Properties

Label 2254.4.a.z.1.2
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 200x^{12} + 15521x^{10} - 598294x^{8} + 12167812x^{6} - 125559722x^{4} + 539505876x^{2} - 324615200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.18301\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -7.18301 q^{3} +4.00000 q^{4} +20.3352 q^{5} +14.3660 q^{6} -8.00000 q^{8} +24.5957 q^{9} -40.6703 q^{10} +1.47400 q^{11} -28.7320 q^{12} -32.4909 q^{13} -146.068 q^{15} +16.0000 q^{16} -31.8290 q^{17} -49.1913 q^{18} +51.2910 q^{19} +81.3406 q^{20} -2.94800 q^{22} +23.0000 q^{23} +57.4641 q^{24} +288.519 q^{25} +64.9819 q^{26} +17.2705 q^{27} -39.6714 q^{29} +292.135 q^{30} -35.8933 q^{31} -32.0000 q^{32} -10.5878 q^{33} +63.6579 q^{34} +98.3826 q^{36} +76.6668 q^{37} -102.582 q^{38} +233.383 q^{39} -162.681 q^{40} -162.203 q^{41} -336.129 q^{43} +5.89600 q^{44} +500.156 q^{45} -46.0000 q^{46} +215.290 q^{47} -114.928 q^{48} -577.037 q^{50} +228.628 q^{51} -129.964 q^{52} -304.769 q^{53} -34.5409 q^{54} +29.9740 q^{55} -368.424 q^{57} +79.3427 q^{58} +97.3925 q^{59} -584.271 q^{60} -923.709 q^{61} +71.7865 q^{62} +64.0000 q^{64} -660.708 q^{65} +21.1755 q^{66} +604.397 q^{67} -127.316 q^{68} -165.209 q^{69} -769.020 q^{71} -196.765 q^{72} +400.707 q^{73} -153.334 q^{74} -2072.43 q^{75} +205.164 q^{76} -466.765 q^{78} +423.609 q^{79} +325.363 q^{80} -788.137 q^{81} +324.405 q^{82} -437.830 q^{83} -647.247 q^{85} +672.258 q^{86} +284.960 q^{87} -11.7920 q^{88} -651.246 q^{89} -1000.31 q^{90} +92.0000 q^{92} +257.822 q^{93} -430.581 q^{94} +1043.01 q^{95} +229.856 q^{96} +610.711 q^{97} +36.2540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 28 q^{2} + 56 q^{4} - 112 q^{8} + 22 q^{9} - 92 q^{11} - 268 q^{15} + 224 q^{16} - 44 q^{18} + 184 q^{22} + 322 q^{23} + 130 q^{25} + 196 q^{29} + 536 q^{30} - 448 q^{32} + 88 q^{36} + 628 q^{37}+ \cdots + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −7.18301 −1.38237 −0.691186 0.722677i \(-0.742911\pi\)
−0.691186 + 0.722677i \(0.742911\pi\)
\(4\) 4.00000 0.500000
\(5\) 20.3352 1.81883 0.909416 0.415888i \(-0.136529\pi\)
0.909416 + 0.415888i \(0.136529\pi\)
\(6\) 14.3660 0.977484
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 24.5957 0.910950
\(10\) −40.6703 −1.28611
\(11\) 1.47400 0.0404025 0.0202013 0.999796i \(-0.493569\pi\)
0.0202013 + 0.999796i \(0.493569\pi\)
\(12\) −28.7320 −0.691186
\(13\) −32.4909 −0.693182 −0.346591 0.938016i \(-0.612661\pi\)
−0.346591 + 0.938016i \(0.612661\pi\)
\(14\) 0 0
\(15\) −146.068 −2.51430
\(16\) 16.0000 0.250000
\(17\) −31.8290 −0.454097 −0.227049 0.973883i \(-0.572908\pi\)
−0.227049 + 0.973883i \(0.572908\pi\)
\(18\) −49.1913 −0.644139
\(19\) 51.2910 0.619314 0.309657 0.950848i \(-0.399786\pi\)
0.309657 + 0.950848i \(0.399786\pi\)
\(20\) 81.3406 0.909416
\(21\) 0 0
\(22\) −2.94800 −0.0285689
\(23\) 23.0000 0.208514
\(24\) 57.4641 0.488742
\(25\) 288.519 2.30815
\(26\) 64.9819 0.490154
\(27\) 17.2705 0.123100
\(28\) 0 0
\(29\) −39.6714 −0.254027 −0.127014 0.991901i \(-0.540539\pi\)
