Properties

Label 2254.4.a.z.1.6
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 200x^{12} + 15521x^{10} - 598294x^{8} + 12167812x^{6} - 125559722x^{4} + 539505876x^{2} - 324615200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.40048\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.40048 q^{3} +4.00000 q^{4} -0.220651 q^{5} +6.80097 q^{6} -8.00000 q^{8} -15.4367 q^{9} +0.441301 q^{10} +49.1322 q^{11} -13.6019 q^{12} +37.0988 q^{13} +0.750319 q^{15} +16.0000 q^{16} -42.4366 q^{17} +30.8734 q^{18} -1.64187 q^{19} -0.882602 q^{20} -98.2644 q^{22} +23.0000 q^{23} +27.2039 q^{24} -124.951 q^{25} -74.1976 q^{26} +144.305 q^{27} +42.1069 q^{29} -1.50064 q^{30} -141.778 q^{31} -32.0000 q^{32} -167.073 q^{33} +84.8731 q^{34} -61.7468 q^{36} -211.538 q^{37} +3.28374 q^{38} -126.154 q^{39} +1.76520 q^{40} +221.663 q^{41} -207.246 q^{43} +196.529 q^{44} +3.40612 q^{45} -46.0000 q^{46} -118.778 q^{47} -54.4078 q^{48} +249.903 q^{50} +144.305 q^{51} +148.395 q^{52} +434.789 q^{53} -288.611 q^{54} -10.8410 q^{55} +5.58316 q^{57} -84.2138 q^{58} +69.1542 q^{59} +3.00127 q^{60} -103.321 q^{61} +283.555 q^{62} +64.0000 q^{64} -8.18587 q^{65} +334.147 q^{66} +8.86339 q^{67} -169.746 q^{68} -78.2112 q^{69} -172.114 q^{71} +123.494 q^{72} +291.160 q^{73} +423.077 q^{74} +424.895 q^{75} -6.56748 q^{76} +252.308 q^{78} -381.665 q^{79} -3.53041 q^{80} -73.9173 q^{81} -443.327 q^{82} -258.138 q^{83} +9.36365 q^{85} +414.493 q^{86} -143.184 q^{87} -393.058 q^{88} +26.6642 q^{89} -6.81223 q^{90} +92.0000 q^{92} +482.113 q^{93} +237.556 q^{94} +0.362280 q^{95} +108.816 q^{96} +35.9974 q^{97} -758.439 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 28 q^{2} + 56 q^{4} - 112 q^{8} + 22 q^{9} - 92 q^{11} - 268 q^{15} + 224 q^{16} - 44 q^{18} + 184 q^{22} + 322 q^{23} + 130 q^{25} + 196 q^{29} + 536 q^{30} - 448 q^{32} + 88 q^{36} + 628 q^{37}+ \cdots + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.40048 −0.654424 −0.327212 0.944951i \(-0.606109\pi\)
−0.327212 + 0.944951i \(0.606109\pi\)
\(4\) 4.00000 0.500000
\(5\) −0.220651 −0.0197356 −0.00986779 0.999951i \(-0.503141\pi\)
−0.00986779 + 0.999951i \(0.503141\pi\)
\(6\) 6.80097 0.462747
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) −15.4367 −0.571730
\(10\) 0.441301 0.0139552
\(11\) 49.1322 1.34672 0.673360 0.739315i \(-0.264850\pi\)
0.673360 + 0.739315i \(0.264850\pi\)
\(12\) −13.6019 −0.327212
\(13\) 37.0988 0.791489 0.395744 0.918361i \(-0.370487\pi\)
0.395744 + 0.918361i \(0.370487\pi\)
\(14\) 0 0
\(15\) 0.750319 0.0129154
\(16\) 16.0000 0.250000
\(17\) −42.4366 −0.605434 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(18\) 30.8734 0.404274
\(19\) −1.64187 −0.0198248 −0.00991239 0.999951i \(-0.503155\pi\)
−0.00991239 + 0.999951i \(0.503155\pi\)
\(20\) −0.882602 −0.00986779
\(21\) 0 0
\(22\) −98.2644 −0.952275
\(23\) 23.0000 0.208514
\(24\) 27.2039 0.231374
\(25\) −124.951 −0.999611
\(26\) −74.1976 −0.559667
\(27\) 144.305 1.02858
\(28\) 0 0
\(29\) 42.1069 0.269623 0.134811 0.990871i \(-0.456957\pi\)
0.134811 + 0.990871i \(0.456957\pi\)
\(30\) −1.50064 −0.00913259
\(31\) −141.778 −0.821420 −0.410710 0.911766i \(-0.634719\pi\)
−0.410710 + 0.911766i \(0.634719\pi\)
\(32\) −32.0000 −0.176777
\(33\) −167.073 −0.881325
\(34\) 84.8731 0.428106
\(35\) 0 0
\(36\) −61.7468 −0.285865
\(37\) −211.538 −0.939911 −0.469955 0.882690i \(-0.655730\pi\)
−0.469955 + 0.882690i \(0.655730\pi\)
\(38\) 3.28374 0.0140182
\(39\) −126.154 −0.517969
\(40\) 1.76520 0.00697758
\(41\) 221.663 0.844342 0.422171 0.906516i \(-0.361268\pi\)
0.422171 + 0.906516i \(0.361268\pi\)
\(42\) 0 0
\(43\) −207.246 −0.734995 −0.367497 0.930025i \(-0.619785\pi\)
−0.367497 + 0.930025i \(0.619785\pi\)
\(44\) 196.529 0.673360
\(45\) 3.40612 0.0112834
\(46\) −46.0000 −0.147442
\(47\) −118.778 −0.368629 −0.184314 0.982867i \(-0.559006\pi\)
−0.184314 + 0.982867i \(0.559006\pi\)
\(48\) −54.4078 −0.163606
\(49\) 0 0
\(50\) 249.903 0.706831
\(51\) 144.305 0.396210
\(52\) 148.395 0.395744
\(53\) 434.789 1.12685 0.563423 0.826168i \(-0.309484\pi\)
0.563423 + 0.826168i \(0.309484\pi\)
\(54\) −288.611 −0.727314
\(55\) −10.8410 −0.0265783
\(56\) 0 0
\(57\) 5.58316 0.0129738
\(58\) −84.2138 −0.190652
\(59\) 69.1542 0.152595 0.0762975 0.997085i \(-0.475690\pi\)
0.0762975 + 0.997085i \(0.475690\pi\)
\(60\) 3.00127 0.00645772
\(61\) −103.321 −0.216868 −0.108434 0.994104i \(-0.534584\pi\)
−0.108434 + 0.994104i \(0.534584\pi\)
\(62\) 283.555 0.580832
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −8.18587 −0.0156205
\(66\) 334.147 0.623191
\(67\) 8.86339 0.0161617 0.00808086 0.999967i \(-0.497428\pi\)
0.00808086 + 0.999967i \(0.497428\pi\)
\(68\) −169.746 −0.302717
\(69\) −78.2112 −0.136457
\(70\) 0 0
\(71\) −172.114 −0.287692 −0.143846 0.989600i \(-0.545947\pi\)
−0.143846 + 0.989600i \(0.545947\pi\)
\(72\) 123.494 0.202137
