Properties

Label 2268.1.p.b
Level $2268$
Weight $1$
Character orbit 2268.p
Analytic conductor $1.132$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2268.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.13187944865\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 252)
Projective image \(D_{6}\)
Projective field Galois closure of 6.2.7260624.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{7} +O(q^{10})\) \( q + \zeta_{6} q^{7} + ( 1 - \zeta_{6}^{2} ) q^{13} + ( -1 - \zeta_{6} ) q^{19} + q^{25} + ( 1 + \zeta_{6} ) q^{31} + \zeta_{6}^{2} q^{37} + \zeta_{6}^{2} q^{43} + \zeta_{6}^{2} q^{49} -\zeta_{6}^{2} q^{67} + ( 1 - \zeta_{6}^{2} ) q^{73} + \zeta_{6} q^{79} + ( 1 + \zeta_{6} ) q^{91} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{7} + O(q^{10}) \) \( 2q + q^{7} + 3q^{13} - 3q^{19} + 2q^{25} + 3q^{31} - q^{37} - q^{43} - q^{49} + q^{67} + 3q^{73} + q^{79} + 3q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(-\zeta_{6}^{2}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1081.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 0.500000 0.866025i 0 0 0
2161.1 0 0 0 0 0 0.500000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
63.k odd 6 1 inner
63.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.1.p.b 2
3.b odd 2 1 CM 2268.1.p.b 2
7.d odd 6 1 2268.1.bd.a 2
9.c even 3 1 252.1.z.a 2
9.c even 3 1 2268.1.bd.a 2
9.d odd 6 1 252.1.z.a 2
9.d odd 6 1 2268.1.bd.a 2
21.g even 6 1 2268.1.bd.a 2
36.f odd 6 1 1008.1.cg.a 2
36.h even 6 1 1008.1.cg.a 2
63.g even 3 1 1764.1.d.a 2
63.h even 3 1 1764.1.z.a 2
63.i even 6 1 252.1.z.a 2
63.j odd 6 1 1764.1.z.a 2
63.k odd 6 1 1764.1.d.a 2
63.k odd 6 1 inner 2268.1.p.b 2
63.l odd 6 1 1764.1.z.a 2
63.n odd 6 1 1764.1.d.a 2
63.o even 6 1 1764.1.z.a 2
63.s even 6 1 1764.1.d.a 2
63.s even 6 1 inner 2268.1.p.b 2
63.t odd 6 1 252.1.z.a 2
252.r odd 6 1 1008.1.cg.a 2
252.bj even 6 1 1008.1.cg.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.1.z.a 2 9.c even 3 1
252.1.z.a 2 9.d odd 6 1
252.1.z.a 2 63.i even 6 1
252.1.z.a 2 63.t odd 6 1
1008.1.cg.a 2 36.f odd 6 1
1008.1.cg.a 2 36.h even 6 1
1008.1.cg.a 2 252.r odd 6 1
1008.1.cg.a 2 252.bj even 6 1
1764.1.d.a 2 63.g even 3 1
1764.1.d.a 2 63.k odd 6 1
1764.1.d.a 2 63.n odd 6 1
1764.1.d.a 2 63.s even 6 1
1764.1.z.a 2 63.h even 3 1
1764.1.z.a 2 63.j odd 6 1
1764.1.z.a 2 63.l odd 6 1
1764.1.z.a 2 63.o even 6 1
2268.1.p.b 2 1.a even 1 1 trivial
2268.1.p.b 2 3.b odd 2 1 CM
2268.1.p.b 2 63.k odd 6 1 inner
2268.1.p.b 2 63.s even 6 1 inner
2268.1.bd.a 2 7.d odd 6 1
2268.1.bd.a 2 9.c even 3 1
2268.1.bd.a 2 9.d odd 6 1
2268.1.bd.a 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{2} - 3 T_{13} + 3 \) acting on \(S_{1}^{\mathrm{new}}(2268, [\chi])\).