−0.127014 + 0.991901i \(0.540539\pi\)
\(30\) 292.135 1.77788
\(31\) −35.8933 −0.207955 −0.103978 0.994580i \(-0.533157\pi\)
−0.103978 + 0.994580i \(0.533157\pi\)
\(32\) −32.0000 −0.176777
\(33\) −10.5878 −0.0558513
\(34\) 63.6579 0.321095
\(35\) 0 0
\(36\) 98.3826 0.455475
\(37\) 76.6668 0.340647 0.170324 0.985388i \(-0.445519\pi\)
0.170324 + 0.985388i \(0.445519\pi\)
\(38\) −102.582 −0.437921
\(39\) 233.383 0.958234
\(40\) −162.681 −0.643054
\(41\) −162.203 −0.617848 −0.308924 0.951087i \(-0.599969\pi\)
−0.308924 + 0.951087i \(0.599969\pi\)
\(42\) 0 0
\(43\) −336.129 −1.19207 −0.596037 0.802957i \(-0.703259\pi\)
−0.596037 + 0.802957i \(0.703259\pi\)
\(44\) 5.89600 0.0202013
\(45\) 500.156 1.65686
\(46\) −46.0000 −0.147442
\(47\) 215.290 0.668156 0.334078 0.942545i \(-0.391575\pi\)
0.334078 + 0.942545i \(0.391575\pi\)
\(48\) −114.928 −0.345593
\(49\) 0 0
\(50\) −577.037 −1.63211
\(51\) 228.628 0.627731
\(52\) −129.964 −0.346591
\(53\) −304.769 −0.789871 −0.394936 0.918709i \(-0.629233\pi\)
−0.394936 + 0.918709i \(0.629233\pi\)
\(54\) −34.5409 −0.0870449
\(55\) 29.9740 0.0734854
\(56\) 0 0
\(57\) −368.424 −0.856122
\(58\) 79.3427 0.179624
\(59\) 97.3925 0.214905 0.107453 0.994210i \(-0.465731\pi\)
0.107453 + 0.994210i \(0.465731\pi\)
\(60\) −584.271 −1.25715
\(61\) −923.709 −1.93883 −0.969417 0.245420i \(-0.921074\pi\)
−0.969417 + 0.245420i \(0.921074\pi\)
\(62\) 71.7865 0.147047
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −660.708 −1.26078
\(66\) 21.1755 0.0394928
\(67\) 604.397 1.10207 0.551036 0.834482i \(-0.314233\pi\)
0.551036 + 0.834482i \(0.314233\pi\)
\(68\) −127.316 −0.227049
\(69\) −165.209 −0.288244
\(70\) 0 0
\(71\) −769.020 −1.28543 −0.642717 0.766104i \(-0.722193\pi\)
−0.642717 + 0.766104i \(0.722193\pi\)
\(72\) −196.765 −0.322069
\(73\) 400.707 0.642455 0.321227 0.947002i \(-0.395905\pi\)
0.321227 + 0.947002i \(0.395905\pi\)
\(74\) −153.334 −0.240874
\(75\) −2072.43 −3.19072
\(76\) 205.164 0.309657
\(77\) 0 0
\(78\) −466.765 −0.677574
\(79\) 423.609 0.603288 0.301644 0.953421i \(-0.402465\pi\)
0.301644 + 0.953421i \(0.402465\pi\)
\(80\) 325.363 0.454708
\(81\) −788.137 −1.08112
\(82\) 324.405 0.436885
\(83\) −437.830 −0.579013 −0.289507 0.957176i \(-0.593491\pi\)
−0.289507 + 0.957176i \(0.593491\pi\)
\(84\) 0 0
\(85\) −647.247 −0.825927
\(86\) 672.258 0.842923
\(87\) 284.960 0.351160
\(88\) −11.7920 −0.0142844
\(89\) −651.246 −0.775640 −0.387820 0.921735i \(-0.626772\pi\)
−0.387820 + 0.921735i \(0.626772\pi\)
\(90\) −1000.31 −1.17158
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 257.822 0.287472
\(94\) −430.581 −0.472458
\(95\) 1043.01 1.12643
\(96\) 229.856 0.244371
\(97\) 610.711 0.639261 0.319631 0.947542i \(-0.396441\pi\)
0.319631 + 0.947542i \(0.396441\pi\)
\(98\) 0 0
\(99\) 36.2540 0.0368047
\(100\) 1154.07 1.15407
\(101\) −532.486 −0.524598 −0.262299 0.964987i \(-0.584481\pi\)
−0.262299 + 0.964987i \(0.584481\pi\)
\(102\) −457.256 −0.443873
\(103\) −1788.73 −1.71115 −0.855575 0.517679i \(-0.826796\pi\)
−0.855575 + 0.517679i \(0.826796\pi\)
