Properties

Label 226.2.a.d.1.3
Level $226$
Weight $2$
Character 226.1
Self dual yes
Analytic conductor $1.805$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [226,2,Mod(1,226)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("226.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(226, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 226 = 2 \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 226.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.80461908568\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.28408 q^{3} +1.00000 q^{4} +0.273457 q^{5} +1.28408 q^{6} +1.23607 q^{7} +1.00000 q^{8} -1.35114 q^{9} +0.273457 q^{10} -2.35114 q^{11} +1.28408 q^{12} -5.04029 q^{13} +1.23607 q^{14} +0.351141 q^{15} +1.00000 q^{16} +4.47214 q^{17} -1.35114 q^{18} +3.75621 q^{19} +0.273457 q^{20} +1.58721 q^{21} -2.35114 q^{22} -1.32739 q^{23} +1.28408 q^{24} -4.92522 q^{25} -5.04029 q^{26} -5.58721 q^{27} +1.23607 q^{28} +5.31375 q^{29} +0.351141 q^{30} -6.82328 q^{31} +1.00000 q^{32} -3.01905 q^{33} +4.47214 q^{34} +0.338012 q^{35} -1.35114 q^{36} +1.86067 q^{37} +3.75621 q^{38} -6.47214 q^{39} +0.273457 q^{40} +1.10194 q^{41} +1.58721 q^{42} +5.43945 q^{43} -2.35114 q^{44} -0.369480 q^{45} -1.32739 q^{46} -6.02967 q^{47} +1.28408 q^{48} -5.47214 q^{49} -4.92522 q^{50} +5.74258 q^{51} -5.04029 q^{52} +8.49338 q^{53} -5.58721 q^{54} -0.642937 q^{55} +1.23607 q^{56} +4.82328 q^{57} +5.31375 q^{58} +0.243785 q^{59} +0.351141 q^{60} -6.85765 q^{61} -6.82328 q^{62} -1.67010 q^{63} +1.00000 q^{64} -1.37831 q^{65} -3.01905 q^{66} -5.28408 q^{67} +4.47214 q^{68} -1.70447 q^{69} +0.338012 q^{70} +1.08540 q^{71} -1.35114 q^{72} +13.7638 q^{73} +1.86067 q^{74} -6.32437 q^{75} +3.75621 q^{76} -2.90617 q^{77} -6.47214 q^{78} -5.03186 q^{79} +0.273457 q^{80} -3.12099 q^{81} +1.10194 q^{82} -0.919299 q^{83} +1.58721 q^{84} +1.22294 q^{85} +5.43945 q^{86} +6.82328 q^{87} -2.35114 q^{88} +14.0000 q^{89} -0.369480 q^{90} -6.23015 q^{91} -1.32739 q^{92} -8.76163 q^{93} -6.02967 q^{94} +1.02717 q^{95} +1.28408 q^{96} +13.2917 q^{97} -5.47214 q^{98} +3.17672 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 4 q^{5} + 2 q^{6} - 4 q^{7} + 4 q^{8} + 4 q^{9} + 4 q^{10} + 2 q^{12} + 4 q^{13} - 4 q^{14} - 8 q^{15} + 4 q^{16} + 4 q^{18} - 6 q^{19} + 4 q^{20} - 12 q^{21} - 6 q^{23}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.28408 0.741363 0.370682 0.928760i \(-0.379124\pi\)
0.370682 + 0.928760i \(0.379124\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.273457 0.122294 0.0611469 0.998129i \(-0.480524\pi\)
0.0611469 + 0.998129i \(0.480524\pi\)
\(6\) 1.28408 0.524223
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.35114 −0.450380
\(10\) 0.273457 0.0864748
\(11\) −2.35114 −0.708896 −0.354448 0.935076i \(-0.615331\pi\)
−0.354448 + 0.935076i \(0.615331\pi\)
\(12\) 1.28408 0.370682
\(13\) −5.04029 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(14\) 1.23607 0.330353
\(15\) 0.351141 0.0906642
\(16\) 1.00000 0.250000
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) −1.35114 −0.318467
\(19\) 3.75621 0.861735 0.430867 0.902415i \(-0.358208\pi\)
0.430867 + 0.902415i \(0.358208\pi\)
\(20\) 0.273457 0.0611469
\(21\) 1.58721 0.346357
\(22\) −2.35114 −0.501265
\(23\) −1.32739 −0.276780 −0.138390 0.990378i \(-0.544193\pi\)
−0.138390 + 0.990378i \(0.544193\pi\)
\(24\) 1.28408 0.262112
\(25\) −4.92522 −0.985044
\(26\) −5.04029 −0.988483
\(27\) −5.58721 −1.07526
\(28\) 1.23607 0.233595
\(29\) 5.31375 0.986739 0.493369 0.869820i \(-0.335765\pi\)
0.493369 + 0.869820i \(0.335765\pi\)
\(30\) 0.351141 0.0641093
\(31\) −6.82328 −1.22550 −0.612748 0.790278i \(-0.709936\pi\)
−0.612748 + 0.790278i \(0.709936\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.01905 −0.525549
\(34\) 4.47214 0.766965
\(35\) 0.338012 0.0571345
\(36\) −1.35114 −0.225190
\(37\) 1.86067 0.305892 0.152946 0.988235i \(-0.451124\pi\)
0.152946 + 0.988235i \(0.451124\pi\)
\(38\) 3.75621 0.609339
\(39\) −6.47214 −1.03637
\(40\) 0.273457 0.0432374
\(41\) 1.10194 0.172095 0.0860474 0.996291i \(-0.472576\pi\)
0.0860474 + 0.996291i \(0.472576\pi\)
\(42\) 1.58721 0.244912
\(43\) 5.43945 0.829508 0.414754 0.909934i \(-0.363868\pi\)
0.414754 + 0.909934i \(0.363868\pi\)
\(44\) −2.35114 −0.354448
\(45\) −0.369480 −0.0550788
\(46\) −1.32739 −0.195713
\(47\) −6.02967 −0.879518 −0.439759 0.898116i \(-0.644936\pi\)
−0.439759 + 0.898116i \(0.644936\pi\)
\(48\) 1.28408 0.185341
\(49\) −5.47214 −0.781734
\(50\) −4.92522 −0.696531
\(51\) 5.74258 0.804121
\(52\) −5.04029 −0.698963
\(53\) 8.49338 1.16666 0.583328 0.812237i \(-0.301750\pi\)
0.583328 + 0.812237i \(0.301750\pi\)
\(54\) −5.58721 −0.760323
\(55\) −0.642937 −0.0866936
\(56\) 1.23607 0.165177
\(57\) 4.82328 0.638859
\(58\) 5.31375 0.697730
\(59\) 0.243785 0.0317381 0.0158691 0.999874i \(-0.494949\pi\)
0.0158691 + 0.999874i \(0.494949\pi\)
\(60\) 0.351141 0.0453321
\(61\) −6.85765 −0.878032 −0.439016 0.898479i \(-0.644673\pi\)
−0.439016 + 0.898479i \(0.644673\pi\)
\(62\) −6.82328 −0.866557
\(63\) −1.67010 −0.210413
\(64\) 1.00000 0.125000
\(65\) −1.37831 −0.170958
\(66\) −3.01905 −0.371619