\(73\) 291.160 0.466818 0.233409 0.972379i \(-0.425012\pi\)
0.233409 + 0.972379i \(0.425012\pi\)
\(74\) 423.077 0.664617
\(75\) 424.895 0.654169
\(76\) −6.56748 −0.00991239
\(77\) 0 0
\(78\) 252.308 0.366259
\(79\) −381.665 −0.543552 −0.271776 0.962361i \(-0.587611\pi\)
−0.271776 + 0.962361i \(0.587611\pi\)
\(80\) −3.53041 −0.00493390
\(81\) −73.9173 −0.101395
\(82\) −443.327 −0.597040
\(83\) −258.138 −0.341377 −0.170689 0.985325i \(-0.554599\pi\)
−0.170689 + 0.985325i \(0.554599\pi\)
\(84\) 0 0
\(85\) 9.36365 0.0119486
\(86\) 414.493 0.519720
\(87\) −143.184 −0.176447
\(88\) −393.058 −0.476137
\(89\) 26.6642 0.0317573 0.0158786 0.999874i \(-0.494945\pi\)
0.0158786 + 0.999874i \(0.494945\pi\)
\(90\) −6.81223 −0.00797858
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 482.113 0.537557
\(94\) 237.556 0.260660
\(95\) 0.362280 0.000391254 0
\(96\) 108.816 0.115687
\(97\) 35.9974 0.0376802 0.0188401 0.999823i \(-0.494003\pi\)
0.0188401 + 0.999823i \(0.494003\pi\)
\(98\) 0 0
\(99\) −758.439 −0.769960
\(100\) −499.805 −0.499805
\(101\) 982.629 0.968072 0.484036 0.875048i \(-0.339170\pi\)
0.484036 + 0.875048i \(0.339170\pi\)
\(102\) −288.610 −0.280163
\(103\) 804.577 0.769682 0.384841 0.922983i \(-0.374256\pi\)
0.384841 + 0.922983i \(0.374256\pi\)
\(104\) −296.790 −0.279834
\(105\) 0 0
\(106\) −869.578 −0.796801
\(107\) −8.37581 −0.00756748 −0.00378374 0.999993i \(-0.501204\pi\)
−0.00378374 + 0.999993i \(0.501204\pi\)
\(108\) 577.221 0.514289
\(109\) 199.927 0.175684 0.0878420 0.996134i \(-0.472003\pi\)
0.0878420 + 0.996134i \(0.472003\pi\)
\(110\) 21.6821 0.0187937
\(111\) 719.333 0.615100
\(112\) 0 0
\(113\) 658.773 0.548426 0.274213 0.961669i \(-0.411583\pi\)
0.274213 + 0.961669i \(0.411583\pi\)
\(114\) −11.1663 −0.00917387
\(115\) −5.07496 −0.00411515
\(116\) 168.428 0.134811
\(117\) −572.683 −0.452518
\(118\) −138.308 −0.107901
\(119\) 0 0
\(120\) −6.00255 −0.00456629
\(121\) 1082.97 0.813655
\(122\) 206.643 0.153349
\(123\) −753.763 −0.552557
\(124\) −567.111 −0.410710
\(125\) 55.1519 0.0394635
\(126\) 0 0
\(127\) −726.840 −0.507847 −0.253924 0.967224i \(-0.581721\pi\)
−0.253924 + 0.967224i \(0.581721\pi\)
\(128\) −128.000 −0.0883883
\(129\) 704.738 0.480998
\(130\) 16.3717 0.0110454
\(131\) −2710.39 −1.80769 −0.903847 0.427856i \(-0.859269\pi\)
−0.903847 + 0.427856i \(0.859269\pi\)
\(132\) −668.293 −0.440663
\(133\) 0 0
\(134\) −17.7268 −0.0114281
\(135\) −31.8411 −0.0202996
\(136\) 339.492 0.214053
\(137\) 412.910 0.257499 0.128749 0.991677i \(-0.458904\pi\)
0.128749 + 0.991677i \(0.458904\pi\)
\(138\) 156.422 0.0964895
\(139\) 2731.84 1.66699 0.833496 0.552526i \(-0.186336\pi\)
0.833496 + 0.552526i \(0.186336\pi\)
\(140\) 0 0
\(141\) 403.903 0.241240
\(142\) 344.227 0.203429
\(143\) 1822.75 1.06591
\(144\) −246.987 −0.142932
\(145\) −9.29091 −0.00532116
\(146\) −582.320 −0.330090
\(147\) 0 0
\(148\) −846.154 −0.469955
\(149\) −3007.78 −1.65374 −0.826869 0.562394i \(-0.809880\pi\)
−0.826869 + 0.562394i \(0.809880\pi\)
\(150\) −849.790 −0.462567
\(151\) −849.535 −0.457843 −0.228921 0.973445i \(-0.573520\pi\)
−0.228921 + 0.973445i \(0.573520\pi\)
\(152\) 13.1350 0.00700912
\(153\) 655.080 0.346145
\(154\) 0 0
\(155\) 31.2833 0.0162112
\(156\) −504.616 −0.258985
\(157\) 3894.97 1.97995 0.989977 0.141232i \(-0.0451062\pi\)
0.989977 + 0.141232i \(0.0451062\pi\)
\(158\) 763.329 0.384349
\(159\) −1478.49 −0.737435
\(160\) 7.06082 0.00348879
\(161\) 0 0
\(162\) 147.835 0.0716974
\(163\) −1444.79 −0.694264 −0.347132 0.937816i \(-0.612844\pi\)
−0.347132 + 0.937816i \(0.612844\pi\)
\(164\) 886.654 0.422171
\(165\) 36.8648 0.0173935
\(166\) 516.276 0.241390
\(167\) 1456.75 0.675012 0.337506 0.941323i \(-0.390417\pi\)
0.337506 + 0.941323i \(0.390417\pi\)
\(168\) 0 0
\(169\) −820.679 −0.373545
\(170\) −18.7273 −0.00844893
\(171\) 25.3451 0.0113344
\(172\) −828.985 −0.367497
\(173\) −2121.68 −0.932419 −0.466210 0.884674i \(-0.654381\pi\)
−0.466210 + 0.884674i \(0.654381\pi\)
\(174\) 286.368 0.124767
\(175\) 0 0
\(176\) 786.115 0.336680
\(177\) −235.158 −0.0998618
\(178\) −53.3284 −0.0224558
\(179\) −3665.58 −1.53060 −0.765302 0.643672i \(-0.777410\pi\)
−0.765302 + 0.643672i \(0.777410\pi\)
\(180\) 13.6245 0.00564171
\(181\) −1278.28 −0.524939 −0.262470 0.964940i \(-0.584537\pi\)
−0.262470 + 0.964940i \(0.584537\pi\)
\(182\) 0 0
\(183\) 351.343 0.141923
\(184\) −184.000 −0.0737210
\(185\) 46.6761 0.0185497
\(186\) −964.225 −0.380110
\(187\) −2085.00 −0.815350
\(188\) −475.112 −0.184314
\(189\) 0 0
\(190\) −0.724559 −0.000276658 0
\(191\) 280.250 0.106169 0.0530843 0.998590i \(-0.483095\pi\)
0.0530843 + 0.998590i \(0.483095\pi\)
\(192\) −217.631 −0.0818030
\(193\) 3120.93 1.16399 0.581994 0.813193i \(-0.302273\pi\)
0.581994 + 0.813193i \(0.302273\pi\)
\(194\) −71.9948 −0.0266439
\(195\) 27.8359 0.0102224
\(196\) 0 0
\(197\) 2800.74 1.01292 0.506459 0.862264i \(-0.330954\pi\)