\(104\) 259.927 0.245077
\(105\) 0 0
\(106\) 609.537 0.558523
\(107\) 1093.46 0.987935 0.493968 0.869480i \(-0.335546\pi\)
0.493968 + 0.869480i \(0.335546\pi\)
\(108\) 69.0819 0.0615501
\(109\) −565.511 −0.496937 −0.248468 0.968640i \(-0.579927\pi\)
−0.248468 + 0.968640i \(0.579927\pi\)
\(110\) −59.9480 −0.0519620
\(111\) −550.698 −0.470901
\(112\) 0 0
\(113\) −93.8808 −0.0781554 −0.0390777 0.999236i \(-0.512442\pi\)
−0.0390777 + 0.999236i \(0.512442\pi\)
\(114\) 736.848 0.605370
\(115\) 467.709 0.379253
\(116\) −158.685 −0.127014
\(117\) −799.136 −0.631454
\(118\) −194.785 −0.151961
\(119\) 0 0
\(120\) 1168.54 0.888940
\(121\) −1328.83 −0.998368
\(122\) 1847.42 1.37096
\(123\) 1165.10 0.854096
\(124\) −143.573 −0.103978
\(125\) 3325.18 2.37930
\(126\) 0 0
\(127\) 1865.89 1.30371 0.651854 0.758344i \(-0.273991\pi\)
0.651854 + 0.758344i \(0.273991\pi\)
\(128\) −128.000 −0.0883883
\(129\) 2414.42 1.64789
\(130\) 1321.42 0.891507
\(131\) 2776.35 1.85168 0.925842 0.377910i \(-0.123357\pi\)
0.925842 + 0.377910i \(0.123357\pi\)
\(132\) −42.3510 −0.0279256
\(133\) 0 0
\(134\) −1208.79 −0.779282
\(135\) 351.198 0.223898
\(136\) 254.632 0.160548
\(137\) 13.7411 0.00856918 0.00428459 0.999991i \(-0.498636\pi\)
0.00428459 + 0.999991i \(0.498636\pi\)
\(138\) 330.419 0.203820
\(139\) 2592.52 1.58197 0.790987 0.611833i \(-0.209567\pi\)
0.790987 + 0.611833i \(0.209567\pi\)
\(140\) 0 0
\(141\) −1546.43 −0.923640
\(142\) 1538.04 0.908939
\(143\) −47.8916 −0.0280063
\(144\) 393.530 0.227738
\(145\) −806.724 −0.462033
\(146\) −801.414 −0.454284
\(147\) 0 0
\(148\) 306.667 0.170324
\(149\) −1494.45 −0.821678 −0.410839 0.911708i \(-0.634764\pi\)
−0.410839 + 0.911708i \(0.634764\pi\)
\(150\) 4144.87 2.25618
\(151\) −416.293 −0.224354 −0.112177 0.993688i \(-0.535782\pi\)
−0.112177 + 0.993688i \(0.535782\pi\)
\(152\) −410.328 −0.218961
\(153\) −782.854 −0.413660
\(154\) 0 0
\(155\) −729.895 −0.378236
\(156\) 933.531 0.479117
\(157\) 218.157 0.110897 0.0554484 0.998462i \(-0.482341\pi\)
0.0554484 + 0.998462i \(0.482341\pi\)
\(158\) −847.218 −0.426589
\(159\) 2189.16 1.09190
\(160\) −650.725 −0.321527
\(161\) 0 0
\(162\) 1576.27 0.764467
\(163\) −2570.65 −1.23527 −0.617633 0.786466i \(-0.711908\pi\)
−0.617633 + 0.786466i \(0.711908\pi\)
\(164\) −648.810 −0.308924
\(165\) −215.304 −0.101584
\(166\) 875.660 0.409424
\(167\) 3712.89 1.72043 0.860216 0.509931i \(-0.170329\pi\)
0.860216 + 0.509931i \(0.170329\pi\)
\(168\) 0 0
\(169\) −1141.34 −0.519499
\(170\) 1294.49 0.584019
\(171\) 1261.54 0.564164
\(172\) −1344.52 −0.596037
\(173\) 1474.27 0.647902 0.323951 0.946074i \(-0.394989\pi\)
0.323951 + 0.946074i \(0.394989\pi\)
\(174\) −569.920 −0.248308
\(175\) 0 0
\(176\) 23.5840 0.0101006
\(177\) −699.571 −0.297079
\(178\) 1302.49 0.548460
\(179\) 1913.64 0.799064 0.399532 0.916719i \(-0.369173\pi\)
0.399532 + 0.916719i \(0.369173\pi\)
\(180\) 2000.63 0.828432
\(181\) 916.510 0.376374 0.188187 0.982133i \(-0.439739\pi\)
0.188187 + 0.982133i \(0.439739\pi\)
\(182\) 0 0
\(183\) 6635.01 2.68019