\(67\) −5.28408 −0.645553 −0.322777 0.946475i \(-0.604616\pi\)
−0.322777 + 0.946475i \(0.604616\pi\)
\(68\) 4.47214 0.542326
\(69\) −1.70447 −0.205195
\(70\) 0.338012 0.0404002
\(71\) 1.08540 0.128813 0.0644067 0.997924i \(-0.479485\pi\)
0.0644067 + 0.997924i \(0.479485\pi\)
\(72\) −1.35114 −0.159233
\(73\) 13.7638 1.61093 0.805467 0.592641i \(-0.201915\pi\)
0.805467 + 0.592641i \(0.201915\pi\)
\(74\) 1.86067 0.216298
\(75\) −6.32437 −0.730276
\(76\) 3.75621 0.430867
\(77\) −2.90617 −0.331189
\(78\) −6.47214 −0.732825
\(79\) −5.03186 −0.566129 −0.283065 0.959101i \(-0.591351\pi\)
−0.283065 + 0.959101i \(0.591351\pi\)
\(80\) 0.273457 0.0305735
\(81\) −3.12099 −0.346777
\(82\) 1.10194 0.121689
\(83\) −0.919299 −0.100906 −0.0504531 0.998726i \(-0.516067\pi\)
−0.0504531 + 0.998726i \(0.516067\pi\)
\(84\) 1.58721 0.173179
\(85\) 1.22294 0.132646
\(86\) 5.43945 0.586551
\(87\) 6.82328 0.731532
\(88\) −2.35114 −0.250632
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) −0.369480 −0.0389466
\(91\) −6.23015 −0.653097
\(92\) −1.32739 −0.138390
\(93\) −8.76163 −0.908538
\(94\) −6.02967 −0.621913
\(95\) 1.02717 0.105385
\(96\) 1.28408 0.131056
\(97\) 13.2917 1.34957 0.674783 0.738016i \(-0.264237\pi\)
0.674783 + 0.738016i \(0.264237\pi\)
\(98\) −5.47214 −0.552769
\(99\) 3.17672 0.319273
\(100\) −4.92522 −0.492522
\(101\) 13.1311 1.30659 0.653297 0.757102i \(-0.273385\pi\)
0.653297 + 0.757102i \(0.273385\pi\)
\(102\) 5.74258 0.568600
\(103\) 10.3404 1.01887 0.509435 0.860509i \(-0.329854\pi\)
0.509435 + 0.860509i \(0.329854\pi\)
\(104\) −5.04029 −0.494241
\(105\) 0.434034 0.0423574
\(106\) 8.49338 0.824950
\(107\) −5.43945 −0.525851 −0.262926 0.964816i \(-0.584687\pi\)
−0.262926 + 0.964816i \(0.584687\pi\)
\(108\) −5.58721 −0.537629
\(109\) 2.02124 0.193600 0.0968000 0.995304i \(-0.469139\pi\)
0.0968000 + 0.995304i \(0.469139\pi\)
\(110\) −0.642937 −0.0613016
\(111\) 2.38924 0.226777
\(112\) 1.23607 0.116797
\(113\) −1.00000 −0.0940721
\(114\) 4.82328 0.451741
\(115\) −0.362985 −0.0338485
\(116\) 5.31375 0.493369
\(117\) 6.81015 0.629598
\(118\) 0.243785 0.0224422
\(119\) 5.52786 0.506738
\(120\) 0.351141 0.0320546
\(121\) −5.47214 −0.497467
\(122\) −6.85765 −0.620862
\(123\) 1.41498 0.127585
\(124\) −6.82328 −0.612748
\(125\) −2.71413 −0.242759
\(126\) −1.67010 −0.148785
\(127\) −21.5468 −1.91197 −0.955985 0.293416i \(-0.905208\pi\)
−0.955985 + 0.293416i \(0.905208\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.98468 0.614967
\(130\) −1.37831 −0.120885
\(131\) 18.4449 1.61153 0.805767 0.592232i \(-0.201753\pi\)
0.805767 + 0.592232i \(0.201753\pi\)
\(132\) −3.01905 −0.262775
\(133\) 4.64294 0.402594
\(134\) −5.28408 −0.456475
\(135\) −1.52786 −0.131498
\(136\) 4.47214 0.383482
\(137\) 13.2169 1.12920 0.564598 0.825366i \(-0.309031\pi\)
0.564598 + 0.825366i \(0.309031\pi\)
\(138\) −1.70447 −0.145094
\(139\) −0.313039 −0.0265516 −0.0132758 0.999912i \(-0.504226\pi\)
−0.0132758 + 0.999912i \(0.504226\pi\)
\(140\) 0.338012 0.0285672
\(141\) −7.74258 −0.652043
\(142\) 1.08540 0.0910848
\(143\) 11.8504 0.990984
\(144\) −1.35114 −0.112595
\(145\) 1.45309 0.120672
\(146\) 13.7638 1.13910
\(147\) −7.02666 −0.579549
\(148\) 1.86067 0.152946
\(149\) 12.5850 1.03100 0.515502 0.856888i \(-0.327605\pi\)
0.515502 + 0.856888i \(0.327605\pi\)
\(150\) −6.32437 −0.516383
\(151\) −8.44246 −0.687038 −0.343519 0.939146i \(-0.611619\pi\)
−0.343519 + 0.939146i \(0.611619\pi\)
\(152\) 3.75621 0.304669
\(153\) −6.04249 −0.488506
\(154\) −2.90617 −0.234186
\(155\) −1.86588 −0.149871
\(156\) −6.47214 −0.518186
\(157\) −0.997808 −0.0796337 −0.0398169 0.999207i \(-0.512677\pi\)
−0.0398169 + 0.999207i \(0.512677\pi\)
\(158\) −5.03186 −0.400314
\(159\) 10.9062 0.864916
\(160\) 0.273457 0.0216187
\(161\) −1.64074 −0.129309
\(162\) −3.12099 −0.245209
\(163\) 3.90398 0.305783 0.152892 0.988243i \(-0.451141\pi\)
0.152892 + 0.988243i \(0.451141\pi\)
\(164\) 1.10194 0.0860474
\(165\) −0.825582 −0.0642715
\(166\) −0.919299 −0.0713514
\(167\) −14.2275 −1.10096 −0.550480 0.834849i \(-0.685555\pi\)
−0.550480 + 0.834849i \(0.685555\pi\)
\(168\) 1.58721 0.122456
\(169\) 12.4046 0.954197
\(170\) 1.22294 0.0937951
\(171\) −5.07518 −0.388108
\(172\) 5.43945 0.414754
\(173\) 0.884927 0.0672798 0.0336399 0.999434i \(-0.489290\pi\)
0.0336399 + 0.999434i \(0.489290\pi\)
\(174\) 6.82328 0.517271
\(175\) −6.08791 −0.460203
\(176\) −2.35114 −0.177224
\(177\) 0.313039 0.0235295
\(178\) 14.0000 1.04934
\(179\) 15.7027 1.17367 0.586837 0.809705i \(-0.300373\pi\)
0.586837 + 0.809705i \(0.300373\pi\)
\(180\) −0.369480 −0.0275394
\(181\) −10.4501 −0.776747 −0.388374 0.921502i \(-0.626963\pi\)
−0.388374 + 0.921502i \(0.626963\pi\)
\(182\) −6.23015 −0.461809
\(183\) −8.80576 −0.650941
\(184\) −1.32739 −0.0978565
\(185\) 0.508813 0.0374087
\(186\) −8.76163 −0.642434
\(187\) −10.5146 −0.768905
\(188\) −6.02967 −0.439759
\(189\) −6.90617 −0.502350
\(190\) 1.02717 0.0745184
\(191\) −14.9833 −1.08416 −0.542078 0.840328i \(-0.682362\pi\)
−0.542078 + 0.840328i \(0.682362\pi\)
\(192\) 1.28408 0.0926704
\(193\) 3.49119 0.251301 0.125651 0.992075i \(-0.459898\pi\)
0.125651 + 0.992075i \(0.459898\pi\)
