Properties

Label 2254.4.a.z.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 200x^{12} + 15521x^{10} - 598294x^{8} + 12167812x^{6} - 125559722x^{4} + 539505876x^{2} - 324615200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-4.57720\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -4.57720 q^{3} +4.00000 q^{4} +14.7602 q^{5} +9.15439 q^{6} -8.00000 q^{8} -6.04928 q^{9} -29.5203 q^{10} -32.4632 q^{11} -18.3088 q^{12} -56.9971 q^{13} -67.5602 q^{15} +16.0000 q^{16} +62.6276 q^{17} +12.0986 q^{18} -117.766 q^{19} +59.0407 q^{20} +64.9264 q^{22} +23.0000 q^{23} +36.6176 q^{24} +92.8627 q^{25} +113.994 q^{26} +151.273 q^{27} +255.065 q^{29} +135.120 q^{30} +119.130 q^{31} -32.0000 q^{32} +148.590 q^{33} -125.255 q^{34} -24.1971 q^{36} -53.9112 q^{37} +235.532 q^{38} +260.887 q^{39} -118.081 q^{40} +1.65538 q^{41} +511.471 q^{43} -129.853 q^{44} -89.2884 q^{45} -46.0000 q^{46} +175.407 q^{47} -73.2351 q^{48} -185.725 q^{50} -286.659 q^{51} -227.988 q^{52} -191.117 q^{53} -302.546 q^{54} -479.162 q^{55} +539.037 q^{57} -510.131 q^{58} +254.364 q^{59} -270.241 q^{60} -293.652 q^{61} -238.261 q^{62} +64.0000 q^{64} -841.287 q^{65} -297.181 q^{66} -768.998 q^{67} +250.511 q^{68} -105.275 q^{69} +640.408 q^{71} +48.3942 q^{72} -591.512 q^{73} +107.822 q^{74} -425.051 q^{75} -471.063 q^{76} -521.774 q^{78} +680.149 q^{79} +236.163 q^{80} -529.076 q^{81} -3.31076 q^{82} -167.146 q^{83} +924.395 q^{85} -1022.94 q^{86} -1167.48 q^{87} +259.706 q^{88} +451.747 q^{89} +178.577 q^{90} +92.0000 q^{92} -545.283 q^{93} -350.814 q^{94} -1738.24 q^{95} +146.470 q^{96} -1199.56 q^{97} +196.379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 28 q^{2} + 56 q^{4} - 112 q^{8} + 22 q^{9} - 92 q^{11} - 268 q^{15} + 224 q^{16} - 44 q^{18} + 184 q^{22} + 322 q^{23} + 130 q^{25} + 196 q^{29} + 536 q^{30} - 448 q^{32} + 88 q^{36} + 628 q^{37}+ \cdots + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −4.57720 −0.880882 −0.440441 0.897782i \(-0.645178\pi\)
−0.440441 + 0.897782i \(0.645178\pi\)
\(4\) 4.00000 0.500000
\(5\) 14.7602 1.32019 0.660095 0.751182i \(-0.270516\pi\)
0.660095 + 0.751182i \(0.270516\pi\)
\(6\) 9.15439 0.622877
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) −6.04928 −0.224047
\(10\) −29.5203 −0.933515
\(11\) −32.4632 −0.889820 −0.444910 0.895575i \(-0.646764\pi\)
−0.444910 + 0.895575i \(0.646764\pi\)
\(12\) −18.3088 −0.440441
\(13\) −56.9971 −1.21601 −0.608006 0.793933i \(-0.708030\pi\)
−0.608006 + 0.793933i \(0.708030\pi\)
\(14\) 0 0
\(15\) −67.5602 −1.16293
\(16\) 16.0000 0.250000
\(17\) 62.6276 0.893496 0.446748 0.894660i \(-0.352582\pi\)
0.446748 + 0.894660i \(0.352582\pi\)
\(18\) 12.0986 0.158425
\(19\) −117.766 −1.42197 −0.710983 0.703210i \(-0.751750\pi\)
−0.710983 + 0.703210i \(0.751750\pi\)
\(20\) 59.0407 0.660095
\(21\) 0 0
\(22\) 64.9264 0.629198
\(23\) 23.0000 0.208514
\(24\) 36.6176 0.311439
\(25\) 92.8627 0.742902
\(26\) 113.994 0.859850
\(27\) 151.273 1.07824
\(28\) 0 0
\(29\) 255.065 1.63326 0.816629 0.577164i \(-0.195841\pi\)
0.816629 + 0.577164i \(0.195841\pi\)
\(30\) 135.120 0.822317
\(31\) 119.130 0.690208 0.345104 0.938564i \(-0.387844\pi\)
0.345104 + 0.938564i \(0.387844\pi\)
\(32\) −32.0000 −0.176777
\(33\) 148.590 0.783826
\(34\) −125.255 −0.631797
\(35\) 0 0
\(36\) −24.1971 −0.112024
\(37\) −53.9112 −0.239539 −0.119770 0.992802i \(-0.538216\pi\)
−0.119770 + 0.992802i \(0.538216\pi\)
\(38\) 235.532 1.00548
\(39\) 260.887 1.07116
\(40\) −118.081 −0.466758
\(41\) 1.65538 0.00630554 0.00315277 0.999995i \(-0.498996\pi\)
0.00315277 + 0.999995i \(0.498996\pi\)
\(42\) 0 0
\(43\) 511.471 1.81392 0.906961 0.421215i \(-0.138396\pi\)
0.906961 + 0.421215i \(0.138396\pi\)
\(44\) −129.853 −0.444910
\(45\) −89.2884 −0.295785
\(46\) −46.0000 −0.147442
\(47\) 175.407 0.544377 0.272189 0.962244i \(-0.412252\pi\)
0.272189 + 0.962244i \(0.412252\pi\)
\(48\) −73.2351 −0.220220
\(49\) 0 0
\(50\) −185.725 −0.525311
\(51\) −286.659 −0.787064
\(52\) −227.988 −0.608006
\(53\) −191.117 −0.495320 −0.247660 0.968847i \(-0.579662\pi\)
−0.247660 + 0.968847i \(0.579662\pi\)
\(54\) −302.546 −0.762432
\(55\) −479.162 −1.17473
\(56\) 0 0
\(57\) 539.037 1.25258
\(58\) −510.131 −1.15489
\(59\) 254.364 0.561277 0.280638 0.959814i \(-0.409454\pi\)
0.280638 + 0.959814i \(0.409454\pi\)
\(60\) −270.241 −0.581466
\(61\) −293.652 −0.616366 −0.308183 0.951327i \(-0.599721\pi\)
−0.308183 + 0.951327i \(0.599721\pi\)
\(62\) −238.261 −0.488051
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −841.287 −1.60537
\(66\) −297.181 −0.554249
\(67\) −768.998 −1.40221 −0.701105 0.713058i \(-0.747310\pi\)
−0.701105 + 0.713058i \(0.747310\pi\)
\(68\) 250.511 0.446748
\(69\) −105.275 −0.183677
\(70\) 0 0
\(71\) 640.408 1.07046 0.535228 0.844707i \(-0.320226\pi\)
0.535228 + 0.844707i \(0.320226\pi\)