0.506459 + 0.862264i \(0.330954\pi\)
\(198\) 1516.88 0.544444
\(199\) 350.245 0.124765 0.0623824 0.998052i \(-0.480130\pi\)
0.0623824 + 0.998052i \(0.480130\pi\)
\(200\) 999.611 0.353416
\(201\) −30.1398 −0.0105766
\(202\) −1965.26 −0.684530
\(203\) 0 0
\(204\) 577.219 0.198105
\(205\) −48.9101 −0.0166636
\(206\) −1609.15 −0.544248
\(207\) −355.044 −0.119214
\(208\) 593.581 0.197872
\(209\) −80.6687 −0.0266984
\(210\) 0 0
\(211\) 2523.65 0.823390 0.411695 0.911322i \(-0.364937\pi\)
0.411695 + 0.911322i \(0.364937\pi\)
\(212\) 1739.16 0.563423
\(213\) 585.270 0.188272
\(214\) 16.7516 0.00535101
\(215\) 45.7290 0.0145055
\(216\) −1154.44 −0.363657
\(217\) 0 0
\(218\) −399.855 −0.124227
\(219\) −990.085 −0.305496
\(220\) −43.3642 −0.0132892
\(221\) −1574.35 −0.479194
\(222\) −1438.67 −0.434941
\(223\) 1396.55 0.419371 0.209686 0.977769i \(-0.432756\pi\)
0.209686 + 0.977769i \(0.432756\pi\)
\(224\) 0 0
\(225\) 1928.84 0.571507
\(226\) −1317.55 −0.387796
\(227\) 4869.56 1.42381 0.711903 0.702278i \(-0.247834\pi\)
0.711903 + 0.702278i \(0.247834\pi\)
\(228\) 22.3326 0.00648690
\(229\) −290.940 −0.0839557 −0.0419779 0.999119i \(-0.513366\pi\)
−0.0419779 + 0.999119i \(0.513366\pi\)
\(230\) 10.1499 0.00290985
\(231\) 0 0
\(232\) −336.855 −0.0953260
\(233\) 2157.21 0.606538 0.303269 0.952905i \(-0.401922\pi\)
0.303269 + 0.952905i \(0.401922\pi\)
\(234\) 1145.37 0.319978
\(235\) 26.2084 0.00727511
\(236\) 276.617 0.0762975
\(237\) 1297.84 0.355713
\(238\) 0 0
\(239\) 850.858 0.230282 0.115141 0.993349i \(-0.463268\pi\)
0.115141 + 0.993349i \(0.463268\pi\)
\(240\) 12.0051 0.00322886
\(241\) 1046.09 0.279604 0.139802 0.990179i \(-0.455353\pi\)
0.139802 + 0.990179i \(0.455353\pi\)
\(242\) −2165.95 −0.575341
\(243\) −3644.89 −0.962222
\(244\) −413.285 −0.108434
\(245\) 0 0
\(246\) 1507.53 0.390717
\(247\) −60.9114 −0.0156911
\(248\) 1134.22 0.290416
\(249\) 877.794 0.223405
\(250\) −110.304 −0.0279049
\(251\) −321.243 −0.0807835 −0.0403917 0.999184i \(-0.512861\pi\)
−0.0403917 + 0.999184i \(0.512861\pi\)
\(252\) 0 0
\(253\) 1130.04 0.280811
\(254\) 1453.68 0.359102
\(255\) −31.8409 −0.00781944
\(256\) 256.000 0.0625000
\(257\) −4863.37 −1.18042 −0.590211 0.807249i \(-0.700956\pi\)
−0.590211 + 0.807249i \(0.700956\pi\)
\(258\) −1409.48 −0.340117
\(259\) 0 0
\(260\) −32.7435 −0.00781025
\(261\) −649.992 −0.154151
\(262\) 5420.78 1.27823
\(263\) −5659.03 −1.32681 −0.663404 0.748261i \(-0.730889\pi\)
−0.663404 + 0.748261i \(0.730889\pi\)
\(264\) 1336.59 0.311596
\(265\) −95.9364 −0.0222390
\(266\) 0 0
\(267\) −90.6712 −0.0207827
\(268\) 35.4536 0.00808086
\(269\) 1846.82 0.418597 0.209298 0.977852i \(-0.432882\pi\)
0.209298 + 0.977852i \(0.432882\pi\)
\(270\) 63.6821 0.0143540
\(271\) 6954.32 1.55884 0.779419 0.626503i \(-0.215515\pi\)
0.779419 + 0.626503i \(0.215515\pi\)
\(272\) −678.985 −0.151358
\(273\) 0 0
\(274\) −825.820 −0.182079
\(275\) −6139.13 −1.34620
\(276\) −312.845 −0.0682284
\(277\) −2368.41 −0.513732 −0.256866 0.966447i \(-0.582690\pi\)
−0.256866 + 0.966447i \(0.582690\pi\)
\(278\) −5463.68 −1.17874
\(279\) 2188.58 0.469630
\(280\) 0 0
\(281\) −2537.83 −0.538770 −0.269385 0.963033i \(-0.586820\pi\)
−0.269385 + 0.963033i \(0.586820\pi\)
\(282\) −807.806 −0.170582
\(283\) −1213.90 −0.254978 −0.127489 0.991840i \(-0.540692\pi\)
−0.127489 + 0.991840i \(0.540692\pi\)
\(284\) −688.454 −0.143846
\(285\) −1.23193 −0.000256046 0
\(286\) −3645.49 −0.753715
\(287\) 0 0
\(288\) 493.974 0.101068
\(289\) −3112.14 −0.633450
\(290\) 18.5818 0.00376263
\(291\) −122.409 −0.0246588
\(292\) 1164.64 0.233409
\(293\) −6666.15 −1.32915 −0.664575 0.747222i \(-0.731387\pi\)
−0.664575 + 0.747222i \(0.731387\pi\)
\(294\) 0 0
\(295\) −15.2589 −0.00301155
\(296\) 1692.31 0.332309
\(297\) 7090.04 1.38521
\(298\) 6015.56 1.16937
\(299\) 853.272 0.165037
\(300\) 1699.58 0.327084
\(301\) 0 0
\(302\) 1699.07 0.323744
\(303\) −3341.42 −0.633529
\(304\) −26.2699 −0.00495620
\(305\) 22.7979 0.00428001
\(306\) −1310.16 −0.244761
\(307\) −7841.95 −1.45786 −0.728931 0.684587i \(-0.759983\pi\)
−0.728931 + 0.684587i \(0.759983\pi\)
\(308\) 0 0
\(309\) −2735.95 −0.503698
\(310\) −62.5666 −0.0114630
\(311\) 3854.41 0.702776 0.351388 0.936230i \(-0.385710\pi\)
0.351388 + 0.936230i \(0.385710\pi\)
\(312\) 1009.23 0.183130
\(313\) −118.929 −0.0214769 −0.0107384 0.999942i \(-0.503418\pi\)
−0.0107384 + 0.999942i \(0.503418\pi\)
\(314\) −7789.94 −1.40004
\(315\) 0 0
\(316\) −1526.66 −0.271776
\(317\) −9647.74 −1.70937 −0.854686 0.519145i \(-0.826250\pi\)
−0.854686 + 0.519145i \(0.826250\pi\)
\(318\) 2956.99 0.521445
\(319\) 2068.81 0.363106
\(320\) −14.1216 −0.00246695
\(321\) 28.4818 0.00495234
\(322\) 0 0
\(323\) 69.6753 0.0120026
\(324\) −295.669 −0.0506977
\(325\) −4635.54 −0.791181
\(326\) 2889.59 0.490919
\(327\) −679.850 −0.114972
\(328\) −1773.31 −0.298520