\(194\) 13.2917 0.954287
\(195\) −1.76985 −0.126742
\(196\) −5.47214 −0.390867
\(197\) −12.0279 −0.856951 −0.428475 0.903553i \(-0.640949\pi\)
−0.428475 + 0.903553i \(0.640949\pi\)
\(198\) 3.17672 0.225760
\(199\) −5.44027 −0.385651 −0.192825 0.981233i \(-0.561765\pi\)
−0.192825 + 0.981233i \(0.561765\pi\)
\(200\) −4.92522 −0.348266
\(201\) −6.78518 −0.478589
\(202\) 13.1311 0.923901
\(203\) 6.56816 0.460994
\(204\) 5.74258 0.402061
\(205\) 0.301335 0.0210461
\(206\) 10.3404 0.720450
\(207\) 1.79349 0.124656
\(208\) −5.04029 −0.349482
\(209\) −8.83139 −0.610880
\(210\) 0.434034 0.0299512
\(211\) 1.83860 0.126574 0.0632872 0.997995i \(-0.479842\pi\)
0.0632872 + 0.997995i \(0.479842\pi\)
\(212\) 8.49338 0.583328
\(213\) 1.39374 0.0954975
\(214\) −5.43945 −0.371833
\(215\) 1.48746 0.101444
\(216\) −5.58721 −0.380161
\(217\) −8.43403 −0.572540
\(218\) 2.02124 0.136896
\(219\) 17.6738 1.19429
\(220\) −0.642937 −0.0433468
\(221\) −22.5409 −1.51626
\(222\) 2.38924 0.160355
\(223\) −20.1103 −1.34668 −0.673341 0.739332i \(-0.735142\pi\)
−0.673341 + 0.739332i \(0.735142\pi\)
\(224\) 1.23607 0.0825883
\(225\) 6.65467 0.443645
\(226\) −1.00000 −0.0665190
\(227\) −15.1744 −1.00716 −0.503581 0.863948i \(-0.667984\pi\)
−0.503581 + 0.863948i \(0.667984\pi\)
\(228\) 4.82328 0.319429
\(229\) −7.08361 −0.468098 −0.234049 0.972225i \(-0.575198\pi\)
−0.234049 + 0.972225i \(0.575198\pi\)
\(230\) −0.362985 −0.0239345
\(231\) −3.73175 −0.245531
\(232\) 5.31375 0.348865
\(233\) −19.8848 −1.30270 −0.651349 0.758779i \(-0.725796\pi\)
−0.651349 + 0.758779i \(0.725796\pi\)
\(234\) 6.81015 0.445193
\(235\) −1.64886 −0.107560
\(236\) 0.243785 0.0158691
\(237\) −6.46131 −0.419707
\(238\) 5.52786 0.358318
\(239\) −5.09591 −0.329627 −0.164813 0.986325i \(-0.552702\pi\)
−0.164813 + 0.986325i \(0.552702\pi\)
\(240\) 0.351141 0.0226661
\(241\) −3.01532 −0.194234 −0.0971170 0.995273i \(-0.530962\pi\)
−0.0971170 + 0.995273i \(0.530962\pi\)
\(242\) −5.47214 −0.351762
\(243\) 12.7540 0.818171
\(244\) −6.85765 −0.439016
\(245\) −1.49640 −0.0956013
\(246\) 1.41498 0.0902160
\(247\) −18.9324 −1.20464
\(248\) −6.82328 −0.433279
\(249\) −1.18045 −0.0748082
\(250\) −2.71413 −0.171656
\(251\) 26.9288 1.69973 0.849867 0.526998i \(-0.176682\pi\)
0.849867 + 0.526998i \(0.176682\pi\)
\(252\) −1.67010 −0.105207
\(253\) 3.12088 0.196208
\(254\) −21.5468 −1.35197
\(255\) 1.57035 0.0983392
\(256\) 1.00000 0.0625000
\(257\) 20.2741 1.26466 0.632330 0.774699i \(-0.282099\pi\)
0.632330 + 0.774699i \(0.282099\pi\)
\(258\) 6.98468 0.434847
\(259\) 2.29991 0.142909
\(260\) −1.37831 −0.0854789
\(261\) −7.17963 −0.444408
\(262\) 18.4449 1.13953
\(263\) −9.93365 −0.612535 −0.306268 0.951945i \(-0.599080\pi\)
−0.306268 + 0.951945i \(0.599080\pi\)
\(264\) −3.01905 −0.185810
\(265\) 2.32258 0.142675
\(266\) 4.64294 0.284677
\(267\) 17.9771 1.10018
\(268\) −5.28408 −0.322777
\(269\) 13.5924 0.828744 0.414372 0.910108i \(-0.364001\pi\)
0.414372 + 0.910108i \(0.364001\pi\)
\(270\) −1.52786 −0.0929828
\(271\) −29.1506 −1.77077 −0.885385 0.464858i \(-0.846105\pi\)
−0.885385 + 0.464858i \(0.846105\pi\)
\(272\) 4.47214 0.271163
\(273\) −8.00000 −0.484182
\(274\) 13.2169 0.798462
\(275\) 11.5799 0.698294
\(276\) −1.70447 −0.102597
\(277\) −29.8825 −1.79547 −0.897733 0.440540i \(-0.854787\pi\)
−0.897733 + 0.440540i \(0.854787\pi\)
\(278\) −0.313039 −0.0187748
\(279\) 9.21921 0.551940
\(280\) 0.338012 0.0202001
\(281\) −21.2432 −1.26726 −0.633630 0.773636i \(-0.718436\pi\)
−0.633630 + 0.773636i \(0.718436\pi\)
\(282\) −7.74258 −0.461064
\(283\) −13.9061 −0.826629 −0.413315 0.910588i \(-0.635629\pi\)
−0.413315 + 0.910588i \(0.635629\pi\)
\(284\) 1.08540 0.0644067
\(285\) 1.31896 0.0781285
\(286\) 11.8504 0.700731
\(287\) 1.36208 0.0804009
\(288\) −1.35114 −0.0796167
\(289\) 3.00000 0.176471
\(290\) 1.45309 0.0853281
\(291\) 17.0676 1.00052
\(292\) 13.7638 0.805467
\(293\) −4.27346 −0.249658 −0.124829 0.992178i \(-0.539838\pi\)
−0.124829 + 0.992178i \(0.539838\pi\)
\(294\) −7.02666 −0.409803
\(295\) 0.0666648 0.00388138
\(296\) 1.86067 0.108149
\(297\) 13.1363 0.762246
\(298\) 12.5850 0.729030
\(299\) 6.69044 0.386918
\(300\) −6.32437 −0.365138
\(301\) 6.72353 0.387538
\(302\) −8.44246 −0.485809
\(303\) 16.8614 0.968661
\(304\) 3.75621 0.215434
\(305\) −1.87528 −0.107378
\(306\) −6.04249 −0.345426
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) −2.90617 −0.165594
\(309\) 13.2779 0.755353
\(310\) −1.86588 −0.105975
\(311\) 9.69636 0.549830 0.274915 0.961469i \(-0.411350\pi\)
0.274915 + 0.961469i \(0.411350\pi\)
\(312\) −6.47214 −0.366413
\(313\) 18.5550 1.04879 0.524396 0.851474i \(-0.324291\pi\)
0.524396 + 0.851474i \(0.324291\pi\)
\(314\) −0.997808 −0.0563095
\(315\) −0.456702 −0.0257322
\(316\) −5.03186 −0.283065
\(317\) −10.8364 −0.608633 −0.304317 0.952571i \(-0.598428\pi\)
−0.304317 + 0.952571i \(0.598428\pi\)
\(318\) 10.9062 0.611588
\(319\) −12.4934 −0.699495
\(320\) 0.273457 0.0152867
\(321\) −6.98468 −0.389847
\(322\) −1.64074 −0.0914351
\(323\) 16.7983 0.934683
\(324\) −3.12099 −0.173389
\(325\) 24.8246 1.37702
\(326\) 3.90398 0.216221
\(327\) 2.59544 0.143528
\(328\) 1.10194 0.0608447
