Properties

 Label 2268.2.i.e Level $2268$ Weight $2$ Character orbit 2268.i Analytic conductor $18.110$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2268 = 2^{2} \cdot 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2268.i (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$18.1100711784$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 756) Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - 3 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + ( 1 - 3 \zeta_{6} ) q^{7} + 7 \zeta_{6} q^{13} -8 \zeta_{6} q^{19} + 5 \zeta_{6} q^{25} + 11 q^{31} + \zeta_{6} q^{37} + ( 13 - 13 \zeta_{6} ) q^{43} + ( -8 + 3 \zeta_{6} ) q^{49} - q^{61} + 11 q^{67} + ( 10 - 10 \zeta_{6} ) q^{73} -13 q^{79} + ( 21 - 14 \zeta_{6} ) q^{91} + ( 19 - 19 \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{7} + O(q^{10})$$ $$2 q - q^{7} + 7 q^{13} - 8 q^{19} + 5 q^{25} + 22 q^{31} + q^{37} + 13 q^{43} - 13 q^{49} - 2 q^{61} + 22 q^{67} + 10 q^{73} - 26 q^{79} + 28 q^{91} + 19 q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1541$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$ $$-\zeta_{6}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
865.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 0 0 −0.500000 2.59808i 0 0 0
2053.1 0 0 0 0 0 −0.500000 + 2.59808i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
63.h even 3 1 inner
63.j odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.i.e 2
3.b odd 2 1 CM 2268.2.i.e 2
7.c even 3 1 2268.2.l.f 2
9.c even 3 1 756.2.k.a 2
9.c even 3 1 2268.2.l.f 2
9.d odd 6 1 756.2.k.a 2
9.d odd 6 1 2268.2.l.f 2
21.h odd 6 1 2268.2.l.f 2
63.g even 3 1 756.2.k.a 2
63.h even 3 1 inner 2268.2.i.e 2
63.h even 3 1 5292.2.a.d 1
63.i even 6 1 5292.2.a.i 1
63.j odd 6 1 inner 2268.2.i.e 2
63.j odd 6 1 5292.2.a.d 1
63.n odd 6 1 756.2.k.a 2
63.t odd 6 1 5292.2.a.i 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.k.a 2 9.c even 3 1
756.2.k.a 2 9.d odd 6 1
756.2.k.a 2 63.g even 3 1
756.2.k.a 2 63.n odd 6 1
2268.2.i.e 2 1.a even 1 1 trivial
2268.2.i.e 2 3.b odd 2 1 CM
2268.2.i.e 2 63.h even 3 1 inner
2268.2.i.e 2 63.j odd 6 1 inner
2268.2.l.f 2 7.c even 3 1
2268.2.l.f 2 9.c even 3 1
2268.2.l.f 2 9.d odd 6 1
2268.2.l.f 2 21.h odd 6 1
5292.2.a.d 1 63.h even 3 1
5292.2.a.d 1 63.j odd 6 1
5292.2.a.i 1 63.i even 6 1
5292.2.a.i 1 63.t odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2268, [\chi])$$:

 $$T_{5}$$ $$T_{13}^{2} - 7 T_{13} + 49$$ $$T_{19}^{2} + 8 T_{19} + 64$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 + T + T^{2}$$
$11$ $$T^{2}$$
$13$ $$49 - 7 T + T^{2}$$
$17$ $$T^{2}$$
$19$ $$64 + 8 T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$( -11 + T )^{2}$$
$37$ $$1 - T + T^{2}$$
$41$ $$T^{2}$$
$43$ $$169 - 13 T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$( 1 + T )^{2}$$
$67$ $$( -11 + T )^{2}$$
$71$ $$T^{2}$$
$73$ $$100 - 10 T + T^{2}$$
$79$ $$( 13 + T )^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$361 - 19 T + T^{2}$$