\(329\) 0 0
\(330\) −73.7296 −0.0122990
\(331\) −4187.63 −0.695387 −0.347693 0.937608i \(-0.613035\pi\)
−0.347693 + 0.937608i \(0.613035\pi\)
\(332\) −1032.55 −0.170689
\(333\) 3265.46 0.537375
\(334\) −2913.51 −0.477305
\(335\) −1.95571 −0.000318961 0
\(336\) 0 0
\(337\) −1460.68 −0.236107 −0.118054 0.993007i \(-0.537665\pi\)
−0.118054 + 0.993007i \(0.537665\pi\)
\(338\) 1641.36 0.264136
\(339\) −2240.15 −0.358903
\(340\) 37.4546 0.00597430
\(341\) −6965.85 −1.10622
\(342\) −50.6901 −0.00801464
\(343\) 0 0
\(344\) 1657.97 0.259860
\(345\) 17.2573 0.00269305
\(346\) 4243.36 0.659320
\(347\) −4543.81 −0.702953 −0.351476 0.936197i \(-0.614320\pi\)
−0.351476 + 0.936197i \(0.614320\pi\)
\(348\) −572.736 −0.0882237
\(349\) −5077.83 −0.778825 −0.389412 0.921063i \(-0.627322\pi\)
−0.389412 + 0.921063i \(0.627322\pi\)
\(350\) 0 0
\(351\) 5353.56 0.814107
\(352\) −1572.23 −0.238069
\(353\) −7926.46 −1.19514 −0.597568 0.801818i \(-0.703866\pi\)
−0.597568 + 0.801818i \(0.703866\pi\)
\(354\) 470.315 0.0706129
\(355\) 37.9769 0.00567777
\(356\) 106.657 0.0158786
\(357\) 0 0
\(358\) 7331.15 1.08230
\(359\) −4822.99 −0.709047 −0.354524 0.935047i \(-0.615357\pi\)
−0.354524 + 0.935047i \(0.615357\pi\)
\(360\) −27.2489 −0.00398929
\(361\) −6856.30 −0.999607
\(362\) 2556.57 0.371188
\(363\) −3682.64 −0.532475
\(364\) 0 0
\(365\) −64.2446 −0.00921292
\(366\) −702.685 −0.100355
\(367\) −3207.38 −0.456195 −0.228098 0.973638i \(-0.573251\pi\)
−0.228098 + 0.973638i \(0.573251\pi\)
\(368\) 368.000 0.0521286
\(369\) −3421.75 −0.482735
\(370\) −93.3521 −0.0131166
\(371\) 0 0
\(372\) 1928.45 0.268778
\(373\) −7101.61 −0.985811 −0.492906 0.870083i \(-0.664065\pi\)
−0.492906 + 0.870083i \(0.664065\pi\)
\(374\) 4170.00 0.576539
\(375\) −187.543 −0.0258258
\(376\) 950.225 0.130330
\(377\) 1562.12 0.213403
\(378\) 0 0
\(379\) −10846.0 −1.46998 −0.734991 0.678077i \(-0.762814\pi\)
−0.734991 + 0.678077i \(0.762814\pi\)
\(380\) 1.44912 0.000195627 0
\(381\) 2471.61 0.332347
\(382\) −560.500 −0.0750725
\(383\) 3407.42 0.454598 0.227299 0.973825i \(-0.427010\pi\)
0.227299 + 0.973825i \(0.427010\pi\)
\(384\) 435.262 0.0578434
\(385\) 0 0
\(386\) −6241.86 −0.823063
\(387\) 3199.20 0.420218
\(388\) 143.990 0.0188401
\(389\) −4925.24 −0.641952 −0.320976 0.947087i \(-0.604011\pi\)
−0.320976 + 0.947087i \(0.604011\pi\)
\(390\) −55.6718 −0.00722834
\(391\) −976.041 −0.126242
\(392\) 0 0
\(393\) 9216.64 1.18300
\(394\) −5601.49 −0.716241
\(395\) 84.2145 0.0107273
\(396\) −3033.76 −0.384980
\(397\) −7891.95 −0.997696 −0.498848 0.866689i \(-0.666243\pi\)
−0.498848 + 0.866689i \(0.666243\pi\)
\(398\) −700.490 −0.0882220
\(399\) 0 0
\(400\) −1999.22 −0.249903
\(401\) −12355.0 −1.53860 −0.769298 0.638890i \(-0.779394\pi\)
−0.769298 + 0.638890i \(0.779394\pi\)
\(402\) 60.2796 0.00747879
\(403\) −5259.78 −0.650145
\(404\) 3930.52 0.484036
\(405\) 16.3099 0.00200110
\(406\) 0 0
\(407\) −10393.4 −1.26580
\(408\) −1154.44 −0.140081
\(409\) −5203.83 −0.629126 −0.314563 0.949237i \(-0.601858\pi\)
−0.314563 + 0.949237i \(0.601858\pi\)
\(410\) 97.8203 0.0117829
\(411\) −1404.09 −0.168513
\(412\) 3218.31 0.384841
\(413\) 0 0
\(414\) 710.088 0.0842969
\(415\) 56.9582 0.00673728
\(416\) −1187.16 −0.139917
\(417\) −9289.59 −1.09092
\(418\) 161.337 0.0188786
\(419\) 3863.85 0.450505 0.225252 0.974300i \(-0.427679\pi\)
0.225252 + 0.974300i \(0.427679\pi\)
\(420\) 0 0
\(421\) 837.811 0.0969891 0.0484945 0.998823i \(-0.484558\pi\)
0.0484945 + 0.998823i \(0.484558\pi\)
\(422\) −5047.30 −0.582225
\(423\) 1833.54 0.210756
\(424\) −3478.31 −0.398400
\(425\) 5302.50 0.605198
\(426\) −1170.54 −0.133129
\(427\) 0 0
\(428\) −33.5032 −0.00378374
\(429\) −6198.22 −0.697559
\(430\) −91.4580 −0.0102570
\(431\) −4882.25 −0.545637 −0.272818 0.962066i \(-0.587956\pi\)
−0.272818 + 0.962066i \(0.587956\pi\)
\(432\) 2308.89 0.257144
\(433\) 5190.45 0.576067 0.288034 0.957620i \(-0.406999\pi\)
0.288034 + 0.957620i \(0.406999\pi\)
\(434\) 0 0
\(435\) 31.5936 0.00348229
\(436\) 799.709 0.0878420
\(437\) −37.7630 −0.00413375
\(438\) 1980.17 0.216019
\(439\) −1001.29 −0.108859 −0.0544294 0.998518i \(-0.517334\pi\)
−0.0544294 + 0.998518i \(0.517334\pi\)
\(440\) 86.7284 0.00939685
\(441\) 0 0
\(442\) 3148.69 0.338841
\(443\) 9544.03 1.02359 0.511795 0.859107i \(-0.328981\pi\)
0.511795 + 0.859107i \(0.328981\pi\)
\(444\) 2877.33 0.307550
\(445\) −5.88347 −0.000626749 0
\(446\) −2793.10 −0.296540
\(447\) 10227.9 1.08225
\(448\) 0 0
\(449\) −8241.63 −0.866251 −0.433125 0.901334i \(-0.642589\pi\)
−0.433125 + 0.901334i \(0.642589\pi\)
\(450\) −3857.67 −0.404116
\(451\) 10890.8 1.13709
\(452\) 2635.09 0.274213
\(453\) 2888.83 0.299623
\(454\) −9739.11 −1.00678
\(455\) 0 0
\(456\) −44.6652 −0.00458693
\(457\) 9053.23 0.926678 0.463339 0.886181i \(-0.346651\pi\)
0.463339 + 0.886181i \(0.346651\pi\)
\(458\) 581.880 0.0593657
\(459\) −6123.82 −0.622735