\(329\) −7.45309 −0.410902
\(330\) −0.825582 −0.0454468
\(331\) 23.3914 1.28571 0.642855 0.765988i \(-0.277750\pi\)
0.642855 + 0.765988i \(0.277750\pi\)
\(332\) −0.919299 −0.0504531
\(333\) −2.51402 −0.137768
\(334\) −14.2275 −0.778496
\(335\) −1.44497 −0.0789472
\(336\) 1.58721 0.0865893
\(337\) −30.6939 −1.67201 −0.836003 0.548725i \(-0.815113\pi\)
−0.836003 + 0.548725i \(0.815113\pi\)
\(338\) 12.4046 0.674719
\(339\) −1.28408 −0.0697416
\(340\) 1.22294 0.0663232
\(341\) 16.0425 0.868749
\(342\) −5.07518 −0.274434
\(343\) −15.4164 −0.832408
\(344\) 5.43945 0.293275
\(345\) −0.466101 −0.0250940
\(346\) 0.884927 0.0475740
\(347\) 3.41641 0.183402 0.0917012 0.995787i \(-0.470770\pi\)
0.0917012 + 0.995787i \(0.470770\pi\)
\(348\) 6.82328 0.365766
\(349\) 36.2851 1.94230 0.971148 0.238478i \(-0.0766486\pi\)
0.971148 + 0.238478i \(0.0766486\pi\)
\(350\) −6.08791 −0.325412
\(351\) 28.1612 1.50313
\(352\) −2.35114 −0.125316
\(353\) −16.4684 −0.876525 −0.438262 0.898847i \(-0.644406\pi\)
−0.438262 + 0.898847i \(0.644406\pi\)
\(354\) 0.313039 0.0166378
\(355\) 0.296811 0.0157531
\(356\) 14.0000 0.741999
\(357\) 7.09821 0.375677
\(358\) 15.7027 0.829912
\(359\) 24.1197 1.27299 0.636493 0.771282i \(-0.280384\pi\)
0.636493 + 0.771282i \(0.280384\pi\)
\(360\) −0.369480 −0.0194733
\(361\) −4.89085 −0.257413
\(362\) −10.4501 −0.549243
\(363\) −7.02666 −0.368804
\(364\) −6.23015 −0.326548
\(365\) 3.76382 0.197007
\(366\) −8.80576 −0.460285
\(367\) 34.4413 1.79782 0.898910 0.438134i \(-0.144360\pi\)
0.898910 + 0.438134i \(0.144360\pi\)
\(368\) −1.32739 −0.0691950
\(369\) −1.48888 −0.0775081
\(370\) 0.508813 0.0264519
\(371\) 10.4984 0.545049
\(372\) −8.76163 −0.454269
\(373\) 26.3540 1.36456 0.682280 0.731091i \(-0.260988\pi\)
0.682280 + 0.731091i \(0.260988\pi\)
\(374\) −10.5146 −0.543698
\(375\) −3.48515 −0.179972
\(376\) −6.02967 −0.310957
\(377\) −26.7829 −1.37939
\(378\) −6.90617 −0.355215
\(379\) 28.5509 1.46656 0.733281 0.679925i \(-0.237988\pi\)
0.733281 + 0.679925i \(0.237988\pi\)
\(380\) 1.02717 0.0526925
\(381\) −27.6678 −1.41746
\(382\) −14.9833 −0.766615
\(383\) 22.7425 1.16209 0.581043 0.813873i \(-0.302645\pi\)
0.581043 + 0.813873i \(0.302645\pi\)
\(384\) 1.28408 0.0655279
\(385\) −0.794714 −0.0405024
\(386\) 3.49119 0.177697
\(387\) −7.34946 −0.373594
\(388\) 13.2917 0.674783
\(389\) −36.7249 −1.86203 −0.931014 0.364982i \(-0.881075\pi\)
−0.931014 + 0.364982i \(0.881075\pi\)
\(390\) −1.76985 −0.0896200
\(391\) −5.93627 −0.300210
\(392\) −5.47214 −0.276385
\(393\) 23.6847 1.19473
\(394\) −12.0279 −0.605956
\(395\) −1.37600 −0.0692341
\(396\) 3.17672 0.159636
\(397\) −14.7183 −0.738691 −0.369346 0.929292i \(-0.620418\pi\)
−0.369346 + 0.929292i \(0.620418\pi\)
\(398\) −5.44027 −0.272696
\(399\) 5.96190 0.298468
\(400\) −4.92522 −0.246261
\(401\) −6.79702 −0.339427 −0.169713 0.985493i \(-0.554284\pi\)
−0.169713 + 0.985493i \(0.554284\pi\)
\(402\) −6.78518 −0.338414
\(403\) 34.3913 1.71315
\(404\) 13.1311 0.653297
\(405\) −0.853459 −0.0424087
\(406\) 6.56816 0.325972
\(407\) −4.37469 −0.216845
\(408\) 5.74258 0.284300
\(409\) 9.91919 0.490472 0.245236 0.969463i \(-0.421135\pi\)
0.245236 + 0.969463i \(0.421135\pi\)
\(410\) 0.301335 0.0148819
\(411\) 16.9715 0.837145
\(412\) 10.3404 0.509435
\(413\) 0.301335 0.0148277
\(414\) 1.79349 0.0881453
\(415\) −0.251389 −0.0123402
\(416\) −5.04029 −0.247121
\(417\) −0.401967 −0.0196844
\(418\) −8.83139 −0.431957
\(419\) −14.8498 −0.725461 −0.362731 0.931894i \(-0.618155\pi\)
−0.362731 + 0.931894i \(0.618155\pi\)
\(420\) 0.434034 0.0211787
\(421\) 3.49119 0.170150 0.0850750 0.996375i \(-0.472887\pi\)
0.0850750 + 0.996375i \(0.472887\pi\)
\(422\) 1.83860 0.0895016
\(423\) 8.14694 0.396118
\(424\) 8.49338 0.412475
\(425\) −22.0263 −1.06843
\(426\) 1.39374 0.0675269
\(427\) −8.47652 −0.410208
\(428\) −5.43945 −0.262926
\(429\) 15.2169 0.734679
\(430\) 1.48746 0.0717316
\(431\) −38.2963 −1.84467 −0.922333 0.386395i \(-0.873720\pi\)
−0.922333 + 0.386395i \(0.873720\pi\)
\(432\) −5.58721 −0.268815
\(433\) −39.4104 −1.89394 −0.946971 0.321320i \(-0.895874\pi\)
−0.946971 + 0.321320i \(0.895874\pi\)
\(434\) −8.43403 −0.404847
\(435\) 1.86588 0.0894619
\(436\) 2.02124 0.0968000
\(437\) −4.98596 −0.238511
\(438\) 17.6738 0.844488
\(439\) 32.1518 1.53452 0.767260 0.641336i \(-0.221619\pi\)
0.767260 + 0.641336i \(0.221619\pi\)
\(440\) −0.642937 −0.0306508
\(441\) 7.39363 0.352077
\(442\) −22.5409 −1.07216
\(443\) −40.0402 −1.90237 −0.951183 0.308627i \(-0.900131\pi\)
−0.951183 + 0.308627i \(0.900131\pi\)
\(444\) 2.38924 0.113388
\(445\) 3.82840 0.181484
\(446\) −20.1103 −0.952248
\(447\) 16.1602 0.764349
\(448\) 1.23607 0.0583987
\(449\) 4.86368 0.229531 0.114766 0.993393i \(-0.463388\pi\)
0.114766 + 0.993393i \(0.463388\pi\)
\(450\) 6.65467 0.313704
\(451\) −2.59083 −0.121997
\(452\) −1.00000 −0.0470360
\(453\) −10.8408 −0.509345
\(454\) −15.1744 −0.712171
\(455\) −1.70368 −0.0798697
\(456\) 4.82328 0.225871
\(457\) 8.12472 0.380059 0.190029 0.981778i \(-0.439142\pi\)
0.190029 + 0.981778i \(0.439142\pi\)
\(458\) −7.08361 −0.330995
\(459\) −24.9868 −1.16628
\(460\) −0.362985 −0.0169243