\(184\) −184.000 −0.0737210
\(185\) 1559.03 0.619580
\(186\) −515.643 −0.203273
\(187\) −46.9159 −0.0183467
\(188\) 861.162 0.334078
\(189\) 0 0
\(190\) −2086.02 −0.796505
\(191\) −4751.71 −1.80011 −0.900057 0.435773i \(-0.856475\pi\)
−0.900057 + 0.435773i \(0.856475\pi\)
\(192\) −459.713 −0.172796
\(193\) −4068.24 −1.51730 −0.758649 0.651500i \(-0.774140\pi\)
−0.758649 + 0.651500i \(0.774140\pi\)
\(194\) −1221.42 −0.452026
\(195\) 4745.87 1.74287
\(196\) 0 0
\(197\) −3976.49 −1.43814 −0.719068 0.694939i \(-0.755431\pi\)
−0.719068 + 0.694939i \(0.755431\pi\)
\(198\) −72.5080 −0.0260248
\(199\) −1007.05 −0.358733 −0.179366 0.983782i \(-0.557405\pi\)
−0.179366 + 0.983782i \(0.557405\pi\)
\(200\) −2308.15 −0.816054
\(201\) −4341.39 −1.52347
\(202\) 1064.97 0.370947
\(203\) 0 0
\(204\) 914.511 0.313866
\(205\) −3298.42 −1.12376
\(206\) 3577.45 1.20997
\(207\) 565.700 0.189946
\(208\) −519.855 −0.173295
\(209\) 75.6030 0.0250218
\(210\) 0 0
\(211\) −1559.98 −0.508975 −0.254488 0.967076i \(-0.581907\pi\)
−0.254488 + 0.967076i \(0.581907\pi\)
\(212\) −1219.07 −0.394936
\(213\) 5523.88 1.77695
\(214\) −2186.93 −0.698576
\(215\) −6835.23 −2.16818
\(216\) −138.164 −0.0435225
\(217\) 0 0
\(218\) 1131.02 0.351387
\(219\) −2878.28 −0.888111
\(220\) 119.896 0.0367427
\(221\) 1034.15 0.314772
\(222\) 1101.40 0.332977
\(223\) −315.399 −0.0947116 −0.0473558 0.998878i \(-0.515079\pi\)
−0.0473558 + 0.998878i \(0.515079\pi\)
\(224\) 0 0
\(225\) 7096.30 2.10261
\(226\) 187.762 0.0552642
\(227\) 1858.86 0.543512 0.271756 0.962366i \(-0.412396\pi\)
0.271756 + 0.962366i \(0.412396\pi\)
\(228\) −1473.70 −0.428061
\(229\) 373.471 0.107771 0.0538857 0.998547i \(-0.482839\pi\)
0.0538857 + 0.998547i \(0.482839\pi\)
\(230\) −935.417 −0.268172
\(231\) 0 0
\(232\) 317.371 0.0898122
\(233\) −3174.43 −0.892548 −0.446274 0.894896i \(-0.647249\pi\)
−0.446274 + 0.894896i \(0.647249\pi\)
\(234\) 1598.27 0.446505
\(235\) 4377.97 1.21526
\(236\) 389.570 0.107453
\(237\) −3042.79 −0.833968
\(238\) 0 0
\(239\) −2124.46 −0.574978 −0.287489 0.957784i \(-0.592820\pi\)
−0.287489 + 0.957784i \(0.592820\pi\)
\(240\) −2337.08 −0.628575
\(241\) 5603.04 1.49761 0.748804 0.662791i \(-0.230628\pi\)
0.748804 + 0.662791i \(0.230628\pi\)
\(242\) 2657.65 0.705953
\(243\) 5194.89 1.37141
\(244\) −3694.84 −0.969417
\(245\) 0 0
\(246\) −2330.21 −0.603937
\(247\) −1666.49 −0.429297
\(248\) 287.146 0.0735233
\(249\) 3144.94 0.800411
\(250\) −6650.36 −1.68242
\(251\) −1370.33 −0.344599 −0.172299 0.985045i \(-0.555120\pi\)
−0.172299 + 0.985045i \(0.555120\pi\)
\(252\) 0 0
\(253\) 33.9020 0.00842451
\(254\) −3731.78 −0.921861
\(255\) 4649.18 1.14174
\(256\) 256.000 0.0625000
\(257\) 7322.81 1.77737 0.888686 0.458516i \(-0.151619\pi\)
0.888686 + 0.458516i \(0.151619\pi\)
\(258\) −4828.83 −1.16523
\(259\) 0 0
\(260\) −2642.83 −0.630391
\(261\) −975.743 −0.231406
\(262\) −5552.70 −1.30934
\(263\) 4355.02 1.02107 0.510537 0.859856i \(-0.329447\pi\)
0.510537 + 0.859856i \(0.329447\pi\)
\(264\) 84.7021 0.0197464
\(265\) −6197.52 −1.43664