\(72\) 48.3942 0.0792127
\(73\) −591.512 −0.948373 −0.474186 0.880425i \(-0.657258\pi\)
−0.474186 + 0.880425i \(0.657258\pi\)
\(74\) 107.822 0.169380
\(75\) −425.051 −0.654408
\(76\) −471.063 −0.710983
\(77\) 0 0
\(78\) −521.774 −0.757426
\(79\) 680.149 0.968642 0.484321 0.874890i \(-0.339067\pi\)
0.484321 + 0.874890i \(0.339067\pi\)
\(80\) 236.163 0.330047
\(81\) −529.076 −0.725755
\(82\) −3.31076 −0.00445869
\(83\) −167.146 −0.221044 −0.110522 0.993874i \(-0.535252\pi\)
−0.110522 + 0.993874i \(0.535252\pi\)
\(84\) 0 0
\(85\) 924.395 1.17958
\(86\) −1022.94 −1.28264
\(87\) −1167.48 −1.43871
\(88\) 259.706 0.314599
\(89\) 451.747 0.538034 0.269017 0.963135i \(-0.413301\pi\)
0.269017 + 0.963135i \(0.413301\pi\)
\(90\) 178.577 0.209152
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −545.283 −0.607992
\(94\) −350.814 −0.384933
\(95\) −1738.24 −1.87726
\(96\) 146.470 0.155719
\(97\) −1199.56 −1.25564 −0.627818 0.778360i \(-0.716052\pi\)
−0.627818 + 0.778360i \(0.716052\pi\)
\(98\) 0 0
\(99\) 196.379 0.199362
\(100\) 371.451 0.371451
\(101\) 1204.42 1.18657 0.593287 0.804991i \(-0.297830\pi\)
0.593287 + 0.804991i \(0.297830\pi\)
\(102\) 573.318 0.556538
\(103\) 336.654 0.322054 0.161027 0.986950i \(-0.448519\pi\)
0.161027 + 0.986950i \(0.448519\pi\)
\(104\) 455.977 0.429925
\(105\) 0 0
\(106\) 382.235 0.350244
\(107\) 1752.57 1.58343 0.791716 0.610889i \(-0.209188\pi\)
0.791716 + 0.610889i \(0.209188\pi\)
\(108\) 605.092 0.539120
\(109\) −2102.48 −1.84753 −0.923766 0.382957i \(-0.874906\pi\)
−0.923766 + 0.382957i \(0.874906\pi\)
\(110\) 958.325 0.830661
\(111\) 246.762 0.211006
\(112\) 0 0
\(113\) −1770.99 −1.47435 −0.737173 0.675705i \(-0.763840\pi\)
−0.737173 + 0.675705i \(0.763840\pi\)
\(114\) −1078.07 −0.885710
\(115\) 339.484 0.275279
\(116\) 1020.26 0.816629
\(117\) 344.791 0.272444
\(118\) −508.727 −0.396883
\(119\) 0 0
\(120\) 540.482 0.411158
\(121\) −277.141 −0.208220
\(122\) 587.305 0.435837
\(123\) −7.57700 −0.00555443
\(124\) 476.522 0.345104
\(125\) −474.352 −0.339419
\(126\) 0 0
\(127\) −1115.83 −0.779636 −0.389818 0.920892i \(-0.627462\pi\)
−0.389818 + 0.920892i \(0.627462\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2341.10 −1.59785
\(130\) 1682.57 1.13517
\(131\) −266.134 −0.177498 −0.0887490 0.996054i \(-0.528287\pi\)
−0.0887490 + 0.996054i \(0.528287\pi\)
\(132\) 594.361 0.391913
\(133\) 0 0
\(134\) 1538.00 0.991513
\(135\) 2232.82 1.42348
\(136\) −501.021 −0.315899
\(137\) 2454.72 1.53081 0.765403 0.643551i \(-0.222540\pi\)
0.765403 + 0.643551i \(0.222540\pi\)
\(138\) 210.551 0.129879
\(139\) 1068.85 0.652223 0.326111 0.945331i \(-0.394262\pi\)
0.326111 + 0.945331i \(0.394262\pi\)
\(140\) 0 0
\(141\) −802.872 −0.479532
\(142\) −1280.82 −0.756927
\(143\) 1850.31 1.08203
\(144\) −96.7885 −0.0560119
\(145\) 3764.81 2.15621
\(146\) 1183.02 0.670601
\(147\) 0 0
\(148\) −215.645 −0.119770
\(149\) −2379.40 −1.30824 −0.654120 0.756391i \(-0.726961\pi\)
−0.654120 + 0.756391i \(0.726961\pi\)
\(150\) 850.101 0.462737
\(151\) −1302.97 −0.702215 −0.351107 0.936335i \(-0.614195\pi\)
−0.351107 + 0.936335i \(0.614195\pi\)
\(152\) 942.127 0.502741
\(153\) −378.852 −0.200185
\(154\) 0 0
\(155\) 1758.39 0.911206
\(156\) 1043.55 0.535581
\(157\) −992.850 −0.504701 −0.252350 0.967636i \(-0.581204\pi\)
−0.252350 + 0.967636i \(0.581204\pi\)
\(158\) −1360.30 −0.684934
\(159\) 874.781 0.436319
\(160\) −472.326 −0.233379
\(161\) 0 0
\(162\) 1058.15 0.513187
\(163\) −392.005 −0.188370 −0.0941848 0.995555i \(-0.530024\pi\)
−0.0941848 + 0.995555i \(0.530024\pi\)
\(164\) 6.62152 0.00315277
\(165\) 2193.22 1.03480
\(166\) 334.292 0.156302
\(167\) 3076.35 1.42548 0.712740 0.701428i \(-0.247454\pi\)
0.712740 + 0.701428i \(0.247454\pi\)
\(168\) 0 0
\(169\) 1051.67 0.478684
\(170\) −1848.79 −0.834092
\(171\) 712.399 0.318588
\(172\) 2045.88 0.906961
\(173\) 1124.68 0.494264 0.247132 0.968982i \(-0.420512\pi\)
0.247132 + 0.968982i \(0.420512\pi\)
\(174\) 2334.97 1.01732
\(175\) 0 0
\(176\) −519.411 −0.222455
\(177\) −1164.27 −0.494419
\(178\) −903.493 −0.380448
\(179\) −3167.30 −1.32254 −0.661271 0.750147i \(-0.729983\pi\)
−0.661271 + 0.750147i \(0.729983\pi\)
\(180\) −357.154 −0.147893
\(181\) −1008.55 −0.414171 −0.207085 0.978323i \(-0.566398\pi\)
−0.207085 + 0.978323i \(0.566398\pi\)
\(182\) 0 0
\(183\) 1344.10 0.542946
\(184\) −184.000 −0.0737210
\(185\) −795.739 −0.316237
\(186\) 1090.57 0.429915
\(187\) −2033.09 −0.795051
\(188\) 701.628 0.272189
\(189\) 0 0
\(190\) 3476.49 1.32743
\(191\) −627.529 −0.237730 −0.118865 0.992910i \(-0.537926\pi\)
−0.118865 + 0.992910i \(0.537926\pi\)
\(192\) −292.941 −0.110110
\(193\) −4334.60 −1.61664 −0.808320 0.588743i \(-0.799623\pi\)
−0.808320 + 0.588743i \(0.799623\pi\)
\(194\) 2399.12 0.887868
\(195\) 3850.73 1.41414
\(196\) 0 0