\(461\) 5.57177 0.259503 0.129752 0.991547i \(-0.458582\pi\)
0.129752 + 0.991547i \(0.458582\pi\)
\(462\) −3.73175 −0.173617
\(463\) −26.7235 −1.24195 −0.620974 0.783831i \(-0.713263\pi\)
−0.620974 + 0.783831i \(0.713263\pi\)
\(464\) 5.31375 0.246685
\(465\) −2.39593 −0.111109
\(466\) −19.8848 −0.921146
\(467\) −28.4469 −1.31637 −0.658184 0.752857i \(-0.728675\pi\)
−0.658184 + 0.752857i \(0.728675\pi\)
\(468\) 6.81015 0.314799
\(469\) −6.53148 −0.301596
\(470\) −1.64886 −0.0760562
\(471\) −1.28126 −0.0590375
\(472\) 0.243785 0.0112211
\(473\) −12.7889 −0.588034
\(474\) −6.46131 −0.296778
\(475\) −18.5002 −0.848847
\(476\) 5.52786 0.253369
\(477\) −11.4758 −0.525439
\(478\) −5.09591 −0.233081
\(479\) 5.05812 0.231112 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(480\) 0.351141 0.0160273
\(481\) −9.37831 −0.427614
\(482\) −3.01532 −0.137344
\(483\) −2.10685 −0.0958648
\(484\) −5.47214 −0.248733
\(485\) 3.63471 0.165044
\(486\) 12.7540 0.578534
\(487\) −11.1660 −0.505979 −0.252990 0.967469i \(-0.581414\pi\)
−0.252990 + 0.967469i \(0.581414\pi\)
\(488\) −6.85765 −0.310431
\(489\) 5.01302 0.226696
\(490\) −1.49640 −0.0676003
\(491\) −32.1169 −1.44942 −0.724708 0.689057i \(-0.758025\pi\)
−0.724708 + 0.689057i \(0.758025\pi\)
\(492\) 1.41498 0.0637924
\(493\) 23.7638 1.07027
\(494\) −18.9324 −0.851810
\(495\) 0.868699 0.0390451
\(496\) −6.82328 −0.306374
\(497\) 1.34163 0.0601803
\(498\) −1.18045 −0.0528974
\(499\) 36.9671 1.65487 0.827437 0.561559i \(-0.189798\pi\)
0.827437 + 0.561559i \(0.189798\pi\)
\(500\) −2.71413 −0.121379
\(501\) −18.2693 −0.816211
\(502\) 26.9288 1.20189
\(503\) −13.7793 −0.614387 −0.307193 0.951647i \(-0.599390\pi\)
−0.307193 + 0.951647i \(0.599390\pi\)
\(504\) −1.67010 −0.0743923
\(505\) 3.59080 0.159788
\(506\) 3.12088 0.138740
\(507\) 15.9284 0.707407
\(508\) −21.5468 −0.955985
\(509\) 13.6772 0.606231 0.303116 0.952954i \(-0.401973\pi\)
0.303116 + 0.952954i \(0.401973\pi\)
\(510\) 1.57035 0.0695363
\(511\) 17.0130 0.752612
\(512\) 1.00000 0.0441942
\(513\) −20.9868 −0.926588
\(514\) 20.2741 0.894250
\(515\) 2.82766 0.124602
\(516\) 6.98468 0.307483
\(517\) 14.1766 0.623487
\(518\) 2.29991 0.101052
\(519\) 1.13632 0.0498787
\(520\) −1.37831 −0.0604427
\(521\) 30.2360 1.32466 0.662331 0.749212i \(-0.269567\pi\)
0.662331 + 0.749212i \(0.269567\pi\)
\(522\) −7.17963 −0.314244
\(523\) 25.1287 1.09880 0.549401 0.835559i \(-0.314856\pi\)
0.549401 + 0.835559i \(0.314856\pi\)
\(524\) 18.4449 0.805767
\(525\) −7.81736 −0.341177
\(526\) −9.93365 −0.433128
\(527\) −30.5146 −1.32924
\(528\) −3.01905 −0.131387
\(529\) −21.2380 −0.923393
\(530\) 2.32258 0.100886
\(531\) −0.329388 −0.0142942
\(532\) 4.64294 0.201297
\(533\) −5.55412 −0.240576
\(534\) 17.9771 0.777945
\(535\) −1.48746 −0.0643084
\(536\) −5.28408 −0.228237
\(537\) 20.1635 0.870118
\(538\) 13.5924 0.586011
\(539\) 12.8658 0.554168
\(540\) −1.52786 −0.0657488
\(541\) 43.1046 1.85321 0.926606 0.376033i \(-0.122712\pi\)
0.926606 + 0.376033i \(0.122712\pi\)
\(542\) −29.1506 −1.25212
\(543\) −13.4187 −0.575852
\(544\) 4.47214 0.191741
\(545\) 0.552724 0.0236761
\(546\) −8.00000 −0.342368
\(547\) −19.3217 −0.826135 −0.413067 0.910700i \(-0.635543\pi\)
−0.413067 + 0.910700i \(0.635543\pi\)
\(548\) 13.2169 0.564598
\(549\) 9.26565 0.395448
\(550\) 11.5799 0.493768
\(551\) 19.9596 0.850307
\(552\) −1.70447 −0.0725472
\(553\) −6.21973 −0.264490
\(554\) −29.8825 −1.26959
\(555\) 0.653356 0.0277334
\(556\) −0.313039 −0.0132758
\(557\) −6.89677 −0.292226 −0.146113 0.989268i \(-0.546676\pi\)
−0.146113 + 0.989268i \(0.546676\pi\)
\(558\) 9.21921 0.390280
\(559\) −27.4164 −1.15959
\(560\) 0.338012 0.0142836
\(561\) −13.5016 −0.570038
\(562\) −21.2432 −0.896089
\(563\) 1.36208 0.0574047 0.0287024 0.999588i \(-0.490862\pi\)
0.0287024 + 0.999588i \(0.490862\pi\)
\(564\) −7.74258 −0.326021
\(565\) −0.273457 −0.0115044
\(566\) −13.9061 −0.584515
\(567\) −3.85776 −0.162011
\(568\) 1.08540 0.0455424
\(569\) 23.9633 1.00459 0.502297 0.864695i \(-0.332488\pi\)
0.502297 + 0.864695i \(0.332488\pi\)
\(570\) 1.31896 0.0552452
\(571\) 25.4028 1.06307 0.531536 0.847035i \(-0.321615\pi\)
0.531536 + 0.847035i \(0.321615\pi\)
\(572\) 11.8504 0.495492
\(573\) −19.2398 −0.803754
\(574\) 1.36208 0.0568520
\(575\) 6.53769 0.272641
\(576\) −1.35114 −0.0562975
\(577\) 32.6333 1.35854 0.679271 0.733887i \(-0.262296\pi\)
0.679271 + 0.733887i \(0.262296\pi\)
\(578\) 3.00000 0.124784
\(579\) 4.48296 0.186305
\(580\) 1.45309 0.0603361
\(581\) −1.13632 −0.0471423
\(582\) 17.0676 0.707474
\(583\) −19.9691 −0.827037
\(584\) 13.7638 0.569551
\(585\) 1.86229 0.0769960
\(586\) −4.27346 −0.176535
\(587\) 14.2953 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(588\) −7.02666 −0.289774
\(589\) −25.6297 −1.05605
\(590\) 0.0666648 0.00274455
\(591\) −15.4447 −0.635312
\(592\) 1.86067 0.0764729
\(593\) 4.34741 0.178527 0.0892634 0.996008i \(-0.471549\pi\)
0.0892634 + 0.996008i \(0.471549\pi\)
\(594\) 13.1363 0.538990
\(595\) 1.51164 0.0619710
\(596\) 12.5850 0.515502
\(597\) −6.98574 −0.285907
\(598\) 6.69044 0.273592
\(599\) 18.1776 0.742716 0.371358 0.928490i \(-0.378892\pi\)