\(460\) −20.2998 −0.00205758
\(461\) 1160.76 0.117271 0.0586357 0.998279i \(-0.481325\pi\)
0.0586357 + 0.998279i \(0.481325\pi\)
\(462\) 0 0
\(463\) −16766.1 −1.68291 −0.841456 0.540325i \(-0.818301\pi\)
−0.841456 + 0.540325i \(0.818301\pi\)
\(464\) 673.711 0.0674057
\(465\) −106.378 −0.0106090
\(466\) −4314.41 −0.428887
\(467\) −4184.19 −0.414606 −0.207303 0.978277i \(-0.566469\pi\)
−0.207303 + 0.978277i \(0.566469\pi\)
\(468\) −2290.73 −0.226259
\(469\) 0 0
\(470\) −52.4169 −0.00514428
\(471\) −13244.8 −1.29573
\(472\) −553.233 −0.0539505
\(473\) −10182.5 −0.989832
\(474\) −2595.69 −0.251527
\(475\) 205.154 0.0198171
\(476\) 0 0
\(477\) −6711.71 −0.644252
\(478\) −1701.72 −0.162834
\(479\) −13344.5 −1.27291 −0.636456 0.771313i \(-0.719600\pi\)
−0.636456 + 0.771313i \(0.719600\pi\)
\(480\) −24.0102 −0.00228315
\(481\) −7847.82 −0.743929
\(482\) −2092.18 −0.197710
\(483\) 0 0
\(484\) 4331.90 0.406827
\(485\) −7.94284 −0.000743641 0
\(486\) 7289.78 0.680393
\(487\) −4118.17 −0.383187 −0.191594 0.981474i \(-0.561366\pi\)
−0.191594 + 0.981474i \(0.561366\pi\)
\(488\) 826.571 0.0766744
\(489\) 4913.00 0.454343
\(490\) 0 0
\(491\) −12559.9 −1.15442 −0.577209 0.816597i \(-0.695858\pi\)
−0.577209 + 0.816597i \(0.695858\pi\)
\(492\) −3015.05 −0.276279
\(493\) −1786.87 −0.163239
\(494\) 121.823 0.0110953
\(495\) 167.350 0.0151956
\(496\) −2268.44 −0.205355
\(497\) 0 0
\(498\) −1755.59 −0.157971
\(499\) −5030.52 −0.451297 −0.225648 0.974209i \(-0.572450\pi\)
−0.225648 + 0.974209i \(0.572450\pi\)
\(500\) 220.608 0.0197317
\(501\) −4953.67 −0.441744
\(502\) 642.485 0.0571225
\(503\) 13705.6 1.21492 0.607460 0.794350i \(-0.292189\pi\)
0.607460 + 0.794350i \(0.292189\pi\)
\(504\) 0 0
\(505\) −216.818 −0.0191055
\(506\) −2260.08 −0.198563
\(507\) 2790.71 0.244457
\(508\) −2907.36 −0.253924
\(509\) −282.533 −0.0246032 −0.0123016 0.999924i \(-0.503916\pi\)
−0.0123016 + 0.999924i \(0.503916\pi\)
\(510\) 63.6819 0.00552918
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −236.931 −0.0203913
\(514\) 9726.74 0.834685
\(515\) −177.530 −0.0151901
\(516\) 2818.95 0.240499
\(517\) −5835.83 −0.496440
\(518\) 0 0
\(519\) 7214.75 0.610197
\(520\) 65.4869 0.00552268
\(521\) 16799.8 1.41269 0.706346 0.707867i \(-0.250342\pi\)
0.706346 + 0.707867i \(0.250342\pi\)
\(522\) 1299.98 0.109001
\(523\) 3898.08 0.325910 0.162955 0.986633i \(-0.447897\pi\)
0.162955 + 0.986633i \(0.447897\pi\)
\(524\) −10841.6 −0.903847
\(525\) 0 0
\(526\) 11318.1 0.938196
\(527\) 6016.55 0.497315
\(528\) −2673.17 −0.220331
\(529\) 529.000 0.0434783
\(530\) 191.873 0.0157253
\(531\) −1067.51 −0.0872431
\(532\) 0 0
\(533\) 8223.45 0.668287
\(534\) 181.342 0.0146956
\(535\) 1.84813 0.000149349 0
\(536\) −70.9071 −0.00571403
\(537\) 12464.7 1.00166
\(538\) −3693.64 −0.295992
\(539\) 0 0
\(540\) −127.364 −0.0101498
\(541\) 7184.02 0.570916 0.285458 0.958391i \(-0.407854\pi\)
0.285458 + 0.958391i \(0.407854\pi\)
\(542\) −13908.6 −1.10226
\(543\) 4346.78 0.343533
\(544\) 1357.97 0.107027
\(545\) −44.1141 −0.00346723
\(546\) 0 0
\(547\) −16248.4 −1.27007 −0.635037 0.772482i \(-0.719015\pi\)
−0.635037 + 0.772482i \(0.719015\pi\)
\(548\) 1651.64 0.128749
\(549\) 1594.94 0.123990
\(550\) 12278.3 0.951904
\(551\) −69.1341 −0.00534521
\(552\) 625.689 0.0482447
\(553\) 0 0
\(554\) 4736.82 0.363264
\(555\) −158.721 −0.0121394
\(556\) 10927.4 0.833496
\(557\) −22275.0 −1.69448 −0.847238 0.531213i \(-0.821736\pi\)
−0.847238 + 0.531213i \(0.821736\pi\)
\(558\) −4377.16 −0.332079
\(559\) −7688.59 −0.581740
\(560\) 0 0
\(561\) 7090.02 0.533584
\(562\) 5075.67 0.380968
\(563\) 15899.3 1.19019 0.595095 0.803656i \(-0.297115\pi\)
0.595095 + 0.803656i \(0.297115\pi\)
\(564\) 1615.61 0.120620
\(565\) −145.359 −0.0108235
\(566\) 2427.80 0.180297
\(567\) 0 0
\(568\) 1376.91 0.101714
\(569\) −18584.4 −1.36924 −0.684622 0.728899i \(-0.740033\pi\)
−0.684622 + 0.728899i \(0.740033\pi\)
\(570\) 2.46385 0.000181052 0
\(571\) 14066.0 1.03090 0.515449 0.856920i \(-0.327625\pi\)
0.515449 + 0.856920i \(0.327625\pi\)
\(572\) 7290.98 0.532957
\(573\) −952.987 −0.0694792
\(574\) 0 0
\(575\) −2873.88 −0.208433
\(576\) −987.949 −0.0714662
\(577\) −3524.26 −0.254275 −0.127138 0.991885i \(-0.540579\pi\)
−0.127138 + 0.991885i \(0.540579\pi\)
\(578\) 6224.28 0.447917
\(579\) −10612.7 −0.761741
\(580\) −37.1637 −0.00266058
\(581\) 0 0
\(582\) 244.817 0.0174364
\(583\) 21362.1 1.51755
\(584\) −2329.28 −0.165045
\(585\) 126.363 0.00893070
\(586\) 13332.3 0.939850
\(587\) 298.215 0.0209688 0.0104844 0.999945i \(-0.496663\pi\)
0.0104844 + 0.999945i \(0.496663\pi\)
\(588\) 0 0
\(589\) 232.781 0.0162845
\(590\) 30.5178 0.00212949
\(591\) −9523.89 −0.662877
\(592\) −3384.62 −0.234978
\(593\) 16813.1 1.16430 0.582150 0.813082i \(-0.302212\pi\)
0.582150 + 0.813082i \(0.302212\pi\)
\(594\) −14180.1 −0.979488
\(595\) 0 0
\(596\) −12031.1 −0.826869