\(197\) −3370.94 −1.21914 −0.609568 0.792734i \(-0.708657\pi\)
−0.609568 + 0.792734i \(0.708657\pi\)
\(198\) −392.758 −0.140970
\(199\) −2396.56 −0.853706 −0.426853 0.904321i \(-0.640378\pi\)
−0.426853 + 0.904321i \(0.640378\pi\)
\(200\) −742.902 −0.262655
\(201\) 3519.86 1.23518
\(202\) −2408.83 −0.839034
\(203\) 0 0
\(204\) −1146.64 −0.393532
\(205\) 24.4337 0.00832451
\(206\) −673.308 −0.227726
\(207\) −139.133 −0.0467171
\(208\) −911.953 −0.304003
\(209\) 3823.06 1.26529
\(210\) 0 0
\(211\) 3872.82 1.26358 0.631792 0.775138i \(-0.282320\pi\)
0.631792 + 0.775138i \(0.282320\pi\)
\(212\) −764.469 −0.247660
\(213\) −2931.27 −0.942946
\(214\) −3505.14 −1.11966
\(215\) 7549.40 2.39472
\(216\) −1210.18 −0.381216
\(217\) 0 0
\(218\) 4204.96 1.30640
\(219\) 2707.46 0.835404
\(220\) −1916.65 −0.587366
\(221\) −3569.59 −1.08650
\(222\) −493.525 −0.149204
\(223\) 4603.83 1.38249 0.691244 0.722621i \(-0.257063\pi\)
0.691244 + 0.722621i \(0.257063\pi\)
\(224\) 0 0
\(225\) −561.752 −0.166445
\(226\) 3541.99 1.04252
\(227\) 759.790 0.222154 0.111077 0.993812i \(-0.464570\pi\)
0.111077 + 0.993812i \(0.464570\pi\)
\(228\) 2156.15 0.626292
\(229\) 3422.99 0.987761 0.493880 0.869530i \(-0.335578\pi\)
0.493880 + 0.869530i \(0.335578\pi\)
\(230\) −678.968 −0.194651
\(231\) 0 0
\(232\) −2040.52 −0.577444
\(233\) −6.35709 −0.00178741 −0.000893706 1.00000i \(-0.500284\pi\)
−0.000893706 1.00000i \(0.500284\pi\)
\(234\) −689.583 −0.192647
\(235\) 2589.04 0.718682
\(236\) 1017.45 0.280638
\(237\) −3113.18 −0.853259
\(238\) 0 0
\(239\) −4893.62 −1.32444 −0.662222 0.749307i \(-0.730387\pi\)
−0.662222 + 0.749307i \(0.730387\pi\)
\(240\) −1080.96 −0.290733
\(241\) −3474.09 −0.928571 −0.464286 0.885685i \(-0.653689\pi\)
−0.464286 + 0.885685i \(0.653689\pi\)
\(242\) 554.283 0.147234
\(243\) −1662.69 −0.438936
\(244\) −1174.61 −0.308183
\(245\) 0 0
\(246\) 15.1540 0.00392758
\(247\) 6712.31 1.72913
\(248\) −953.043 −0.244025
\(249\) 765.060 0.194714
\(250\) 948.704 0.240005
\(251\) 3531.41 0.888050 0.444025 0.896014i \(-0.353550\pi\)
0.444025 + 0.896014i \(0.353550\pi\)
\(252\) 0 0
\(253\) −746.653 −0.185540
\(254\) 2231.66 0.551286
\(255\) −4231.14 −1.03907
\(256\) 256.000 0.0625000
\(257\) −3932.67 −0.954526 −0.477263 0.878761i \(-0.658371\pi\)
−0.477263 + 0.878761i \(0.658371\pi\)
\(258\) 4682.21 1.12985
\(259\) 0 0
\(260\) −3365.15 −0.802683
\(261\) −1542.96 −0.365927
\(262\) 532.268 0.125510
\(263\) −3191.48 −0.748271 −0.374136 0.927374i \(-0.622061\pi\)
−0.374136 + 0.927374i \(0.622061\pi\)
\(264\) −1188.72 −0.277124
\(265\) −2820.92 −0.653917
\(266\) 0 0
\(267\) −2067.73 −0.473945
\(268\) −3075.99 −0.701105
\(269\) 3703.06 0.839330 0.419665 0.907679i \(-0.362148\pi\)
0.419665 + 0.907679i \(0.362148\pi\)
\(270\) −4465.63 −1.00655
\(271\) −3144.04 −0.704750 −0.352375 0.935859i \(-0.614626\pi\)
−0.352375 + 0.935859i \(0.614626\pi\)
\(272\) 1002.04 0.223374
\(273\) 0 0
\(274\) −4909.43 −1.08244
\(275\) −3014.62 −0.661049
\(276\) −421.102 −0.0918383
\(277\) −461.547 −0.100114 −0.0500571 0.998746i \(-0.515940\pi\)
−0.0500571 + 0.998746i \(0.515940\pi\)
\(278\) −2137.71 −0.461191
\(279\) −720.653 −0.154639
\(280\) 0 0
\(281\) 4712.83 1.00051 0.500256 0.865878i \(-0.333239\pi\)
0.500256 + 0.865878i \(0.333239\pi\)
\(282\) 1605.74 0.339080
\(283\) −757.248 −0.159059 −0.0795296 0.996833i \(-0.525342\pi\)
−0.0795296 + 0.996833i \(0.525342\pi\)
\(284\) 2561.63 0.535228
\(285\) 7956.29 1.65365
\(286\) −3700.61 −0.765112
\(287\) 0 0
\(288\) 193.577 0.0396064
\(289\) −990.780 −0.201665
\(290\) −7529.62 −1.52467
\(291\) 5490.61 1.10607
\(292\) −2366.05 −0.474186
\(293\) 3865.33 0.770699 0.385350 0.922771i \(-0.374081\pi\)
0.385350 + 0.922771i \(0.374081\pi\)
\(294\) 0 0
\(295\) 3754.45 0.740992
\(296\) 431.290 0.0846899
\(297\) −4910.80 −0.959440
\(298\) 4758.79 0.925065
\(299\) −1310.93 −0.253556
\(300\) −1700.20 −0.327204
\(301\) 0 0
\(302\) 2605.95 0.496541
\(303\) −5512.85 −1.04523
\(304\) −1884.25 −0.355491
\(305\) −4334.36 −0.813720
\(306\) 757.704 0.141553
\(307\) −5548.34 −1.03147 −0.515734 0.856749i \(-0.672481\pi\)
−0.515734 + 0.856749i \(0.672481\pi\)
\(308\) 0 0
\(309\) −1540.93 −0.283691
\(310\) −3516.77 −0.644320
\(311\) −10295.0 −1.87709 −0.938545 0.345157i \(-0.887826\pi\)
−0.938545 + 0.345157i \(0.887826\pi\)
\(312\) −2087.09 −0.378713
\(313\) −9170.41 −1.65605 −0.828023 0.560694i \(-0.810534\pi\)
−0.828023 + 0.560694i \(0.810534\pi\)
\(314\) 1985.70 0.356877
\(315\) 0 0
\(316\) 2720.60 0.484321
\(317\) 6757.45 1.19728 0.598638 0.801020i \(-0.295709\pi\)
0.598638 + 0.801020i \(0.295709\pi\)
\(318\) −1749.56 −0.308524
\(319\) −8280.24 −1.45330
\(320\) 944.651 0.165024
\(321\) −8021.85 −1.39482
\(322\) 0 0
\(323\) −7375.40 −1.27052
\(324\) −2116.30 −0.362878
\(325\) −5292.90 −0.903377
\(326\) 784.011 0.133197
\(327\) 9623.46 1.62746