0.371358 + 0.928490i \(0.378892\pi\)
\(600\) −6.32437 −0.258191
\(601\) 25.6145 1.04484 0.522418 0.852689i \(-0.325030\pi\)
0.522418 + 0.852689i \(0.325030\pi\)
\(602\) 6.72353 0.274030
\(603\) 7.13954 0.290744
\(604\) −8.44246 −0.343519
\(605\) −1.49640 −0.0608372
\(606\) 16.8614 0.684947
\(607\) −13.2849 −0.539218 −0.269609 0.962970i \(-0.586894\pi\)
−0.269609 + 0.962970i \(0.586894\pi\)
\(608\) 3.75621 0.152335
\(609\) 8.43403 0.341764
\(610\) −1.87528 −0.0759277
\(611\) 30.3913 1.22950
\(612\) −6.04249 −0.244253
\(613\) 22.3871 0.904208 0.452104 0.891965i \(-0.350674\pi\)
0.452104 + 0.891965i \(0.350674\pi\)
\(614\) 4.00000 0.161427
\(615\) 0.386938 0.0156028
\(616\) −2.90617 −0.117093
\(617\) −21.4201 −0.862342 −0.431171 0.902270i \(-0.641899\pi\)
−0.431171 + 0.902270i \(0.641899\pi\)
\(618\) 13.2779 0.534115
\(619\) 6.03050 0.242386 0.121193 0.992629i \(-0.461328\pi\)
0.121193 + 0.992629i \(0.461328\pi\)
\(620\) −1.86588 −0.0749354
\(621\) 7.41641 0.297610
\(622\) 9.69636 0.388789
\(623\) 17.3050 0.693308
\(624\) −6.47214 −0.259093
\(625\) 23.8839 0.955356
\(626\) 18.5550 0.741608
\(627\) −11.3402 −0.452884
\(628\) −0.997808 −0.0398169
\(629\) 8.32115 0.331786
\(630\) −0.456702 −0.0181954
\(631\) 6.17923 0.245991 0.122996 0.992407i \(-0.460750\pi\)
0.122996 + 0.992407i \(0.460750\pi\)
\(632\) −5.03186 −0.200157
\(633\) 2.36091 0.0938376
\(634\) −10.8364 −0.430369
\(635\) −5.89213 −0.233822
\(636\) 10.9062 0.432458
\(637\) 27.5812 1.09281
\(638\) −12.4934 −0.494618
\(639\) −1.46653 −0.0580150
\(640\) 0.273457 0.0108094
\(641\) −14.3549 −0.566983 −0.283492 0.958975i \(-0.591493\pi\)
−0.283492 + 0.958975i \(0.591493\pi\)
\(642\) −6.98468 −0.275663
\(643\) −38.5024 −1.51839 −0.759193 0.650865i \(-0.774406\pi\)
−0.759193 + 0.650865i \(0.774406\pi\)
\(644\) −1.64074 −0.0646544
\(645\) 1.91001 0.0752067
\(646\) 16.7983 0.660920
\(647\) −6.76601 −0.265999 −0.133000 0.991116i \(-0.542461\pi\)
−0.133000 + 0.991116i \(0.542461\pi\)
\(648\) −3.12099 −0.122604
\(649\) −0.573173 −0.0224990
\(650\) 24.8246 0.973699
\(651\) −10.8300 −0.424460
\(652\) 3.90398 0.152892
\(653\) −29.5718 −1.15723 −0.578616 0.815600i \(-0.696407\pi\)
−0.578616 + 0.815600i \(0.696407\pi\)
\(654\) 2.59544 0.101490
\(655\) 5.04388 0.197081
\(656\) 1.10194 0.0430237
\(657\) −18.5969 −0.725533
\(658\) −7.45309 −0.290552
\(659\) −10.1953 −0.397151 −0.198576 0.980086i \(-0.563632\pi\)
−0.198576 + 0.980086i \(0.563632\pi\)
\(660\) −0.825582 −0.0321357
\(661\) −9.35624 −0.363915 −0.181958 0.983306i \(-0.558243\pi\)
−0.181958 + 0.983306i \(0.558243\pi\)
\(662\) 23.3914 0.909134
\(663\) −28.9443 −1.12410
\(664\) −0.919299 −0.0356757
\(665\) 1.26965 0.0492348
\(666\) −2.51402 −0.0974164
\(667\) −7.05342 −0.273110
\(668\) −14.2275 −0.550480
\(669\) −25.8232 −0.998381
\(670\) −1.44497 −0.0558241
\(671\) 16.1233 0.622433
\(672\) 1.58721 0.0612279
\(673\) −28.4280 −1.09582 −0.547909 0.836538i \(-0.684576\pi\)
−0.547909 + 0.836538i \(0.684576\pi\)
\(674\) −30.6939 −1.18229
\(675\) 27.5182 1.05918
\(676\) 12.4046 0.477099
\(677\) 26.5453 1.02022 0.510109 0.860110i \(-0.329605\pi\)
0.510109 + 0.860110i \(0.329605\pi\)
\(678\) −1.28408 −0.0493148
\(679\) 16.4294 0.630503
\(680\) 1.22294 0.0468976
\(681\) −19.4852 −0.746673
\(682\) 16.0425 0.614299
\(683\) −45.0433 −1.72353 −0.861767 0.507305i \(-0.830642\pi\)
−0.861767 + 0.507305i \(0.830642\pi\)
\(684\) −5.07518 −0.194054
\(685\) 3.61426 0.138094
\(686\) −15.4164 −0.588601
\(687\) −9.09591 −0.347031
\(688\) 5.43945 0.207377
\(689\) −42.8091 −1.63090
\(690\) −0.466101 −0.0177442
\(691\) 18.9214 0.719803 0.359902 0.932990i \(-0.382810\pi\)
0.359902 + 0.932990i \(0.382810\pi\)
\(692\) 0.884927 0.0336399
\(693\) 3.92665 0.149161
\(694\) 3.41641 0.129685
\(695\) −0.0856029 −0.00324710
\(696\) 6.82328 0.258636
\(697\) 4.92804 0.186663
\(698\) 36.2851 1.37341
\(699\) −25.5337 −0.965772
\(700\) −6.08791 −0.230101
\(701\) −29.5285 −1.11527 −0.557637 0.830085i \(-0.688292\pi\)
−0.557637 + 0.830085i \(0.688292\pi\)
\(702\) 28.1612 1.06288
\(703\) 6.98906 0.263598
\(704\) −2.35114 −0.0886120
\(705\) −2.11727 −0.0797408
\(706\) −16.4684 −0.619797
\(707\) 16.2309 0.610427
\(708\) 0.313039 0.0117647
\(709\) 37.3085 1.40115 0.700576 0.713578i \(-0.252927\pi\)
0.700576 + 0.713578i \(0.252927\pi\)
\(710\) 0.296811 0.0111391
\(711\) 6.79876 0.254973
\(712\) 14.0000 0.524672
\(713\) 9.05715 0.339193
\(714\) 7.09821 0.265644
\(715\) 3.24059 0.121191
\(716\) 15.7027 0.586837
\(717\) −6.54355 −0.244373
\(718\) 24.1197 0.900138
\(719\) 3.72967 0.139093 0.0695467 0.997579i \(-0.477845\pi\)
0.0695467 + 0.997579i \(0.477845\pi\)
\(720\) −0.369480 −0.0137697
\(721\) 12.7814 0.476006
\(722\) −4.89085 −0.182019
\(723\) −3.87191 −0.143998
\(724\) −10.4501 −0.388374
\(725\) −26.1714 −0.971981
\(726\) −7.02666 −0.260784
\(727\) −50.7068 −1.88061 −0.940306 0.340331i \(-0.889461\pi\)
−0.940306 + 0.340331i \(0.889461\pi\)
\(728\) −6.23015 −0.230905
\(729\) 25.7402 0.953339
\(730\) 3.76382 0.139305
\(731\) 24.3259 0.899727
\(732\) −8.80576 −0.325470
\(733\) 10.5036 0.387959 0.193980 0.981006i \(-0.437860\pi\)
0.193980 + 0.981006i \(0.437860\pi\)
\(734\) 34.4413 1.27125