\(597\) −1191.00 −0.0816490
\(598\) −1706.54 −0.116699
\(599\) 12432.1 0.848013 0.424007 0.905659i \(-0.360623\pi\)
0.424007 + 0.905659i \(0.360623\pi\)
\(600\) −3399.16 −0.231284
\(601\) 7094.18 0.481494 0.240747 0.970588i \(-0.422608\pi\)
0.240747 + 0.970588i \(0.422608\pi\)
\(602\) 0 0
\(603\) −136.822 −0.00924014
\(604\) −3398.14 −0.228921
\(605\) −238.959 −0.0160580
\(606\) 6682.83 0.447973
\(607\) −6159.43 −0.411867 −0.205934 0.978566i \(-0.566023\pi\)
−0.205934 + 0.978566i \(0.566023\pi\)
\(608\) 52.5399 0.00350456
\(609\) 0 0
\(610\) −45.5958 −0.00302643
\(611\) −4406.52 −0.291766
\(612\) 2620.32 0.173072
\(613\) −8427.93 −0.555303 −0.277652 0.960682i \(-0.589556\pi\)
−0.277652 + 0.960682i \(0.589556\pi\)
\(614\) 15683.9 1.03086
\(615\) 166.318 0.0109050
\(616\) 0 0
\(617\) −7542.03 −0.492108 −0.246054 0.969256i \(-0.579134\pi\)
−0.246054 + 0.969256i \(0.579134\pi\)
\(618\) 5471.90 0.356169
\(619\) 4722.63 0.306654 0.153327 0.988176i \(-0.451001\pi\)
0.153327 + 0.988176i \(0.451001\pi\)
\(620\) 125.133 0.00810560
\(621\) 3319.02 0.214473
\(622\) −7708.82 −0.496938
\(623\) 0 0
\(624\) −2018.46 −0.129492
\(625\) 15606.7 0.998832
\(626\) 237.858 0.0151864
\(627\) 274.313 0.0174721
\(628\) 15579.9 0.989977
\(629\) 8976.96 0.569054
\(630\) 0 0
\(631\) 8273.12 0.521946 0.260973 0.965346i \(-0.415957\pi\)
0.260973 + 0.965346i \(0.415957\pi\)
\(632\) 3053.32 0.192175
\(633\) −8581.63 −0.538846
\(634\) 19295.5 1.20871
\(635\) 160.378 0.0100227
\(636\) −5913.97 −0.368717
\(637\) 0 0
\(638\) −4137.61 −0.256755
\(639\) 2656.87 0.164482
\(640\) 28.2433 0.00174440
\(641\) 1256.63 0.0774319 0.0387159 0.999250i \(-0.487673\pi\)
0.0387159 + 0.999250i \(0.487673\pi\)
\(642\) −56.9636 −0.00350183
\(643\) 7773.92 0.476786 0.238393 0.971169i \(-0.423379\pi\)
0.238393 + 0.971169i \(0.423379\pi\)
\(644\) 0 0
\(645\) −155.501 −0.00949277
\(646\) −139.351 −0.00848712
\(647\) −5750.18 −0.349402 −0.174701 0.984622i \(-0.555896\pi\)
−0.174701 + 0.984622i \(0.555896\pi\)
\(648\) 591.338 0.0358487
\(649\) 3397.70 0.205503
\(650\) 9271.09 0.559449
\(651\) 0 0
\(652\) −5779.18 −0.347132
\(653\) 2579.42 0.154580 0.0772899 0.997009i \(-0.475373\pi\)
0.0772899 + 0.997009i \(0.475373\pi\)
\(654\) 1359.70 0.0812973
\(655\) 598.049 0.0356759
\(656\) 3546.61 0.211085
\(657\) −4494.55 −0.266893
\(658\) 0 0
\(659\) −19349.4 −1.14377 −0.571885 0.820334i \(-0.693788\pi\)
−0.571885 + 0.820334i \(0.693788\pi\)
\(660\) 147.459 0.00869673
\(661\) −22301.3 −1.31229 −0.656143 0.754637i \(-0.727813\pi\)
−0.656143 + 0.754637i \(0.727813\pi\)
\(662\) 8375.26 0.491713
\(663\) 5353.54 0.313596
\(664\) 2065.10 0.120695
\(665\) 0 0
\(666\) −6530.91 −0.379982
\(667\) 968.459 0.0562202
\(668\) 5827.01 0.337506
\(669\) −4748.94 −0.274446
\(670\) 3.91142 0.000225539 0
\(671\) −5076.41 −0.292060
\(672\) 0 0
\(673\) 12650.6 0.724582 0.362291 0.932065i \(-0.381995\pi\)
0.362291 + 0.932065i \(0.381995\pi\)
\(674\) 2921.35 0.166953
\(675\) −18031.1 −1.02818
\(676\) −3282.72 −0.186773
\(677\) −25600.3 −1.45332 −0.726660 0.686997i \(-0.758928\pi\)
−0.726660 + 0.686997i \(0.758928\pi\)
\(678\) 4480.30 0.253783
\(679\) 0 0
\(680\) −74.9092 −0.00422446
\(681\) −16558.9 −0.931772
\(682\) 13931.7 0.782217
\(683\) 6962.45 0.390059 0.195030 0.980797i \(-0.437520\pi\)
0.195030 + 0.980797i \(0.437520\pi\)
\(684\) 101.380 0.00566721
\(685\) −91.1088 −0.00508188
\(686\) 0 0
\(687\) 989.337 0.0549426
\(688\) −3315.94 −0.183749
\(689\) 16130.1 0.891886
\(690\) −34.5147 −0.00190428
\(691\) −18379.3 −1.01184 −0.505919 0.862581i \(-0.668846\pi\)
−0.505919 + 0.862581i \(0.668846\pi\)
\(692\) −8486.73 −0.466210
\(693\) 0 0
\(694\) 9087.62 0.497063
\(695\) −602.782 −0.0328991
\(696\) 1145.47 0.0623836
\(697\) −9406.63 −0.511193
\(698\) 10155.7 0.550712
\(699\) −7335.55 −0.396933
\(700\) 0 0
\(701\) −25533.9 −1.37575 −0.687876 0.725828i \(-0.741457\pi\)
−0.687876 + 0.725828i \(0.741457\pi\)
\(702\) −10707.1 −0.575661
\(703\) 347.319 0.0186335
\(704\) 3144.46 0.168340
\(705\) −89.1214 −0.00476100
\(706\) 15852.9 0.845089
\(707\) 0 0
\(708\) −940.631 −0.0499309
\(709\) 18440.0 0.976771 0.488385 0.872628i \(-0.337586\pi\)
0.488385 + 0.872628i \(0.337586\pi\)
\(710\) −75.9539 −0.00401479
\(711\) 5891.64 0.310765
\(712\) −213.314 −0.0112279
\(713\) −3260.89 −0.171278
\(714\) 0 0
\(715\) −402.190 −0.0210364
\(716\) −14662.3 −0.765302
\(717\) −2893.33 −0.150702
\(718\) 9645.99 0.501372
\(719\) −15988.6 −0.829308 −0.414654 0.909979i \(-0.636097\pi\)
−0.414654 + 0.909979i \(0.636097\pi\)
\(720\) 54.4979 0.00282085
\(721\) 0 0
\(722\) 13712.6 0.706829
\(723\) −3557.22 −0.182980
\(724\) −5113.13 −0.262470
\(725\) −5261.31 −0.269518
\(726\) 7365.28 0.376517
\(727\) 24613.1 1.25564 0.627820 0.778359i \(-0.283948\pi\)
0.627820 + 0.778359i \(0.283948\pi\)
\(728\) 0 0
\(729\) 14390.2 0.731096
\(730\) 128.489 0.00651452
