Properties

Label 2268.1.bk
Level $2268$
Weight $1$
Character orbit 2268.bk
Rep. character $\chi_{2268}(485,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2268.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2268, [\chi])\).

Total New Old
Modular forms 96 0 96
Cusp forms 24 0 24
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2268, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)