\(735\) −1.92149 −0.0708753
\(736\) −1.32739 −0.0489283
\(737\) 12.4236 0.457630
\(738\) −1.48888 −0.0548065
\(739\) 36.9036 1.35752 0.678761 0.734359i \(-0.262517\pi\)
0.678761 + 0.734359i \(0.262517\pi\)
\(740\) 0.508813 0.0187043
\(741\) −24.3107 −0.893077
\(742\) 10.4984 0.385408
\(743\) 27.4306 1.00633 0.503166 0.864190i \(-0.332168\pi\)
0.503166 + 0.864190i \(0.332168\pi\)
\(744\) −8.76163 −0.321217
\(745\) 3.44147 0.126086
\(746\) 26.3540 0.964890
\(747\) 1.24210 0.0454462
\(748\) −10.5146 −0.384453
\(749\) −6.72353 −0.245672
\(750\) −3.48515 −0.127260
\(751\) −15.0962 −0.550869 −0.275435 0.961320i \(-0.588822\pi\)
−0.275435 + 0.961320i \(0.588822\pi\)
\(752\) −6.02967 −0.219880
\(753\) 34.5788 1.26012
\(754\) −26.7829 −0.975375
\(755\) −2.30865 −0.0840205
\(756\) −6.90617 −0.251175
\(757\) 0.208303 0.00757092 0.00378546 0.999993i \(-0.498795\pi\)
0.00378546 + 0.999993i \(0.498795\pi\)
\(758\) 28.5509 1.03702
\(759\) 4.00746 0.145462
\(760\) 1.02717 0.0372592
\(761\) −41.3758 −1.49987 −0.749935 0.661511i \(-0.769915\pi\)
−0.749935 + 0.661511i \(0.769915\pi\)
\(762\) −27.6678 −1.00230
\(763\) 2.49839 0.0904479
\(764\) −14.9833 −0.542078
\(765\) −1.65236 −0.0597413
\(766\) 22.7425 0.821719
\(767\) −1.22875 −0.0443675
\(768\) 1.28408 0.0463352
\(769\) −45.5051 −1.64096 −0.820478 0.571678i \(-0.806293\pi\)
−0.820478 + 0.571678i \(0.806293\pi\)
\(770\) −0.794714 −0.0286395
\(771\) 26.0335 0.937573
\(772\) 3.49119 0.125651
\(773\) 46.8456 1.68492 0.842459 0.538760i \(-0.181107\pi\)
0.842459 + 0.538760i \(0.181107\pi\)
\(774\) −7.34946 −0.264171
\(775\) 33.6061 1.20717
\(776\) 13.2917 0.477144
\(777\) 2.95327 0.105948
\(778\) −36.7249 −1.31665
\(779\) 4.13914 0.148300
\(780\) −1.76985 −0.0633709
\(781\) −2.55193 −0.0913152
\(782\) −5.93627 −0.212281
\(783\) −29.6890 −1.06100
\(784\) −5.47214 −0.195433
\(785\) −0.272858 −0.00973872
\(786\) 23.6847 0.844804
\(787\) −48.3311 −1.72282 −0.861409 0.507912i \(-0.830417\pi\)
−0.861409 + 0.507912i \(0.830417\pi\)
\(788\) −12.0279 −0.428475
\(789\) −12.7556 −0.454111
\(790\) −1.37600 −0.0489559
\(791\) −1.23607 −0.0439495
\(792\) 3.17672 0.112880
\(793\) 34.5646 1.22742
\(794\) −14.7183 −0.522333
\(795\) 2.98237 0.105774
\(796\) −5.44027 −0.192825
\(797\) 34.9772 1.23895 0.619477 0.785015i \(-0.287345\pi\)
0.619477 + 0.785015i \(0.287345\pi\)
\(798\) 5.96190 0.211049
\(799\) −26.9655 −0.953971
\(800\) −4.92522 −0.174133
\(801\) −18.9160 −0.668363
\(802\) −6.79702 −0.240011
\(803\) −32.3607 −1.14198
\(804\) −6.78518 −0.239295
\(805\) −0.448674 −0.0158137
\(806\) 34.3913 1.21138
\(807\) 17.4537 0.614401
\(808\) 13.1311 0.461951
\(809\) 47.8115 1.68096 0.840481 0.541841i \(-0.182273\pi\)
0.840481 + 0.541841i \(0.182273\pi\)
\(810\) −0.853459 −0.0299875
\(811\) −12.7598 −0.448058 −0.224029 0.974582i \(-0.571921\pi\)
−0.224029 + 0.974582i \(0.571921\pi\)
\(812\) 6.56816 0.230497
\(813\) −37.4316 −1.31278
\(814\) −4.37469 −0.153333
\(815\) 1.06757 0.0373954
\(816\) 5.74258 0.201030
\(817\) 20.4317 0.714816
\(818\) 9.91919 0.346816
\(819\) 8.41781 0.294142
\(820\) 0.301335 0.0105231
\(821\) 43.5657 1.52045 0.760227 0.649657i \(-0.225088\pi\)
0.760227 + 0.649657i \(0.225088\pi\)
\(822\) 16.9715 0.591951
\(823\) −1.44289 −0.0502960 −0.0251480 0.999684i \(-0.508006\pi\)
−0.0251480 + 0.999684i \(0.508006\pi\)
\(824\) 10.3404 0.360225
\(825\) 14.8695 0.517689
\(826\) 0.301335 0.0104848
\(827\) 28.2397 0.981990 0.490995 0.871162i \(-0.336633\pi\)
0.490995 + 0.871162i \(0.336633\pi\)
\(828\) 1.79349 0.0623281
\(829\) −6.33036 −0.219862 −0.109931 0.993939i \(-0.535063\pi\)
−0.109931 + 0.993939i \(0.535063\pi\)
\(830\) −0.251389 −0.00872585
\(831\) −38.3715 −1.33109
\(832\) −5.04029 −0.174741
\(833\) −24.4721 −0.847909
\(834\) −0.401967 −0.0139190
\(835\) −3.89062 −0.134641
\(836\) −8.83139 −0.305440
\(837\) 38.1231 1.31773
\(838\) −14.8498 −0.512978
\(839\) −52.6519 −1.81775 −0.908873 0.417072i \(-0.863056\pi\)
−0.908873 + 0.417072i \(0.863056\pi\)
\(840\) 0.434034 0.0149756
\(841\) −0.764045 −0.0263464
\(842\) 3.49119 0.120314
\(843\) −27.2779 −0.939501
\(844\) 1.83860 0.0632872
\(845\) 3.39212 0.116693
\(846\) 8.14694 0.280097
\(847\) −6.76393 −0.232411
\(848\) 8.49338 0.291664
\(849\) −17.8565 −0.612833
\(850\) −22.0263 −0.755494
\(851\) −2.46983 −0.0846647
\(852\) 1.39374 0.0477487
\(853\) 21.1090 0.722760 0.361380 0.932419i \(-0.382306\pi\)
0.361380 + 0.932419i \(0.382306\pi\)
\(854\) −8.47652 −0.290061
\(855\) −1.38784 −0.0474633
\(856\) −5.43945 −0.185916
\(857\) 7.29333 0.249136 0.124568 0.992211i \(-0.460246\pi\)
0.124568 + 0.992211i \(0.460246\pi\)
\(858\) 15.2169 0.519497
\(859\) −1.13617 −0.0387657 −0.0193828 0.999812i \(-0.506170\pi\)
−0.0193828 + 0.999812i \(0.506170\pi\)
\(860\) 1.48746 0.0507219
\(861\) 1.74902 0.0596063
\(862\) −38.2963 −1.30438
\(863\) 1.73677 0.0591202 0.0295601 0.999563i \(-0.490589\pi\)
0.0295601 + 0.999563i \(0.490589\pi\)
\(864\) −5.58721 −0.190081
\(865\) 0.241990 0.00822790
\(866\) −39.4104 −1.33922
\(867\) 3.85224 0.130829
\(868\) −8.43403 −0.286270
\(869\) 11.8306 0.401326
\(870\) 1.86588 0.0632591
\(871\) 26.6333 0.902435
\(872\) 2.02124 0.0684479