\(328\) −13.2430 −0.00222934
\(329\) 0 0
\(330\) −4386.44 −0.731714
\(331\) −9900.16 −1.64399 −0.821997 0.569492i \(-0.807140\pi\)
−0.821997 + 0.569492i \(0.807140\pi\)
\(332\) −668.584 −0.110522
\(333\) 326.124 0.0536682
\(334\) −6152.70 −1.00797
\(335\) −11350.5 −1.85118
\(336\) 0 0
\(337\) −6662.09 −1.07688 −0.538438 0.842665i \(-0.680985\pi\)
−0.538438 + 0.842665i \(0.680985\pi\)
\(338\) −2103.34 −0.338480
\(339\) 8106.18 1.29872
\(340\) 3697.58 0.589792
\(341\) −3867.35 −0.614161
\(342\) −1424.80 −0.225276
\(343\) 0 0
\(344\) −4091.77 −0.641318
\(345\) −1553.88 −0.242488
\(346\) −2249.35 −0.349497
\(347\) −5454.78 −0.843885 −0.421942 0.906623i \(-0.638652\pi\)
−0.421942 + 0.906623i \(0.638652\pi\)
\(348\) −4669.94 −0.719353
\(349\) 11797.2 1.80943 0.904717 0.426014i \(-0.140082\pi\)
0.904717 + 0.426014i \(0.140082\pi\)
\(350\) 0 0
\(351\) −8622.12 −1.31115
\(352\) 1038.82 0.157299
\(353\) −1228.04 −0.185162 −0.0925810 0.995705i \(-0.529512\pi\)
−0.0925810 + 0.995705i \(0.529512\pi\)
\(354\) 2328.54 0.349607
\(355\) 9452.53 1.41321
\(356\) 1806.99 0.269017
\(357\) 0 0
\(358\) 6334.60 0.935179
\(359\) −486.085 −0.0714613 −0.0357306 0.999361i \(-0.511376\pi\)
−0.0357306 + 0.999361i \(0.511376\pi\)
\(360\) 714.307 0.104576
\(361\) 7009.80 1.02199
\(362\) 2017.10 0.292863
\(363\) 1268.53 0.183417
\(364\) 0 0
\(365\) −8730.81 −1.25203
\(366\) −2688.21 −0.383920
\(367\) −11500.6 −1.63577 −0.817883 0.575385i \(-0.804852\pi\)
−0.817883 + 0.575385i \(0.804852\pi\)
\(368\) 368.000 0.0521286
\(369\) −10.0139 −0.00141274
\(370\) 1591.48 0.223614
\(371\) 0 0
\(372\) −2181.13 −0.303996
\(373\) −6355.96 −0.882303 −0.441152 0.897433i \(-0.645430\pi\)
−0.441152 + 0.897433i \(0.645430\pi\)
\(374\) 4066.19 0.562186
\(375\) 2171.20 0.298988
\(376\) −1403.26 −0.192467
\(377\) −14538.0 −1.98606
\(378\) 0 0
\(379\) 10701.7 1.45042 0.725209 0.688529i \(-0.241743\pi\)
0.725209 + 0.688529i \(0.241743\pi\)
\(380\) −6952.98 −0.938632
\(381\) 5107.37 0.686767
\(382\) 1255.06 0.168100
\(383\) 8250.18 1.10069 0.550345 0.834937i \(-0.314496\pi\)
0.550345 + 0.834937i \(0.314496\pi\)
\(384\) 585.881 0.0778597
\(385\) 0 0
\(386\) 8669.21 1.14314
\(387\) −3094.03 −0.406404
\(388\) −4798.23 −0.627818
\(389\) 8580.74 1.11841 0.559204 0.829030i \(-0.311107\pi\)
0.559204 + 0.829030i \(0.311107\pi\)
\(390\) −7701.47 −0.999946
\(391\) 1440.44 0.186307
\(392\) 0 0
\(393\) 1218.15 0.156355
\(394\) 6741.89 0.862060
\(395\) 10039.1 1.27879
\(396\) 785.516 0.0996809
\(397\) 1426.65 0.180357 0.0901784 0.995926i \(-0.471256\pi\)
0.0901784 + 0.995926i \(0.471256\pi\)
\(398\) 4793.11 0.603661
\(399\) 0 0
\(400\) 1485.80 0.185725
\(401\) −7825.99 −0.974592 −0.487296 0.873237i \(-0.662017\pi\)
−0.487296 + 0.873237i \(0.662017\pi\)
\(402\) −7039.71 −0.873405
\(403\) −6790.09 −0.839301
\(404\) 4817.67 0.593287
\(405\) −7809.25 −0.958135
\(406\) 0 0
\(407\) 1750.13 0.213147
\(408\) 2293.27 0.278269
\(409\) −7324.00 −0.885449 −0.442724 0.896658i \(-0.645988\pi\)
−0.442724 + 0.896658i \(0.645988\pi\)
\(410\) −48.8674 −0.00588631
\(411\) −11235.7 −1.34846
\(412\) 1346.62 0.161027
\(413\) 0 0
\(414\) 278.267 0.0330340
\(415\) −2467.10 −0.291820
\(416\) 1823.91 0.214962
\(417\) −4892.35 −0.574531
\(418\) −7646.11 −0.894697
\(419\) 12890.7 1.50299 0.751493 0.659741i \(-0.229334\pi\)
0.751493 + 0.659741i \(0.229334\pi\)
\(420\) 0 0
\(421\) −2378.02 −0.275291 −0.137646 0.990482i \(-0.543953\pi\)
−0.137646 + 0.990482i \(0.543953\pi\)
\(422\) −7745.65 −0.893489
\(423\) −1061.09 −0.121966
\(424\) 1528.94 0.175122
\(425\) 5815.77 0.663780
\(426\) 5862.54 0.666763
\(427\) 0 0
\(428\) 7010.28 0.791716
\(429\) −8469.22 −0.953142
\(430\) −15098.8 −1.69332
\(431\) −8171.19 −0.913208 −0.456604 0.889670i \(-0.650934\pi\)
−0.456604 + 0.889670i \(0.650934\pi\)
\(432\) 2420.37 0.269560
\(433\) 11344.7 1.25911 0.629553 0.776958i \(-0.283238\pi\)
0.629553 + 0.776958i \(0.283238\pi\)
\(434\) 0 0
\(435\) −17232.3 −1.89937
\(436\) −8409.92 −0.923766
\(437\) −2708.61 −0.296500
\(438\) −5414.93 −0.590720
\(439\) 6555.98 0.712756 0.356378 0.934342i \(-0.384012\pi\)
0.356378 + 0.934342i \(0.384012\pi\)
\(440\) 3833.30 0.415330
\(441\) 0 0
\(442\) 7139.19 0.768272
\(443\) −9672.74 −1.03739 −0.518697 0.854958i \(-0.673583\pi\)
−0.518697 + 0.854958i \(0.673583\pi\)
\(444\) 987.049 0.105503
\(445\) 6667.86 0.710308
\(446\) −9207.65 −0.977567
\(447\) 10891.0 1.15240
\(448\) 0 0
\(449\) −9645.83 −1.01384 −0.506921 0.861993i \(-0.669216\pi\)
−0.506921 + 0.861993i \(0.669216\pi\)
\(450\) 1123.50 0.117695
\(451\) −53.7389 −0.00561079
\(452\) −7083.97 −0.737173
\(453\) 5963.96 0.618568
\(454\) −1519.58 −0.157087
\(455\) 0 0
\(456\) −4312.30 −0.442855
\(457\) 1359.12 0.139118 0.0695592 0.997578i \(-0.477841\pi\)
0.0695592 + 0.997578i \(0.477841\pi\)
\(458\) −6845.97 −0.698452
