Properties

Label 2268.1.bh.a
Level $2268$
Weight $1$
Character orbit 2268.bh
Analytic conductor $1.132$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2268.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.13187944865\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 756)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.5292.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.15431472.5

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6}^{2} q^{7} +O(q^{10})\) \( q + \zeta_{6}^{2} q^{7} + 2 \zeta_{6}^{2} q^{13} -\zeta_{6}^{2} q^{19} + \zeta_{6}^{2} q^{25} - q^{31} + 2 \zeta_{6}^{2} q^{37} + \zeta_{6} q^{43} -\zeta_{6} q^{49} - q^{61} + 2 q^{67} + \zeta_{6} q^{73} + 2 q^{79} -2 \zeta_{6} q^{91} + \zeta_{6} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{7} + O(q^{10}) \) \( 2q - q^{7} - 2q^{13} + q^{19} - q^{25} - 2q^{31} - 2q^{37} + q^{43} - q^{49} - 2q^{61} + 4q^{67} + q^{73} + 4q^{79} - 2q^{91} + q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(\zeta_{6}^{2}\) \(1\) \(-\zeta_{6}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1565.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 −0.500000 0.866025i 0 0 0
1997.1 0 0 0 0 0 −0.500000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
63.h even 3 1 inner
63.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.1.bh.a 2
3.b odd 2 1 CM 2268.1.bh.a 2
7.c even 3 1 2268.1.m.b 2
9.c even 3 1 756.1.bk.a 2
9.c even 3 1 2268.1.m.b 2
9.d odd 6 1 756.1.bk.a 2
9.d odd 6 1 2268.1.m.b 2
21.h odd 6 1 2268.1.m.b 2
36.f odd 6 1 3024.1.dc.b 2
36.h even 6 1 3024.1.dc.b 2
63.g even 3 1 756.1.bk.a 2
63.h even 3 1 inner 2268.1.bh.a 2
63.j odd 6 1 inner 2268.1.bh.a 2
63.n odd 6 1 756.1.bk.a 2
252.o even 6 1 3024.1.dc.b 2
252.bl odd 6 1 3024.1.dc.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.1.bk.a 2 9.c even 3 1
756.1.bk.a 2 9.d odd 6 1
756.1.bk.a 2 63.g even 3 1
756.1.bk.a 2 63.n odd 6 1
2268.1.m.b 2 7.c even 3 1
2268.1.m.b 2 9.c even 3 1
2268.1.m.b 2 9.d odd 6 1
2268.1.m.b 2 21.h odd 6 1
2268.1.bh.a 2 1.a even 1 1 trivial
2268.1.bh.a 2 3.b odd 2 1 CM
2268.1.bh.a 2 63.h even 3 1 inner
2268.1.bh.a 2 63.j odd 6 1 inner
3024.1.dc.b 2 36.f odd 6 1
3024.1.dc.b 2 36.h even 6 1
3024.1.dc.b 2 252.o even 6 1
3024.1.dc.b 2 252.bl odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{2} + 2 T_{13} + 4 \) acting on \(S_{1}^{\mathrm{new}}(2268, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 4 + 2 T + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 1 - T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( ( 1 + T )^{2} \)
$37$ \( 4 + 2 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 1 - T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( 1 + T )^{2} \)
$67$ \( ( -2 + T )^{2} \)
$71$ \( T^{2} \)
$73$ \( 1 - T + T^{2} \)
$79$ \( ( -2 + T )^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 1 - T + T^{2} \)
show more
show less