\(731\) 8794.82 0.444991
\(732\) 1405.37 0.0709617
\(733\) −25613.2 −1.29065 −0.645325 0.763908i \(-0.723278\pi\)
−0.645325 + 0.763908i \(0.723278\pi\)
\(734\) 6414.75 0.322579
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 435.478 0.0217653
\(738\) 6843.50 0.341345
\(739\) 2818.95 0.140320 0.0701602 0.997536i \(-0.477649\pi\)
0.0701602 + 0.997536i \(0.477649\pi\)
\(740\) 186.704 0.00927484
\(741\) 207.128 0.0102686
\(742\) 0 0
\(743\) −23601.8 −1.16536 −0.582682 0.812700i \(-0.697997\pi\)
−0.582682 + 0.812700i \(0.697997\pi\)
\(744\) −3856.90 −0.190055
\(745\) 663.668 0.0326375
\(746\) 14203.2 0.697074
\(747\) 3984.80 0.195175
\(748\) −8340.01 −0.407675
\(749\) 0 0
\(750\) 375.086 0.0182616
\(751\) 8940.49 0.434411 0.217206 0.976126i \(-0.430306\pi\)
0.217206 + 0.976126i \(0.430306\pi\)
\(752\) −1900.45 −0.0921572
\(753\) 1092.38 0.0528666
\(754\) −3124.23 −0.150899
\(755\) 187.450 0.00903579
\(756\) 0 0
\(757\) −25082.5 −1.20428 −0.602139 0.798392i \(-0.705685\pi\)
−0.602139 + 0.798392i \(0.705685\pi\)
\(758\) 21692.1 1.03943
\(759\) −3842.69 −0.183769
\(760\) −2.89824 −0.000138329 0
\(761\) 4364.44 0.207898 0.103949 0.994583i \(-0.466852\pi\)
0.103949 + 0.994583i \(0.466852\pi\)
\(762\) −4943.22 −0.235005
\(763\) 0 0
\(764\) 1121.00 0.0530843
\(765\) −144.544 −0.00683136
\(766\) −6814.84 −0.321450
\(767\) 2565.54 0.120777
\(768\) −870.524 −0.0409015
\(769\) −13115.8 −0.615042 −0.307521 0.951541i \(-0.599499\pi\)
−0.307521 + 0.951541i \(0.599499\pi\)
\(770\) 0 0
\(771\) 16537.8 0.772496
\(772\) 12483.7 0.581994
\(773\) −18034.1 −0.839121 −0.419561 0.907727i \(-0.637816\pi\)
−0.419561 + 0.907727i \(0.637816\pi\)
\(774\) −6398.40 −0.297139
\(775\) 17715.3 0.821100
\(776\) −287.979 −0.0133220
\(777\) 0 0
\(778\) 9850.47 0.453929
\(779\) −363.943 −0.0167389
\(780\) 111.344 0.00511121
\(781\) −8456.32 −0.387440
\(782\) 1952.08 0.0892664
\(783\) 6076.25 0.277328
\(784\) 0 0
\(785\) −859.428 −0.0390755
\(786\) −18433.3 −0.836505
\(787\) −17241.3 −0.780921 −0.390461 0.920620i \(-0.627684\pi\)
−0.390461 + 0.920620i \(0.627684\pi\)
\(788\) 11203.0 0.506459
\(789\) 19243.4 0.868295
\(790\) −168.429 −0.00758536
\(791\) 0 0
\(792\) 6067.52 0.272222
\(793\) −3833.10 −0.171648
\(794\) 15783.9 0.705478
\(795\) 326.230 0.0145537
\(796\) 1400.98 0.0623824
\(797\) 20475.3 0.910004 0.455002 0.890490i \(-0.349639\pi\)
0.455002 + 0.890490i \(0.349639\pi\)
\(798\) 0 0
\(799\) 5040.53 0.223180
\(800\) 3998.44 0.176708
\(801\) −411.607 −0.0181566
\(802\) 24709.9 1.08795
\(803\) 14305.3 0.628673
\(804\) −120.559 −0.00528831
\(805\) 0 0
\(806\) 10519.6 0.459722
\(807\) −6280.08 −0.273939
\(808\) −7861.03 −0.342265
\(809\) −10690.3 −0.464587 −0.232294 0.972646i \(-0.574623\pi\)
−0.232294 + 0.972646i \(0.574623\pi\)
\(810\) −32.6198 −0.00141499
\(811\) 16130.1 0.698402 0.349201 0.937048i \(-0.386453\pi\)
0.349201 + 0.937048i \(0.386453\pi\)
\(812\) 0 0
\(813\) −23648.1 −1.02014
\(814\) 20786.7 0.895054
\(815\) 318.795 0.0137017
\(816\) 2308.88 0.0990526
\(817\) 340.272 0.0145711
\(818\) 10407.7 0.444859
\(819\) 0 0
\(820\) −195.641 −0.00833179
\(821\) 398.560 0.0169426 0.00847128 0.999964i \(-0.497303\pi\)
0.00847128 + 0.999964i \(0.497303\pi\)
\(822\) 2808.19 0.119157
\(823\) 11687.1 0.495004 0.247502 0.968887i \(-0.420390\pi\)
0.247502 + 0.968887i \(0.420390\pi\)
\(824\) −6436.61 −0.272124
\(825\) 20876.0 0.880982
\(826\) 0 0
\(827\) 13169.7 0.553755 0.276877 0.960905i \(-0.410700\pi\)
0.276877 + 0.960905i \(0.410700\pi\)
\(828\) −1420.18 −0.0596069
\(829\) 1207.96 0.0506083 0.0253042 0.999680i \(-0.491945\pi\)
0.0253042 + 0.999680i \(0.491945\pi\)
\(830\) −113.916 −0.00476397
\(831\) 8053.74 0.336199
\(832\) 2374.32 0.0989361
\(833\) 0 0
\(834\) 18579.2 0.771396
\(835\) −321.433 −0.0133217
\(836\) −322.675 −0.0133492
\(837\) −20459.3 −0.844894
\(838\) −7727.70 −0.318555
\(839\) −16022.5 −0.659308 −0.329654 0.944102i \(-0.606932\pi\)
−0.329654 + 0.944102i \(0.606932\pi\)
\(840\) 0 0
\(841\) −22616.0 −0.927304
\(842\) −1675.62 −0.0685816
\(843\) 8629.86 0.352584
\(844\) 10094.6 0.411695
\(845\) 181.083 0.00737214
\(846\) −3667.08 −0.149027
\(847\) 0 0
\(848\) 6956.62 0.281712
\(849\) 4127.85 0.166864
\(850\) −10605.0 −0.427940
\(851\) −4865.38 −0.195985
\(852\) 2341.08 0.0941362
\(853\) 24877.7 0.998588 0.499294 0.866433i \(-0.333593\pi\)
0.499294 + 0.866433i \(0.333593\pi\)
\(854\) 0 0
\(855\) −5.59240 −0.000223691 0
\(856\) 67.0065 0.00267551
\(857\) −20654.2 −0.823260 −0.411630 0.911351i \(-0.635040\pi\)
−0.411630 + 0.911351i \(0.635040\pi\)
\(858\) 12396.4 0.493249
\(859\) 31241.4 1.24091 0.620455 0.784242i \(-0.286948\pi\)
0.620455 + 0.784242i \(0.286948\pi\)
\(860\) 182.916 0.00725277
\(861\) 0 0
\(862\) 9764.49 0.385823
\(863\) 41099.2 1.62113 0.810565 0.585649i \(-0.199160\pi\)
0.810565 + 0.585649i \(0.199160\pi\)
\(864\) −4617.77 −0.181828