\(266\) 0 0
\(267\) 4677.91 1.07222
\(268\) 2417.59 0.551036
\(269\) −3763.78 −0.853091 −0.426545 0.904466i \(-0.640270\pi\)
−0.426545 + 0.904466i \(0.640270\pi\)
\(270\) −702.395 −0.158320
\(271\) −558.317 −0.125149 −0.0625744 0.998040i \(-0.519931\pi\)
−0.0625744 + 0.998040i \(0.519931\pi\)
\(272\) −509.263 −0.113524
\(273\) 0 0
\(274\) −27.4821 −0.00605933
\(275\) 425.276 0.0932550
\(276\) −660.837 −0.144122
\(277\) 6137.45 1.33128 0.665638 0.746275i \(-0.268159\pi\)
0.665638 + 0.746275i \(0.268159\pi\)
\(278\) −5185.03 −1.11862
\(279\) −882.818 −0.189437
\(280\) 0 0
\(281\) 957.943 0.203367 0.101683 0.994817i \(-0.467577\pi\)
0.101683 + 0.994817i \(0.467577\pi\)
\(282\) 3092.87 0.653112
\(283\) −7076.50 −1.48641 −0.743206 0.669063i \(-0.766696\pi\)
−0.743206 + 0.669063i \(0.766696\pi\)
\(284\) −3076.08 −0.642717
\(285\) −7491.96 −1.55714
\(286\) 95.7832 0.0198034
\(287\) 0 0
\(288\) −787.061 −0.161035
\(289\) −3899.92 −0.793795
\(290\) 1613.45 0.326706
\(291\) −4386.75 −0.883696
\(292\) 1602.83 0.321227
\(293\) 2120.04 0.422710 0.211355 0.977409i \(-0.432212\pi\)
0.211355 + 0.977409i \(0.432212\pi\)
\(294\) 0 0
\(295\) 1980.49 0.390877
\(296\) −613.334 −0.120437
\(297\) 25.4567 0.00497355
\(298\) 2988.90 0.581014
\(299\) −747.291 −0.144538
\(300\) −8289.73 −1.59536
\(301\) 0 0
\(302\) 832.587 0.158642
\(303\) 3824.86 0.725189
\(304\) 820.656 0.154829
\(305\) −18783.8 −3.52641
\(306\) 1565.71 0.292502
\(307\) 110.678 0.0205756 0.0102878 0.999947i \(-0.496725\pi\)
0.0102878 + 0.999947i \(0.496725\pi\)
\(308\) 0 0
\(309\) 12848.4 2.36544
\(310\) 1459.79 0.267453
\(311\) −2581.75 −0.470732 −0.235366 0.971907i \(-0.575629\pi\)
−0.235366 + 0.971907i \(0.575629\pi\)
\(312\) −1867.06 −0.338787
\(313\) −1404.56 −0.253643 −0.126821 0.991926i \(-0.540478\pi\)
−0.126821 + 0.991926i \(0.540478\pi\)
\(314\) −436.314 −0.0784159
\(315\) 0 0
\(316\) 1694.44 0.301644
\(317\) 78.7013 0.0139442 0.00697209 0.999976i \(-0.497781\pi\)
0.00697209 + 0.999976i \(0.497781\pi\)
\(318\) −4378.31 −0.772087
\(319\) −58.4756 −0.0102633
\(320\) 1301.45 0.227354
\(321\) −7854.36 −1.36569
\(322\) 0 0
\(323\) −1632.54 −0.281229
\(324\) −3152.55 −0.540560
\(325\) −9374.24 −1.59997
\(326\) 5141.29 0.873465
\(327\) 4062.07 0.686951
\(328\) 1297.62 0.218442
\(329\) 0 0
\(330\) 430.607 0.0718308
\(331\) −1466.58 −0.243537 −0.121768 0.992559i \(-0.538857\pi\)
−0.121768 + 0.992559i \(0.538857\pi\)
\(332\) −1751.32 −0.289507
\(333\) 1885.67 0.310312
\(334\) −7425.78 −1.21653
\(335\) 12290.5 2.00448
\(336\) 0 0
\(337\) −902.848 −0.145939 −0.0729693 0.997334i \(-0.523248\pi\)
−0.0729693 + 0.997334i \(0.523248\pi\)
\(338\) 2282.68 0.367341
\(339\) 674.346 0.108040
\(340\) −2588.99 −0.412963
\(341\) −52.9066 −0.00840192
\(342\) −2523.07 −0.398924
\(343\) 0 0
\(344\) 2689.03 0.421462
\(345\) −3359.56 −0.524268
\(346\) −2948.55 −0.458136
\(347\) −8618.21 −1.33328 −0.666642 0.745378i \(-0.732269\pi\)
−0.666642 + 0.745378i \(0.732269\pi\)
\(348\) 1139.84 0.175580
\(349\) −11350.6 −1.74093 −0.870466 0.492228i \(-0.836182\pi\)