\(459\) 9473.87 0.963404
\(460\) 1357.94 0.137639
\(461\) −5752.64 −0.581187 −0.290593 0.956847i \(-0.593853\pi\)
−0.290593 + 0.956847i \(0.593853\pi\)
\(462\) 0 0
\(463\) −143.715 −0.0144255 −0.00721274 0.999974i \(-0.502296\pi\)
−0.00721274 + 0.999974i \(0.502296\pi\)
\(464\) 4081.05 0.408314
\(465\) −8048.47 −0.802665
\(466\) 12.7142 0.00126389
\(467\) −3592.80 −0.356006 −0.178003 0.984030i \(-0.556964\pi\)
−0.178003 + 0.984030i \(0.556964\pi\)
\(468\) 1379.17 0.136222
\(469\) 0 0
\(470\) −5178.08 −0.508185
\(471\) 4544.47 0.444582
\(472\) −2034.91 −0.198441
\(473\) −16604.0 −1.61406
\(474\) 6226.35 0.603345
\(475\) −10936.1 −1.05638
\(476\) 0 0
\(477\) 1156.12 0.110975
\(478\) 9787.25 0.936524
\(479\) −7129.94 −0.680115 −0.340058 0.940405i \(-0.610447\pi\)
−0.340058 + 0.940405i \(0.610447\pi\)
\(480\) 2161.93 0.205579
\(481\) 3072.78 0.291282
\(482\) 6948.18 0.656599
\(483\) 0 0
\(484\) −1108.57 −0.104110
\(485\) −17705.7 −1.65768
\(486\) 3325.38 0.310375
\(487\) −13770.0 −1.28127 −0.640636 0.767845i \(-0.721329\pi\)
−0.640636 + 0.767845i \(0.721329\pi\)
\(488\) 2349.22 0.217918
\(489\) 1794.29 0.165931
\(490\) 0 0
\(491\) −9724.40 −0.893800 −0.446900 0.894584i \(-0.647472\pi\)
−0.446900 + 0.894584i \(0.647472\pi\)
\(492\) −30.3080 −0.00277722
\(493\) 15974.1 1.45931
\(494\) −13424.6 −1.22268
\(495\) 2898.59 0.263196
\(496\) 1906.09 0.172552
\(497\) 0 0
\(498\) −1530.12 −0.137683
\(499\) −8186.81 −0.734453 −0.367227 0.930132i \(-0.619693\pi\)
−0.367227 + 0.930132i \(0.619693\pi\)
\(500\) −1897.41 −0.169709
\(501\) −14081.1 −1.25568
\(502\) −7062.82 −0.627946
\(503\) 5711.49 0.506288 0.253144 0.967429i \(-0.418535\pi\)
0.253144 + 0.967429i \(0.418535\pi\)
\(504\) 0 0
\(505\) 17777.4 1.56650
\(506\) 1493.31 0.131197
\(507\) −4813.69 −0.421664
\(508\) −4463.31 −0.389818
\(509\) −16390.5 −1.42730 −0.713649 0.700503i \(-0.752959\pi\)
−0.713649 + 0.700503i \(0.752959\pi\)
\(510\) 8462.27 0.734737
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −17814.8 −1.53322
\(514\) 7865.34 0.674952
\(515\) 4969.07 0.425172
\(516\) −9364.41 −0.798925
\(517\) −5694.27 −0.484398
\(518\) 0 0
\(519\) −5147.87 −0.435388
\(520\) 6730.29 0.567583
\(521\) −4377.05 −0.368065 −0.184033 0.982920i \(-0.558915\pi\)
−0.184033 + 0.982920i \(0.558915\pi\)
\(522\) 3085.92 0.258749
\(523\) 14662.3 1.22589 0.612944 0.790127i \(-0.289985\pi\)
0.612944 + 0.790127i \(0.289985\pi\)
\(524\) −1064.54 −0.0887490
\(525\) 0 0
\(526\) 6382.97 0.529108
\(527\) 7460.86 0.616698
\(528\) 2377.45 0.195957
\(529\) 529.000 0.0434783
\(530\) 5641.85 0.462389
\(531\) −1538.72 −0.125753
\(532\) 0 0
\(533\) −94.3519 −0.00766760
\(534\) 4135.47 0.335129
\(535\) 25868.2 2.09043
\(536\) 6151.99 0.495756
\(537\) 14497.4 1.16500
\(538\) −7406.13 −0.593496
\(539\) 0 0
\(540\) 8931.26 0.711741
\(541\) 11007.9 0.874798 0.437399 0.899267i \(-0.355900\pi\)
0.437399 + 0.899267i \(0.355900\pi\)
\(542\) 6288.09 0.498333
\(543\) 4616.33 0.364836
\(544\) −2004.08 −0.157949
\(545\) −31033.0 −2.43909
\(546\) 0 0
\(547\) −14669.3 −1.14664 −0.573321 0.819331i \(-0.694345\pi\)
−0.573321 + 0.819331i \(0.694345\pi\)
\(548\) 9818.86 0.765403
\(549\) 1776.39 0.138095
\(550\) 6029.24 0.467432
\(551\) −30038.0 −2.32244
\(552\) 842.204 0.0649395
\(553\) 0 0
\(554\) 923.093 0.0707915
\(555\) 3642.25 0.278568
\(556\) 4275.41 0.326111
\(557\) 25015.9 1.90297 0.951487 0.307690i \(-0.0995559\pi\)
0.951487 + 0.307690i \(0.0995559\pi\)
\(558\) 1441.31 0.109347
\(559\) −29152.4 −2.20575
\(560\) 0 0
\(561\) 9305.86 0.700346
\(562\) −9425.66 −0.707469
\(563\) 8222.88 0.615548 0.307774 0.951460i \(-0.400416\pi\)
0.307774 + 0.951460i \(0.400416\pi\)
\(564\) −3211.49 −0.239766
\(565\) −26140.2 −1.94642
\(566\) 1514.50 0.112472
\(567\) 0 0
\(568\) −5123.26 −0.378464
\(569\) −10974.8 −0.808588 −0.404294 0.914629i \(-0.632483\pi\)
−0.404294 + 0.914629i \(0.632483\pi\)
\(570\) −15912.6 −1.16931
\(571\) −16486.9 −1.20832 −0.604162 0.796861i \(-0.706492\pi\)
−0.604162 + 0.796861i \(0.706492\pi\)
\(572\) 7401.23 0.541016
\(573\) 2872.32 0.209412
\(574\) 0 0
\(575\) 2135.84 0.154906
\(576\) −387.154 −0.0280059
\(577\) 24532.2 1.77000 0.884999 0.465593i \(-0.154159\pi\)
0.884999 + 0.465593i \(0.154159\pi\)
\(578\) 1981.56 0.142599
\(579\) 19840.3 1.42407
\(580\) 15059.2 1.07810
\(581\) 0 0
\(582\) −10981.2 −0.782107
\(583\) 6204.28 0.440746
\(584\) 4732.09 0.335300
\(585\) 5089.18 0.359678
\(586\) −7730.66 −0.544967
\(587\) 14854.9 1.04451 0.522254 0.852790i \(-0.325091\pi\)
0.522254 + 0.852790i \(0.325091\pi\)
\(588\) 0 0
\(589\) −14029.5 −0.981452
\(590\) −7508.90 −0.523961
\(591\) 15429.5 1.07391
\(592\) −862.580 −0.0598848
\(593\) 16350.0 1.13223 0.566116 0.824326i \(-0.308445\pi\)
0.566116 + 0.824326i \(0.308445\pi\)
\(594\) 9821.61 0.678427
\(595\) 0 0
\(596\) −9517.58 −0.654120