\(873\) −17.9589 −0.607818
\(874\) −4.98596 −0.168653
\(875\) −3.35484 −0.113414
\(876\) 17.6738 0.597143
\(877\) 2.27847 0.0769385 0.0384693 0.999260i \(-0.487752\pi\)
0.0384693 + 0.999260i \(0.487752\pi\)
\(878\) 32.1518 1.08507
\(879\) −5.48746 −0.185087
\(880\) −0.642937 −0.0216734
\(881\) 28.9120 0.974069 0.487035 0.873383i \(-0.338079\pi\)
0.487035 + 0.873383i \(0.338079\pi\)
\(882\) 7.39363 0.248956
\(883\) −41.0479 −1.38137 −0.690686 0.723155i \(-0.742691\pi\)
−0.690686 + 0.723155i \(0.742691\pi\)
\(884\) −22.5409 −0.758132
\(885\) 0.0856029 0.00287751
\(886\) −40.0402 −1.34518
\(887\) 23.4411 0.787074 0.393537 0.919309i \(-0.371251\pi\)
0.393537 + 0.919309i \(0.371251\pi\)
\(888\) 2.38924 0.0801777
\(889\) −26.6333 −0.893253
\(890\) 3.82840 0.128328
\(891\) 7.33790 0.245829
\(892\) −20.1103 −0.673341
\(893\) −22.6487 −0.757911
\(894\) 16.1602 0.540476
\(895\) 4.29401 0.143533
\(896\) 1.23607 0.0412941
\(897\) 8.59105 0.286847
\(898\) 4.86368 0.162303
\(899\) −36.2572 −1.20925
\(900\) 6.65467 0.221822
\(901\) 37.9835 1.26542
\(902\) −2.59083 −0.0862651
\(903\) 8.63354 0.287306
\(904\) −1.00000 −0.0332595
\(905\) −2.85765 −0.0949915
\(906\) −10.8408 −0.360161
\(907\) −5.39798 −0.179237 −0.0896185 0.995976i \(-0.528565\pi\)
−0.0896185 + 0.995976i \(0.528565\pi\)
\(908\) −15.1744 −0.503581
\(909\) −17.7420 −0.588464
\(910\) −1.70368 −0.0564764
\(911\) 5.06757 0.167896 0.0839481 0.996470i \(-0.473247\pi\)
0.0839481 + 0.996470i \(0.473247\pi\)
\(912\) 4.82328 0.159715
\(913\) 2.16140 0.0715320
\(914\) 8.12472 0.268742
\(915\) −2.40800 −0.0796061
\(916\) −7.08361 −0.234049
\(917\) 22.7991 0.752893
\(918\) −24.9868 −0.824686
\(919\) −45.2550 −1.49282 −0.746412 0.665484i \(-0.768225\pi\)
−0.746412 + 0.665484i \(0.768225\pi\)
\(920\) −0.362985 −0.0119673
\(921\) 5.13632 0.169247
\(922\) 5.57177 0.183497
\(923\) −5.47074 −0.180072
\(924\) −3.73175 −0.122766
\(925\) −9.16419 −0.301317
\(926\) −26.7235 −0.878190
\(927\) −13.9713 −0.458879
\(928\) 5.31375 0.174432
\(929\) 8.62169 0.282869 0.141434 0.989948i \(-0.454829\pi\)
0.141434 + 0.989948i \(0.454829\pi\)
\(930\) −2.39593 −0.0785657
\(931\) −20.5545 −0.673647
\(932\) −19.8848 −0.651349
\(933\) 12.4509 0.407624
\(934\) −28.4469 −0.930812
\(935\) −2.87530 −0.0940324
\(936\) 6.81015 0.222597
\(937\) −17.5481 −0.573271 −0.286636 0.958040i \(-0.592537\pi\)
−0.286636 + 0.958040i \(0.592537\pi\)
\(938\) −6.53148 −0.213260
\(939\) 23.8261 0.777536
\(940\) −1.64886 −0.0537799
\(941\) −32.7029 −1.06608 −0.533042 0.846089i \(-0.678951\pi\)
−0.533042 + 0.846089i \(0.678951\pi\)
\(942\) −1.28126 −0.0417458
\(943\) −1.46271 −0.0476324
\(944\) 0.243785 0.00793453
\(945\) −1.88854 −0.0614343
\(946\) −12.7889 −0.415803
\(947\) 59.7085 1.94027 0.970133 0.242575i \(-0.0779921\pi\)
0.970133 + 0.242575i \(0.0779921\pi\)
\(948\) −6.46131 −0.209854
\(949\) −69.3737 −2.25197
\(950\) −18.5002 −0.600225
\(951\) −13.9148 −0.451218
\(952\) 5.52786 0.179159
\(953\) −58.8800 −1.90731 −0.953654 0.300904i \(-0.902712\pi\)
−0.953654 + 0.300904i \(0.902712\pi\)
\(954\) −11.4758 −0.371541
\(955\) −4.09731 −0.132586
\(956\) −5.09591 −0.164813
\(957\) −16.0425 −0.518580
\(958\) 5.05812 0.163421
\(959\) 16.3370 0.527549
\(960\) 0.351141 0.0113330
\(961\) 15.5571 0.501842
\(962\) −9.37831 −0.302369
\(963\) 7.34946 0.236833
\(964\) −3.01532 −0.0971170
\(965\) 0.954691 0.0307326
\(966\) −2.10685 −0.0677867
\(967\) 51.4799 1.65548 0.827741 0.561110i \(-0.189626\pi\)
0.827741 + 0.561110i \(0.189626\pi\)
\(968\) −5.47214 −0.175881
\(969\) 21.5704 0.692939
\(970\) 3.63471 0.116704
\(971\) 27.1359 0.870834 0.435417 0.900229i \(-0.356601\pi\)
0.435417 + 0.900229i \(0.356601\pi\)
\(972\) 12.7540 0.409085
\(973\) −0.386938 −0.0124047
\(974\) −11.1660 −0.357781
\(975\) 31.8767 1.02087
\(976\) −6.85765 −0.219508
\(977\) 25.8667 0.827548 0.413774 0.910380i \(-0.364210\pi\)
0.413774 + 0.910380i \(0.364210\pi\)
\(978\) 5.01302 0.160299
\(979\) −32.9160 −1.05200
\(980\) −1.49640 −0.0478006
\(981\) −2.73098 −0.0871936
\(982\) −32.1169 −1.02489
\(983\) 49.7983 1.58832 0.794159 0.607710i \(-0.207912\pi\)
0.794159 + 0.607710i \(0.207912\pi\)
\(984\) 1.41498 0.0451080
\(985\) −3.28911 −0.104800
\(986\) 23.7638 0.756794
\(987\) −9.57035 −0.304628
\(988\) −18.9324 −0.602321
\(989\) −7.22027 −0.229591
\(990\) 0.868699 0.0276091
\(991\) 36.7879 1.16861 0.584303 0.811536i \(-0.301368\pi\)
0.584303 + 0.811536i \(0.301368\pi\)
\(992\) −6.82328 −0.216639
\(993\) 30.0365 0.953178
\(994\) 1.34163 0.0425539
\(995\) −1.48768 −0.0471627
\(996\) −1.18045 −0.0374041
\(997\) 6.45172 0.204328 0.102164 0.994768i \(-0.467423\pi\)
0.102164 + 0.994768i \(0.467423\pi\)
\(998\) 36.9671 1.17017
\(999\) −10.3959 −0.328913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 226.2.a.d.1.3 4
3.2 odd 2 2034.2.a.r.1.3 4
4.3 odd 2 1808.2.a.j.1.2 4
5.4 even 2 5650.2.a.o.1.2 4
8.3 odd 2 7232.2.a.v.1.3 4
8.5 even 2 7232.2.a.u.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
226.2.a.d.1.3 4 1.1 even 1 trivial
1808.2.a.j.1.2 4 4.3 odd 2
2034.2.a.r.1.3 4 3.2 odd 2
5650.2.a.o.1.2 4 5.4 even 2
7232.2.a.u.1.2 4 8.5 even 2
7232.2.a.v.1.3 4 8.3 odd 2