $$81 + 135 T + 189 T^{2} + 78 T^{3} + 31 T^{4} - 4 T^{5} + T^{6}$$
$19$ $$2401 + 1764 T + 1443 T^{2} - 10 T^{3} + 45 T^{4} + 3 T^{5} + T^{6}$$
$23$ $$3969 - 2457 T + 2403 T^{2} + 672 T^{3} + 157 T^{4} + 14 T^{5} + T^{6}$$
$29$ $$3969 - 756 T + 459 T^{2} - 66 T^{3} + 37 T^{4} - 5 T^{5} + T^{6}$$
$31$ $$( -21 - 11 T + 2 T^{2} + T^{3} )^{2}$$
$37$ $$18769 - 7809 T + 3249 T^{2} - 274 T^{3} + 57 T^{4} + T^{6}$$
$41$ $$6561 - 729 T + 1053 T^{2} + 270 T^{3} + 135 T^{4} + 12 T^{5} + T^{6}$$
$43$ $$78961 - 8430 T + 3429 T^{2} - 292 T^{3} + 111 T^{4} - 9 T^{5} + T^{6}$$
$47$ $$( -243 - 54 T + 9 T^{2} + T^{3} )^{2}$$
$53$ $$321489 + 56133 T + 13203 T^{2} + 540 T^{3} + 135 T^{4} + 6 T^{5} + T^{6}$$
$59$ $$( -81 - 18 T + 5 T^{2} + T^{3} )^{2}$$
$61$ $$( 567 - 89 T - 7 T^{2} + T^{3} )^{2}$$
$67$ $$( 53 + 59 T + 16 T^{2} + T^{3} )^{2}$$
$71$ $$( 189 - 72 T - 11 T^{2} + T^{3} )^{2}$$
$73$ $$25921 + 13202 T + 6563 T^{2} + 404 T^{3} + 83 T^{4} - T^{5} + T^{6}$$
$79$ $$( -873 - 155 T + 8 T^{2} + T^{3} )^{2}$$
$83$ $$9801 + 8316 T + 5373 T^{2} + 1230 T^{3} + 205 T^{4} + 17 T^{5} + T^{6}$$
$89$ $$1750329 - 297675 T + 54594 T^{2} - 1971 T^{3} + 234 T^{4} - 3 T^{5} + T^{6}$$
$97$ $$3136 + 2240 T + 2384 T^{2} - 448 T^{3} + 236 T^{4} + 14 T^{5} + T^{6}$$