\(597\) 10969.5 0.752014
\(598\) 2621.87 0.179291
\(599\) 24832.1 1.69384 0.846921 0.531719i \(-0.178454\pi\)
0.846921 + 0.531719i \(0.178454\pi\)
\(600\) 3400.41 0.231368
\(601\) −4249.44 −0.288416 −0.144208 0.989547i \(-0.546063\pi\)
−0.144208 + 0.989547i \(0.546063\pi\)
\(602\) 0 0
\(603\) 4651.89 0.314162
\(604\) −5211.89 −0.351107
\(605\) −4090.65 −0.274890
\(606\) 11025.7 0.739090
\(607\) 2499.46 0.167133 0.0835666 0.996502i \(-0.473369\pi\)
0.0835666 + 0.996502i \(0.473369\pi\)
\(608\) 3768.51 0.251370
\(609\) 0 0
\(610\) 8668.72 0.575387
\(611\) −9997.69 −0.661969
\(612\) −1515.41 −0.100093
\(613\) −21993.2 −1.44910 −0.724550 0.689222i \(-0.757952\pi\)
−0.724550 + 0.689222i \(0.757952\pi\)
\(614\) 11096.7 0.729358
\(615\) −111.838 −0.00733290
\(616\) 0 0
\(617\) 6507.69 0.424619 0.212309 0.977203i \(-0.431902\pi\)
0.212309 + 0.977203i \(0.431902\pi\)
\(618\) 3081.86 0.200600
\(619\) 18867.1 1.22510 0.612548 0.790434i \(-0.290145\pi\)
0.612548 + 0.790434i \(0.290145\pi\)
\(620\) 7033.54 0.455603
\(621\) 3479.28 0.224829
\(622\) 20590.0 1.32730
\(623\) 0 0
\(624\) 4174.19 0.267791
\(625\) −18609.4 −1.19100
\(626\) 18340.8 1.17100
\(627\) −17498.9 −1.11457
\(628\) −3971.40 −0.252350
\(629\) −3376.33 −0.214027
\(630\) 0 0
\(631\) −3625.78 −0.228748 −0.114374 0.993438i \(-0.536486\pi\)
−0.114374 + 0.993438i \(0.536486\pi\)
\(632\) −5441.19 −0.342467
\(633\) −17726.7 −1.11307
\(634\) −13514.9 −0.846602
\(635\) −16469.8 −1.02927
\(636\) 3499.13 0.218159
\(637\) 0 0
\(638\) 16560.5 1.02764
\(639\) −3874.01 −0.239833
\(640\) −1889.30 −0.116689
\(641\) −19028.1 −1.17249 −0.586244 0.810134i \(-0.699394\pi\)
−0.586244 + 0.810134i \(0.699394\pi\)
\(642\) 16043.7 0.986284
\(643\) 16780.3 1.02916 0.514580 0.857442i \(-0.327948\pi\)
0.514580 + 0.857442i \(0.327948\pi\)
\(644\) 0 0
\(645\) −34555.1 −2.10947
\(646\) 14750.8 0.898394
\(647\) −16038.4 −0.974548 −0.487274 0.873249i \(-0.662009\pi\)
−0.487274 + 0.873249i \(0.662009\pi\)
\(648\) 4232.61 0.256593
\(649\) −8257.46 −0.499435
\(650\) 10585.8 0.638784
\(651\) 0 0
\(652\) −1568.02 −0.0941848
\(653\) −10798.0 −0.647103 −0.323552 0.946211i \(-0.604877\pi\)
−0.323552 + 0.946211i \(0.604877\pi\)
\(654\) −19246.9 −1.15079
\(655\) −3928.18 −0.234331
\(656\) 26.4861 0.00157638
\(657\) 3578.22 0.212480
\(658\) 0 0
\(659\) 4711.90 0.278528 0.139264 0.990255i \(-0.455526\pi\)
0.139264 + 0.990255i \(0.455526\pi\)
\(660\) 8772.88 0.517400
\(661\) −19090.0 −1.12332 −0.561661 0.827367i \(-0.689838\pi\)
−0.561661 + 0.827367i \(0.689838\pi\)
\(662\) 19800.3 1.16248
\(663\) 16338.7 0.957079
\(664\) 1337.17 0.0781509
\(665\) 0 0
\(666\) −652.248 −0.0379491
\(667\) 5866.50 0.340558
\(668\) 12305.4 0.712740
\(669\) −21072.6 −1.21781
\(670\) 22701.1 1.30898
\(671\) 9532.89 0.548455
\(672\) 0 0
\(673\) −1755.90 −0.100572 −0.0502860 0.998735i \(-0.516013\pi\)
−0.0502860 + 0.998735i \(0.516013\pi\)
\(674\) 13324.2 0.761466
\(675\) 14047.6 0.801027
\(676\) 4206.67 0.239342
\(677\) 21551.3 1.22346 0.611732 0.791065i \(-0.290473\pi\)
0.611732 + 0.791065i \(0.290473\pi\)
\(678\) −16212.4 −0.918336
\(679\) 0 0
\(680\) −7395.16 −0.417046
\(681\) −3477.71 −0.195692
\(682\) 7734.71 0.434277
\(683\) −9417.76 −0.527615 −0.263807 0.964575i \(-0.584978\pi\)
−0.263807 + 0.964575i \(0.584978\pi\)
\(684\) 2849.59 0.159294
\(685\) 36232.0 2.02096
\(686\) 0 0
\(687\) −15667.7 −0.870100
\(688\) 8183.54 0.453480
\(689\) 10893.1 0.602315
\(690\) 3107.77 0.171465
\(691\) −9793.49 −0.539164 −0.269582 0.962978i \(-0.586885\pi\)
−0.269582 + 0.962978i \(0.586885\pi\)
\(692\) 4498.71 0.247132
\(693\) 0 0
\(694\) 10909.6 0.596717
\(695\) 15776.5 0.861058
\(696\) 9339.87 0.508659
\(697\) 103.673 0.00563397
\(698\) −23594.5 −1.27946
\(699\) 29.0977 0.00157450
\(700\) 0 0
\(701\) −10569.0 −0.569454 −0.284727 0.958609i \(-0.591903\pi\)
−0.284727 + 0.958609i \(0.591903\pi\)
\(702\) 17244.2 0.927125
\(703\) 6348.90 0.340617
\(704\) −2077.64 −0.111228
\(705\) −11850.5 −0.633074
\(706\) 2456.09 0.130929
\(707\) 0 0
\(708\) −4657.09 −0.247209
\(709\) 20843.4 1.10408 0.552038 0.833819i \(-0.313851\pi\)
0.552038 + 0.833819i \(0.313851\pi\)
\(710\) −18905.1 −0.999288
\(711\) −4114.41 −0.217022
\(712\) −3613.97 −0.190224
\(713\) 2740.00 0.143918
\(714\) 0 0
\(715\) 27310.9 1.42849
\(716\) −12669.2 −0.661271
\(717\) 22399.1 1.16668
\(718\) 972.171 0.0505308
\(719\) 10184.3 0.528247 0.264123 0.964489i \(-0.414917\pi\)
0.264123 + 0.964489i \(0.414917\pi\)
\(720\) −1428.61 −0.0739463
\(721\) 0 0
\(722\) −14019.6 −0.722653
\(723\) 15901.6 0.817962
\(724\) −4034.20 −0.207085
\(725\) 23686.1 1.21335
\(726\) −2537.06 −0.129696
\(727\) 20161.4 1.02853 0.514266 0.857630i \(-0.328064\pi\)
0.514266 + 0.857630i \(0.328064\pi\)
\(728\) 0 0
\(729\) 21895.5 1.11241
\(730\) 17461.6 0.885320
\(731\) 32032.2 1.62073
\(732\) 5376.42 0.271473
