Properties

Label 2268.2.i.h
Level $2268$
Weight $2$
Character orbit 2268.i
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(865,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.865"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,3,0,-1,0,0,0,-3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \zeta_{6} + 3) q^{5} + ( - 3 \zeta_{6} + 1) q^{7} - 3 \zeta_{6} q^{11} - 2 \zeta_{6} q^{13} + ( - 3 \zeta_{6} + 3) q^{17} + \zeta_{6} q^{19} + ( - 3 \zeta_{6} + 3) q^{23} - 4 \zeta_{6} q^{25} + \cdots + ( - 10 \zeta_{6} + 10) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - q^{7} - 3 q^{11} - 2 q^{13} + 3 q^{17} + q^{19} + 3 q^{23} - 4 q^{25} - 6 q^{29} - 14 q^{31} - 15 q^{35} + q^{37} + 6 q^{41} + 4 q^{43} + 18 q^{47} - 13 q^{49} + 3 q^{53} - 18 q^{55}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.50000 2.59808i 0 −0.500000 2.59808i 0 0 0
2053.1 0 0 0 1.50000 + 2.59808i 0 −0.500000 + 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.i.h 2
3.b odd 2 1 2268.2.i.a 2
7.c even 3 1 2268.2.l.a 2
9.c even 3 1 252.2.k.c 2
9.c even 3 1 2268.2.l.a 2
9.d odd 6 1 28.2.e.a 2
9.d odd 6 1 2268.2.l.h 2
21.h odd 6 1 2268.2.l.h 2
36.f odd 6 1 1008.2.s.p 2
36.h even 6 1 112.2.i.b 2
45.h odd 6 1 700.2.i.c 2
45.l even 12 2 700.2.r.b 4
63.g even 3 1 252.2.k.c 2
63.h even 3 1 1764.2.a.a 1
63.h even 3 1 inner 2268.2.i.h 2
63.i even 6 1 196.2.a.a 1
63.j odd 6 1 196.2.a.b 1
63.j odd 6 1 2268.2.i.a 2
63.k odd 6 1 1764.2.k.b 2
63.l odd 6 1 1764.2.k.b 2
63.n odd 6 1 28.2.e.a 2
63.o even 6 1 196.2.e.a 2
63.s even 6 1 196.2.e.a 2
63.t odd 6 1 1764.2.a.j 1
72.j odd 6 1 448.2.i.e 2
72.l even 6 1 448.2.i.c 2
252.o even 6 1 112.2.i.b 2
252.r odd 6 1 784.2.a.g 1
252.s odd 6 1 784.2.i.d 2
252.u odd 6 1 7056.2.a.f 1
252.bb even 6 1 784.2.a.d 1
252.bj even 6 1 7056.2.a.bw 1
252.bl odd 6 1 1008.2.s.p 2
252.bn odd 6 1 784.2.i.d 2
315.v odd 6 1 700.2.i.c 2
315.bq even 6 1 4900.2.a.n 1
315.br odd 6 1 4900.2.a.g 1
315.bu odd 12 2 4900.2.e.h 2
315.bv even 12 2 4900.2.e.i 2
315.bx even 12 2 700.2.r.b 4
504.bi odd 6 1 3136.2.a.h 1
504.bt even 6 1 3136.2.a.s 1
504.ca even 6 1 3136.2.a.v 1
504.cm odd 6 1 3136.2.a.k 1
504.cy even 6 1 448.2.i.c 2
504.db odd 6 1 448.2.i.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.2.e.a 2 9.d odd 6 1
28.2.e.a 2 63.n odd 6 1
112.2.i.b 2 36.h even 6 1
112.2.i.b 2 252.o even 6 1
196.2.a.a 1 63.i even 6 1
196.2.a.b 1 63.j odd 6 1
196.2.e.a 2 63.o even 6 1
196.2.e.a 2 63.s even 6 1
252.2.k.c 2 9.c even 3 1
252.2.k.c 2 63.g even 3 1
448.2.i.c 2 72.l even 6 1
448.2.i.c 2 504.cy even 6 1
448.2.i.e 2 72.j odd 6 1
448.2.i.e 2 504.db odd 6 1
700.2.i.c 2 45.h odd 6 1
700.2.i.c 2 315.v odd 6 1
700.2.r.b 4 45.l even 12 2
700.2.r.b 4 315.bx even 12 2
784.2.a.d 1 252.bb even 6 1
784.2.a.g 1 252.r odd 6 1
784.2.i.d 2 252.s odd 6 1
784.2.i.d 2 252.bn odd 6 1
1008.2.s.p 2 36.f odd 6 1
1008.2.s.p 2 252.bl odd 6 1
1764.2.a.a 1 63.h even 3 1
1764.2.a.j 1 63.t odd 6 1
1764.2.k.b 2 63.k odd 6 1
1764.2.k.b 2 63.l odd 6 1
2268.2.i.a 2 3.b odd 2 1
2268.2.i.a 2 63.j odd 6 1
2268.2.i.h 2 1.a even 1 1 trivial
2268.2.i.h 2 63.h even 3 1 inner
2268.2.l.a 2 7.c even 3 1
2268.2.l.a 2 9.c even 3 1
2268.2.l.h 2 9.d odd 6 1
2268.2.l.h 2 21.h odd 6 1
3136.2.a.h 1 504.bi odd 6 1
3136.2.a.k 1 504.cm odd 6 1
3136.2.a.s 1 504.bt even 6 1
3136.2.a.v 1 504.ca even 6 1
4900.2.a.g 1 315.br odd 6 1
4900.2.a.n 1 315.bq even 6 1
4900.2.e.h 2 315.bu odd 12 2
4900.2.e.i 2 315.bv even 12 2
7056.2.a.f 1 252.u odd 6 1
7056.2.a.bw 1 252.bj even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2268, [\chi])\):

\( T_{5}^{2} - 3T_{5} + 9 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} + 4 \) Copy content Toggle raw display
\( T_{19}^{2} - T_{19} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$31$ \( (T + 7)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$47$ \( (T - 9)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$59$ \( (T + 9)^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T + 7)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$79$ \( (T + 13)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
show more
show less