−0.870466 + 0.492228i \(0.836182\pi\)
\(350\) 0 0
\(351\) −561.134 −0.0853307
\(352\) −47.1680 −0.00714222
\(353\) 9747.51 1.46971 0.734855 0.678224i \(-0.237250\pi\)
0.734855 + 0.678224i \(0.237250\pi\)
\(354\) 1399.14 0.210067
\(355\) −15638.1 −2.33799
\(356\) −2604.98 −0.387820
\(357\) 0 0
\(358\) −3827.29 −0.565023
\(359\) −5328.86 −0.783417 −0.391708 0.920089i \(-0.628116\pi\)
−0.391708 + 0.920089i \(0.628116\pi\)
\(360\) −4001.25 −0.585790
\(361\) −4228.23 −0.616450
\(362\) −1833.02 −0.266136
\(363\) 9544.98 1.38011
\(364\) 0 0
\(365\) 8148.44 1.16852
\(366\) −13270.0 −1.89518
\(367\) 5593.55 0.795588 0.397794 0.917475i \(-0.369776\pi\)
0.397794 + 0.917475i \(0.369776\pi\)
\(368\) 368.000 0.0521286
\(369\) −3989.48 −0.562829
\(370\) −3118.06 −0.438109
\(371\) 0 0
\(372\) 1031.29 0.143736
\(373\) 1179.34 0.163710 0.0818550 0.996644i \(-0.473916\pi\)
0.0818550 + 0.996644i \(0.473916\pi\)
\(374\) 93.8318 0.0129731
\(375\) −23884.8 −3.28908
\(376\) −1722.32 −0.236229
\(377\) 1288.96 0.176087
\(378\) 0 0
\(379\) −2763.33 −0.374519 −0.187259 0.982311i \(-0.559960\pi\)
−0.187259 + 0.982311i \(0.559960\pi\)
\(380\) 4172.04 0.563214
\(381\) −13402.7 −1.80221
\(382\) 9503.42 1.27287
\(383\) −2985.88 −0.398359 −0.199179 0.979963i \(-0.563828\pi\)
−0.199179 + 0.979963i \(0.563828\pi\)
\(384\) 919.425 0.122186
\(385\) 0 0
\(386\) 8136.48 1.07289
\(387\) −8267.31 −1.08592
\(388\) 2442.84 0.319631
\(389\) −8966.43 −1.16868 −0.584339 0.811509i \(-0.698646\pi\)
−0.584339 + 0.811509i \(0.698646\pi\)
\(390\) −9491.75 −1.23239
\(391\) −732.066 −0.0946859
\(392\) 0 0
\(393\) −19942.5 −2.55972
\(394\) 7952.97 1.01692
\(395\) 8614.16 1.09728
\(396\) 145.016 0.0184023
\(397\) 4745.30 0.599899 0.299949 0.953955i \(-0.403030\pi\)
0.299949 + 0.953955i \(0.403030\pi\)
\(398\) 2014.10 0.253662
\(399\) 0 0
\(400\) 4616.30 0.577037
\(401\) 7696.33 0.958445 0.479222 0.877693i \(-0.340919\pi\)
0.479222 + 0.877693i \(0.340919\pi\)
\(402\) 8682.78 1.07726
\(403\) 1166.21 0.144151
\(404\) −2129.95 −0.262299
\(405\) −16026.9 −1.96638
\(406\) 0 0
\(407\) 113.007 0.0137630
\(408\) −1829.02 −0.221937
\(409\) −2170.05 −0.262353 −0.131176 0.991359i \(-0.541875\pi\)
−0.131176 + 0.991359i \(0.541875\pi\)
\(410\) 6596.83 0.794620
\(411\) −98.7022 −0.0118458
\(412\) −7154.90 −0.855575
\(413\) 0 0
\(414\) −1131.40 −0.134312
\(415\) −8903.34 −1.05313
\(416\) 1039.71 0.122538
\(417\) −18622.1 −2.18688
\(418\) −151.206 −0.0176931
\(419\) −12771.5 −1.48909 −0.744547 0.667570i \(-0.767334\pi\)
−0.744547 + 0.667570i \(0.767334\pi\)
\(420\) 0 0
\(421\) −16190.5 −1.87429 −0.937147 0.348934i \(-0.886544\pi\)
−0.937147 + 0.348934i \(0.886544\pi\)
\(422\) 3119.97 0.359900
\(423\) 5295.21 0.608657
\(424\) 2438.15 0.279262
\(425\) −9183.25 −1.04812
\(426\) −11047.8 −1.25649
\(427\) 0 0
\(428\) 4373.85 0.493968
\(429\) 344.006 0.0387151
\(430\) 13670.5 1.53314
\(431\) 6321.36 0.706471 0.353236 0.935534i \(-0.385081\pi\)
0.353236 + 0.935534i \(0.385081\pi\)
\(432\) 276.327 0.0307750