\(733\) −31634.2 −1.59404 −0.797022 0.603950i \(-0.793593\pi\)
−0.797022 + 0.603950i \(0.793593\pi\)
\(734\) 23001.2 1.15666
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 24964.1 1.24771
\(738\) 20.0277 0.000998957 0
\(739\) −29119.2 −1.44948 −0.724740 0.689022i \(-0.758040\pi\)
−0.724740 + 0.689022i \(0.758040\pi\)
\(740\) −3182.96 −0.158119
\(741\) −30723.6 −1.52316
\(742\) 0 0
\(743\) 24914.9 1.23020 0.615100 0.788449i \(-0.289115\pi\)
0.615100 + 0.788449i \(0.289115\pi\)
\(744\) 4362.27 0.214958
\(745\) −35120.3 −1.72712
\(746\) 12711.9 0.623883
\(747\) 1011.11 0.0495244
\(748\) −8132.37 −0.397525
\(749\) 0 0
\(750\) −4342.41 −0.211416
\(751\) 4730.39 0.229846 0.114923 0.993374i \(-0.463338\pi\)
0.114923 + 0.993374i \(0.463338\pi\)
\(752\) 2806.51 0.136094
\(753\) −16164.0 −0.782267
\(754\) 29076.0 1.40436
\(755\) −19232.1 −0.927057
\(756\) 0 0
\(757\) 18579.5 0.892052 0.446026 0.895020i \(-0.352839\pi\)
0.446026 + 0.895020i \(0.352839\pi\)
\(758\) −21403.4 −1.02560
\(759\) 3417.58 0.163439
\(760\) 13906.0 0.663713
\(761\) −29983.6 −1.42826 −0.714129 0.700014i \(-0.753177\pi\)
−0.714129 + 0.700014i \(0.753177\pi\)
\(762\) −10214.7 −0.485618
\(763\) 0 0
\(764\) −2510.12 −0.118865
\(765\) −5591.92 −0.264283
\(766\) −16500.4 −0.778306
\(767\) −14498.0 −0.682519
\(768\) −1171.76 −0.0550551
\(769\) −14327.3 −0.671855 −0.335927 0.941888i \(-0.609050\pi\)
−0.335927 + 0.941888i \(0.609050\pi\)
\(770\) 0 0
\(771\) 18000.6 0.840824
\(772\) −17338.4 −0.808320
\(773\) −24571.3 −1.14330 −0.571649 0.820498i \(-0.693696\pi\)
−0.571649 + 0.820498i \(0.693696\pi\)
\(774\) 6188.06 0.287371
\(775\) 11062.8 0.512757
\(776\) 9596.46 0.443934
\(777\) 0 0
\(778\) −17161.5 −0.790834
\(779\) −194.947 −0.00896625
\(780\) 15402.9 0.707069
\(781\) −20789.7 −0.952514
\(782\) −2880.87 −0.131739
\(783\) 38584.5 1.76104
\(784\) 0 0
\(785\) −14654.6 −0.666301
\(786\) −2436.29 −0.110559
\(787\) 17350.1 0.785849 0.392924 0.919571i \(-0.371463\pi\)
0.392924 + 0.919571i \(0.371463\pi\)
\(788\) −13483.8 −0.609568
\(789\) 14608.0 0.659138
\(790\) −20078.2 −0.904242
\(791\) 0 0
\(792\) −1571.03 −0.0704851
\(793\) 16737.3 0.749508
\(794\) −2853.30 −0.127531
\(795\) 12911.9 0.576024
\(796\) −9586.23 −0.426853
\(797\) −27251.1 −1.21115 −0.605573 0.795789i \(-0.707056\pi\)
−0.605573 + 0.795789i \(0.707056\pi\)
\(798\) 0 0
\(799\) 10985.3 0.486399
\(800\) −2971.61 −0.131328
\(801\) −2732.74 −0.120545
\(802\) 15652.0 0.689140
\(803\) 19202.4 0.843881
\(804\) 14079.4 0.617591
\(805\) 0 0
\(806\) 13580.2 0.593475
\(807\) −16949.7 −0.739351
\(808\) −9635.33 −0.419517
\(809\) 30140.1 1.30985 0.654925 0.755694i \(-0.272700\pi\)
0.654925 + 0.755694i \(0.272700\pi\)
\(810\) 15618.5 0.677504
\(811\) 2021.30 0.0875183 0.0437591 0.999042i \(-0.486067\pi\)
0.0437591 + 0.999042i \(0.486067\pi\)
\(812\) 0 0
\(813\) 14390.9 0.620801
\(814\) −3500.26 −0.150718
\(815\) −5786.07 −0.248684
\(816\) −4586.54 −0.196766
\(817\) −60233.8 −2.57933
\(818\) 14648.0 0.626107
\(819\) 0 0
\(820\) 97.7348 0.00416225
\(821\) −31174.9 −1.32523 −0.662614 0.748961i \(-0.730553\pi\)
−0.662614 + 0.748961i \(0.730553\pi\)
\(822\) 22471.4 0.953505
\(823\) 13963.8 0.591431 0.295716 0.955276i \(-0.404442\pi\)
0.295716 + 0.955276i \(0.404442\pi\)
\(824\) −2693.23 −0.113863
\(825\) 13798.5 0.582306
\(826\) 0 0
\(827\) 16597.3 0.697879 0.348939 0.937145i \(-0.386542\pi\)
0.348939 + 0.937145i \(0.386542\pi\)
\(828\) −556.534 −0.0233586
\(829\) −21082.7 −0.883273 −0.441637 0.897194i \(-0.645602\pi\)
−0.441637 + 0.897194i \(0.645602\pi\)
\(830\) 4934.21 0.206348
\(831\) 2112.59 0.0881888
\(832\) −3647.81 −0.152001
\(833\) 0 0
\(834\) 9784.70 0.406255
\(835\) 45407.5 1.88190
\(836\) 15292.2 0.632647
\(837\) 18021.2 0.744211
\(838\) −25781.4 −1.06277
\(839\) −45857.1 −1.88696 −0.943482 0.331425i \(-0.892471\pi\)
−0.943482 + 0.331425i \(0.892471\pi\)
\(840\) 0 0
\(841\) 40669.4 1.66753
\(842\) 4756.04 0.194660
\(843\) −21571.5 −0.881333
\(844\) 15491.3 0.631792
\(845\) 15522.8 0.631953
\(846\) 2122.17 0.0862433
\(847\) 0 0
\(848\) −3057.88 −0.123830
\(849\) 3466.07 0.140112
\(850\) −11631.5 −0.469363
\(851\) −1239.96 −0.0499474
\(852\) −11725.1 −0.471473
\(853\) −9553.50 −0.383476 −0.191738 0.981446i \(-0.561412\pi\)
−0.191738 + 0.981446i \(0.561412\pi\)
\(854\) 0 0
\(855\) 10515.1 0.420596
\(856\) −14020.6 −0.559828
\(857\) 36393.4 1.45061 0.725307 0.688426i \(-0.241698\pi\)
0.725307 + 0.688426i \(0.241698\pi\)
\(858\) 16938.4 0.673973
\(859\) −4110.90 −0.163285 −0.0816426 0.996662i \(-0.526017\pi\)
−0.0816426 + 0.996662i \(0.526017\pi\)
\(860\) 30197.6 1.19736
\(861\) 0 0
\(862\) 16342.4 0.645735
\(863\) 920.302 0.0363006 0.0181503 0.999835i \(-0.494222\pi\)
0.0181503 + 0.999835i \(0.494222\pi\)
\(864\) −4840.74 −0.190608
\(865\) 16600.4 0.652522