\(865\) 468.150 0.0184018
\(866\) −10380.9 −0.407341
\(867\) 10582.8 0.414545
\(868\) 0 0
\(869\) −18752.0 −0.732013
\(870\) −63.1872 −0.00246235
\(871\) 328.821 0.0127918
\(872\) −1599.42 −0.0621137
\(873\) −555.681 −0.0215429
\(874\) 75.5260 0.00292301
\(875\) 0 0
\(876\) −3960.34 −0.152748
\(877\) 22061.8 0.849457 0.424728 0.905321i \(-0.360370\pi\)
0.424728 + 0.905321i \(0.360370\pi\)
\(878\) 2002.58 0.0769748
\(879\) 22668.1 0.869827
\(880\) −173.457 −0.00664458
\(881\) −25185.5 −0.963135 −0.481568 0.876409i \(-0.659932\pi\)
−0.481568 + 0.876409i \(0.659932\pi\)
\(882\) 0 0
\(883\) 42938.0 1.63644 0.818221 0.574903i \(-0.194960\pi\)
0.818221 + 0.574903i \(0.194960\pi\)
\(884\) −6297.38 −0.239597
\(885\) 51.8877 0.00197083
\(886\) −19088.1 −0.723788
\(887\) −10101.2 −0.382375 −0.191187 0.981554i \(-0.561234\pi\)
−0.191187 + 0.981554i \(0.561234\pi\)
\(888\) −5754.67 −0.217471
\(889\) 0 0
\(890\) 11.7669 0.000443178 0
\(891\) −3631.72 −0.136551
\(892\) 5586.19 0.209686
\(893\) 195.018 0.00730799
\(894\) −20455.8 −0.765263
\(895\) 808.811 0.0302073
\(896\) 0 0
\(897\) −2901.54 −0.108004
\(898\) 16483.3 0.612532
\(899\) −5969.82 −0.221473
\(900\) 7715.34 0.285754
\(901\) −18450.9 −0.682231
\(902\) −21781.6 −0.804045
\(903\) 0 0
\(904\) −5270.19 −0.193898
\(905\) 282.054 0.0103600
\(906\) −5777.67 −0.211865
\(907\) −18777.1 −0.687413 −0.343706 0.939077i \(-0.611682\pi\)
−0.343706 + 0.939077i \(0.611682\pi\)
\(908\) 19478.2 0.711903
\(909\) −15168.6 −0.553475
\(910\) 0 0
\(911\) −18212.5 −0.662356 −0.331178 0.943568i \(-0.607446\pi\)
−0.331178 + 0.943568i \(0.607446\pi\)
\(912\) 89.3305 0.00324345
\(913\) −12682.9 −0.459740
\(914\) −18106.5 −0.655261
\(915\) −77.5239 −0.00280094
\(916\) −1163.76 −0.0419779
\(917\) 0 0
\(918\) 12247.6 0.440340
\(919\) 38684.4 1.38855 0.694276 0.719709i \(-0.255725\pi\)
0.694276 + 0.719709i \(0.255725\pi\)
\(920\) 40.5997 0.00145493
\(921\) 26666.4 0.954060
\(922\) −2321.53 −0.0829234
\(923\) −6385.21 −0.227705
\(924\) 0 0
\(925\) 26432.0 0.939545
\(926\) 33532.3 1.19000
\(927\) −12420.0 −0.440050
\(928\) −1347.42 −0.0476630
\(929\) −18022.7 −0.636497 −0.318249 0.948007i \(-0.603095\pi\)
−0.318249 + 0.948007i \(0.603095\pi\)
\(930\) 212.757 0.00750169
\(931\) 0 0
\(932\) 8628.83 0.303269
\(933\) −13106.9 −0.459914
\(934\) 8368.37 0.293171
\(935\) 460.057 0.0160914
\(936\) 4581.46 0.159989
\(937\) 2386.65 0.0832106 0.0416053 0.999134i \(-0.486753\pi\)
0.0416053 + 0.999134i \(0.486753\pi\)
\(938\) 0 0
\(939\) 404.416 0.0140550
\(940\) 104.834 0.00363755
\(941\) −7976.76 −0.276339 −0.138169 0.990409i \(-0.544122\pi\)
−0.138169 + 0.990409i \(0.544122\pi\)
\(942\) 26489.6 0.916218
\(943\) 5098.26 0.176057
\(944\) 1106.47 0.0381488
\(945\) 0 0
\(946\) 20364.9 0.699917
\(947\) 35356.5 1.21323 0.606617 0.794994i \(-0.292526\pi\)
0.606617 + 0.794994i \(0.292526\pi\)
\(948\) 5191.38 0.177857
\(949\) 10801.7 0.369481
\(950\) −410.308 −0.0140128
\(951\) 32807.0 1.11865
\(952\) 0 0
\(953\) 34207.9 1.16275 0.581377 0.813635i \(-0.302514\pi\)
0.581377 + 0.813635i \(0.302514\pi\)
\(954\) 13423.4 0.455555
\(955\) −61.8374 −0.00209530
\(956\) 3403.43 0.115141
\(957\) −7034.94 −0.237625
\(958\) 26689.0 0.900085
\(959\) 0 0
\(960\) 48.0204 0.00161443
\(961\) −9690.10 −0.325269
\(962\) 15695.6 0.526037
\(963\) 129.295 0.00432655
\(964\) 4184.36 0.139802
\(965\) −688.635 −0.0229720
\(966\) 0 0
\(967\) 45253.5 1.50492 0.752458 0.658641i \(-0.228868\pi\)
0.752458 + 0.658641i \(0.228868\pi\)
\(968\) −8663.80 −0.287670
\(969\) −236.930 −0.00785478
\(970\) 15.8857 0.000525834 0
\(971\) 16152.1 0.533827 0.266914 0.963720i \(-0.413996\pi\)
0.266914 + 0.963720i \(0.413996\pi\)
\(972\) −14579.6 −0.481111
\(973\) 0 0
\(974\) 8236.34 0.270954
\(975\) 15763.1 0.517767
\(976\) −1653.14 −0.0542170
\(977\) −3834.28 −0.125557 −0.0627786 0.998027i \(-0.519996\pi\)
−0.0627786 + 0.998027i \(0.519996\pi\)
\(978\) −9826.00 −0.321269
\(979\) 1310.07 0.0427682
\(980\) 0 0
\(981\) −3086.22 −0.100444
\(982\) 25119.7 0.816296
\(983\) −27666.0 −0.897669 −0.448835 0.893615i \(-0.648161\pi\)
−0.448835 + 0.893615i \(0.648161\pi\)
\(984\) 6030.10 0.195358
\(985\) −617.986 −0.0199905
\(986\) 3573.75 0.115427
\(987\) 0 0
\(988\) −243.646 −0.00784555
\(989\) −4766.67 −0.153257
\(990\) −334.700 −0.0107449
\(991\) 38914.4 1.24738 0.623692 0.781670i \(-0.285632\pi\)
0.623692 + 0.781670i \(0.285632\pi\)
\(992\) 4536.88 0.145208
\(993\) 14240.0 0.455077
\(994\) 0 0
\(995\) −77.2817 −0.00246231
\(996\) 3511.18 0.111703
\(997\) −38140.1 −1.21154 −0.605772 0.795639i \(-0.707136\pi\)
−0.605772 + 0.795639i \(0.707136\pi\)
\(998\) 10061.0 0.319115
\(999\) −30526.1 −0.966771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.z.1.6 14
7.6 odd 2 inner 2254.4.a.z.1.9 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.z.1.6 14 1.1 even 1 trivial
2254.4.a.z.1.9 yes 14 7.6 odd 2 inner