\(433\) −13821.8 −1.53402 −0.767011 0.641634i \(-0.778257\pi\)
−0.767011 + 0.641634i \(0.778257\pi\)
\(434\) 0 0
\(435\) 5794.70 0.638701
\(436\) −2262.04 −0.248468
\(437\) 1179.69 0.129136
\(438\) 5756.57 0.627989
\(439\) −5015.04 −0.545227 −0.272613 0.962124i \(-0.587888\pi\)
−0.272613 + 0.962124i \(0.587888\pi\)
\(440\) −239.792 −0.0259810
\(441\) 0 0
\(442\) −2068.31 −0.222577
\(443\) −10170.5 −1.09078 −0.545391 0.838182i \(-0.683619\pi\)
−0.545391 + 0.838182i \(0.683619\pi\)
\(444\) −2202.79 −0.235450
\(445\) −13243.2 −1.41076
\(446\) 630.798 0.0669712
\(447\) 10734.6 1.13586
\(448\) 0 0
\(449\) 6325.09 0.664809 0.332405 0.943137i \(-0.392140\pi\)
0.332405 + 0.943137i \(0.392140\pi\)
\(450\) −14192.6 −1.48677
\(451\) −239.087 −0.0249626
\(452\) −375.523 −0.0390777
\(453\) 2990.24 0.310141
\(454\) −3717.73 −0.384321
\(455\) 0 0
\(456\) 2947.39 0.302685
\(457\) −9126.72 −0.934201 −0.467101 0.884204i \(-0.654701\pi\)
−0.467101 + 0.884204i \(0.654701\pi\)
\(458\) −746.942 −0.0762059
\(459\) −549.701 −0.0558994
\(460\) 1870.83 0.189626
\(461\) −14594.2 −1.47445 −0.737223 0.675650i \(-0.763863\pi\)
−0.737223 + 0.675650i \(0.763863\pi\)
\(462\) 0 0
\(463\) −14629.3 −1.46843 −0.734213 0.678919i \(-0.762449\pi\)
−0.734213 + 0.678919i \(0.762449\pi\)
\(464\) −634.742 −0.0635068
\(465\) 5242.84 0.522862
\(466\) 6348.86 0.631127
\(467\) 13861.5 1.37352 0.686759 0.726885i \(-0.259033\pi\)
0.686759 + 0.726885i \(0.259033\pi\)
\(468\) −3196.54 −0.315727
\(469\) 0 0
\(470\) −8755.93 −0.859321
\(471\) −1567.02 −0.153301
\(472\) −779.140 −0.0759806
\(473\) −495.454 −0.0481628
\(474\) 6085.58 0.589704
\(475\) 14798.4 1.42947
\(476\) 0 0
\(477\) −7495.98 −0.719533
\(478\) 4248.91 0.406571
\(479\) 15515.2 1.47997 0.739987 0.672621i \(-0.234832\pi\)
0.739987 + 0.672621i \(0.234832\pi\)
\(480\) 4674.17 0.444470
\(481\) −2490.98 −0.236130
\(482\) −11206.1 −1.05897
\(483\) 0 0
\(484\) −5315.31 −0.499184
\(485\) 12418.9 1.16271
\(486\) −10389.8 −0.969733
\(487\) 14994.6 1.39521 0.697607 0.716480i \(-0.254248\pi\)
0.697607 + 0.716480i \(0.254248\pi\)
\(488\) 7389.67 0.685481
\(489\) 18465.0 1.70760
\(490\) 0 0
\(491\) −8488.36 −0.780192 −0.390096 0.920774i \(-0.627558\pi\)
−0.390096 + 0.920774i \(0.627558\pi\)
\(492\) 4660.41 0.427048
\(493\) 1262.70 0.115353
\(494\) 3332.99 0.303559
\(495\) 737.231 0.0669415
\(496\) −574.292 −0.0519889
\(497\) 0 0
\(498\) −6289.87 −0.565976
\(499\) 1808.90 0.162280 0.0811399 0.996703i \(-0.474144\pi\)
0.0811399 + 0.996703i \(0.474144\pi\)
\(500\) 13300.7 1.18965
\(501\) −26669.7 −2.37827
\(502\) 2740.65 0.243668
\(503\) 12894.4 1.14301 0.571505 0.820599i \(-0.306360\pi\)
0.571505 + 0.820599i \(0.306360\pi\)
\(504\) 0 0
\(505\) −10828.2 −0.954155
\(506\) −67.8040 −0.00595703
\(507\) 8198.25 0.718141
\(508\) 7463.56 0.651854
\(509\) −5045.96 −0.439407 −0.219703 0.975567i \(-0.570509\pi\)
−0.219703 + 0.975567i \(0.570509\pi\)
\(510\) −9298.36 −0.807330
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 885.820 0.0762376
\(514\) −14645.6 −1.25679
\(515\) −36374.0 −3.11229