\(866\) −22689.4 −0.890322
\(867\) 4534.99 0.177643
\(868\) 0 0
\(869\) −22079.8 −0.861917
\(870\) 34464.5 1.34305
\(871\) 43830.7 1.70510
\(872\) 16819.8 0.653201
\(873\) 7256.46 0.281322
\(874\) 5417.23 0.209657
\(875\) 0 0
\(876\) 10829.9 0.417702
\(877\) 5197.13 0.200108 0.100054 0.994982i \(-0.468098\pi\)
0.100054 + 0.994982i \(0.468098\pi\)
\(878\) −13112.0 −0.503995
\(879\) −17692.4 −0.678895
\(880\) −7666.60 −0.293683
\(881\) −44377.9 −1.69708 −0.848541 0.529130i \(-0.822518\pi\)
−0.848541 + 0.529130i \(0.822518\pi\)
\(882\) 0 0
\(883\) 5826.13 0.222044 0.111022 0.993818i \(-0.464588\pi\)
0.111022 + 0.993818i \(0.464588\pi\)
\(884\) −14278.4 −0.543251
\(885\) −17184.9 −0.652726
\(886\) 19345.5 0.733549
\(887\) −17722.9 −0.670887 −0.335444 0.942060i \(-0.608886\pi\)
−0.335444 + 0.942060i \(0.608886\pi\)
\(888\) −1974.10 −0.0746018
\(889\) 0 0
\(890\) −13335.7 −0.502263
\(891\) 17175.5 0.645792
\(892\) 18415.3 0.691244
\(893\) −20657.0 −0.774086
\(894\) −21781.9 −0.814873
\(895\) −46749.9 −1.74601
\(896\) 0 0
\(897\) 6000.40 0.223353
\(898\) 19291.7 0.716895
\(899\) 30386.0 1.12729
\(900\) −2247.01 −0.0832226
\(901\) −11969.2 −0.442567
\(902\) 107.478 0.00396743
\(903\) 0 0
\(904\) 14167.9 0.521260
\(905\) −14886.4 −0.546784
\(906\) −11927.9 −0.437394
\(907\) −20879.7 −0.764387 −0.382194 0.924082i \(-0.624831\pi\)
−0.382194 + 0.924082i \(0.624831\pi\)
\(908\) 3039.16 0.111077
\(909\) −7285.85 −0.265849
\(910\) 0 0
\(911\) −24033.6 −0.874061 −0.437031 0.899447i \(-0.643970\pi\)
−0.437031 + 0.899447i \(0.643970\pi\)
\(912\) 8624.60 0.313146
\(913\) 5426.09 0.196689
\(914\) −2718.25 −0.0983716
\(915\) 19839.2 0.716791
\(916\) 13691.9 0.493880
\(917\) 0 0
\(918\) −18947.7 −0.681229
\(919\) −47109.2 −1.69096 −0.845479 0.534009i \(-0.820685\pi\)
−0.845479 + 0.534009i \(0.820685\pi\)
\(920\) −2715.87 −0.0973257
\(921\) 25395.8 0.908601
\(922\) 11505.3 0.410961
\(923\) −36501.4 −1.30169
\(924\) 0 0
\(925\) −5006.34 −0.177954
\(926\) 287.430 0.0102004
\(927\) −2036.52 −0.0721553
\(928\) −8162.09 −0.288722
\(929\) −30502.1 −1.07722 −0.538611 0.842554i \(-0.681051\pi\)
−0.538611 + 0.842554i \(0.681051\pi\)
\(930\) 16096.9 0.567570
\(931\) 0 0
\(932\) −25.4284 −0.000893706 0
\(933\) 47122.1 1.65349
\(934\) 7185.60 0.251734
\(935\) −30008.8 −1.04962
\(936\) −2758.33 −0.0963236
\(937\) −25258.4 −0.880637 −0.440318 0.897842i \(-0.645134\pi\)
−0.440318 + 0.897842i \(0.645134\pi\)
\(938\) 0 0
\(939\) 41974.8 1.45878
\(940\) 10356.2 0.359341
\(941\) −8759.75 −0.303464 −0.151732 0.988422i \(-0.548485\pi\)
−0.151732 + 0.988422i \(0.548485\pi\)
\(942\) −9088.94 −0.314367
\(943\) 38.0737 0.00131480
\(944\) 4069.82 0.140319
\(945\) 0 0
\(946\) 33208.0 1.14132
\(947\) −26144.6 −0.897134 −0.448567 0.893749i \(-0.648066\pi\)
−0.448567 + 0.893749i \(0.648066\pi\)
\(948\) −12452.7 −0.426630
\(949\) 33714.4 1.15323
\(950\) 21872.1 0.746974
\(951\) −30930.2 −1.05466
\(952\) 0 0
\(953\) −490.121 −0.0166596 −0.00832978 0.999965i \(-0.502651\pi\)
−0.00832978 + 0.999965i \(0.502651\pi\)
\(954\) −2312.24 −0.0784714
\(955\) −9262.44 −0.313849
\(956\) −19574.5 −0.662222
\(957\) 37900.3 1.28019
\(958\) 14259.9 0.480914
\(959\) 0 0
\(960\) −4323.85 −0.145366
\(961\) −15598.9 −0.523613
\(962\) −6145.57 −0.205968
\(963\) −10601.8 −0.354764
\(964\) −13896.4 −0.464286
\(965\) −63979.5 −2.13427
\(966\) 0 0
\(967\) −31156.9 −1.03613 −0.518065 0.855341i \(-0.673348\pi\)
−0.518065 + 0.855341i \(0.673348\pi\)
\(968\) 2217.13 0.0736170
\(969\) 33758.6 1.11918
\(970\) 35411.4 1.17215
\(971\) 37284.3 1.23224 0.616122 0.787651i \(-0.288703\pi\)
0.616122 + 0.787651i \(0.288703\pi\)
\(972\) −6650.76 −0.219468
\(973\) 0 0
\(974\) 27540.1 0.905996
\(975\) 24226.7 0.795768
\(976\) −4698.44 −0.154092
\(977\) 11949.2 0.391288 0.195644 0.980675i \(-0.437320\pi\)
0.195644 + 0.980675i \(0.437320\pi\)
\(978\) −3588.57 −0.117331
\(979\) −14665.1 −0.478754
\(980\) 0 0
\(981\) 12718.5 0.413935
\(982\) 19448.8 0.632012
\(983\) −6061.02 −0.196660 −0.0983298 0.995154i \(-0.531350\pi\)
−0.0983298 + 0.995154i \(0.531350\pi\)
\(984\) 60.6160 0.00196379
\(985\) −49755.7 −1.60949
\(986\) −31948.3 −1.03189
\(987\) 0 0
\(988\) 26849.2 0.864563
\(989\) 11763.8 0.378229
\(990\) −5797.17 −0.186107
\(991\) 18618.8 0.596816 0.298408 0.954438i \(-0.403544\pi\)
0.298408 + 0.954438i \(0.403544\pi\)
\(992\) −3812.17 −0.122013
\(993\) 45315.0 1.44816
\(994\) 0 0
\(995\) −35373.6 −1.12705
\(996\) 3060.24 0.0973569
\(997\) −35778.7 −1.13653 −0.568266 0.822845i \(-0.692385\pi\)
−0.568266 + 0.822845i \(0.692385\pi\)
\(998\) 16373.6 0.519337
\(999\) −8155.32 −0.258281
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.z.1.4 14
7.6 odd 2 inner 2254.4.a.z.1.11 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.z.1.4 14 1.1 even 1 trivial
2254.4.a.z.1.11 yes 14 7.6 odd 2 inner