\(516\) 9657.67 0.823944
\(517\) 317.338 0.0269952
\(518\) 0 0
\(519\) −10589.7 −0.895641
\(520\) 5285.67 0.445753
\(521\) −12167.5 −1.02316 −0.511580 0.859235i \(-0.670940\pi\)
−0.511580 + 0.859235i \(0.670940\pi\)
\(522\) 1951.49 0.163629
\(523\) 4974.77 0.415930 0.207965 0.978136i \(-0.433316\pi\)
0.207965 + 0.978136i \(0.433316\pi\)
\(524\) 11105.4 0.925842
\(525\) 0 0
\(526\) −8710.05 −0.722008
\(527\) 1142.44 0.0944320
\(528\) −169.404 −0.0139628
\(529\) 529.000 0.0434783
\(530\) 12395.0 1.01586
\(531\) 2395.43 0.195768
\(532\) 0 0
\(533\) 5270.11 0.428281
\(534\) −9355.82 −0.758176
\(535\) 22235.7 1.79689
\(536\) −4835.17 −0.389641
\(537\) −13745.7 −1.10460
\(538\) 7527.55 0.603226
\(539\) 0 0
\(540\) 1404.79 0.111949
\(541\) 20242.3 1.60866 0.804328 0.594186i \(-0.202526\pi\)
0.804328 + 0.594186i \(0.202526\pi\)
\(542\) 1116.63 0.0884936
\(543\) −6583.30 −0.520288
\(544\) 1018.53 0.0802739
\(545\) −11499.7 −0.903844
\(546\) 0 0
\(547\) −10362.8 −0.810024 −0.405012 0.914311i \(-0.632733\pi\)
−0.405012 + 0.914311i \(0.632733\pi\)
\(548\) 54.9642 0.00428459
\(549\) −22719.2 −1.76618
\(550\) −850.553 −0.0659413
\(551\) −2034.79 −0.157323
\(552\) 1321.67 0.101910
\(553\) 0 0
\(554\) −12274.9 −0.941354
\(555\) −11198.5 −0.856489
\(556\) 10370.1 0.790987
\(557\) 20976.3 1.59568 0.797840 0.602869i \(-0.205976\pi\)
0.797840 + 0.602869i \(0.205976\pi\)
\(558\) 1765.64 0.133952
\(559\) 10921.1 0.826324
\(560\) 0 0
\(561\) 336.997 0.0253619
\(562\) −1915.89 −0.143802
\(563\) −15834.4 −1.18533 −0.592665 0.805449i \(-0.701924\pi\)
−0.592665 + 0.805449i \(0.701924\pi\)
\(564\) −6185.73 −0.461820
\(565\) −1909.08 −0.142152
\(566\) 14153.0 1.05105
\(567\) 0 0
\(568\) 6152.16 0.454470
\(569\) −5730.50 −0.422206 −0.211103 0.977464i \(-0.567706\pi\)
−0.211103 + 0.977464i \(0.567706\pi\)
\(570\) 14983.9 1.10107
\(571\) 27207.3 1.99403 0.997013 0.0772378i \(-0.0246101\pi\)
0.997013 + 0.0772378i \(0.0246101\pi\)
\(572\) −191.566 −0.0140031
\(573\) 34131.6 2.48842
\(574\) 0 0
\(575\) 6635.93 0.481282
\(576\) 1574.12 0.113869
\(577\) −21743.7 −1.56880 −0.784402 0.620253i \(-0.787030\pi\)
−0.784402 + 0.620253i \(0.787030\pi\)
\(578\) 7799.83 0.561298
\(579\) 29222.2 2.09747
\(580\) −3226.89 −0.231016
\(581\) 0 0
\(582\) 8773.49 0.624867
\(583\) −449.229 −0.0319128
\(584\) −3205.66 −0.227142
\(585\) −16250.5 −1.14851
\(586\) −4240.08 −0.298901
\(587\) −22903.0 −1.61040 −0.805201 0.593002i \(-0.797943\pi\)
−0.805201 + 0.593002i \(0.797943\pi\)
\(588\) 0 0
\(589\) −1841.00 −0.128790
\(590\) −3960.98 −0.276392
\(591\) 28563.1 1.98804
\(592\) 1226.67 0.0851618
\(593\) 20655.2 1.43037 0.715183 0.698937i \(-0.246343\pi\)
0.715183 + 0.698937i \(0.246343\pi\)
\(594\) −50.9133 −0.00351683
\(595\) 0 0
\(596\) −5977.80 −0.410839
\(597\) 7233.65 0.495902
\(598\) 1494.58 0.102204
\(599\) −8692.83 −0.592954 −0.296477 0.955040i \(-0.595812\pi\)
−0.296477 + 0.955040i \(0.595812\pi\)
\(600\) 16579.5 1.12809
\(601\) −1689.69 −0.114682 −0.0573408 0.998355i \(-0.518262\pi\)
−0.0573408 + 0.998355i \(0.518262\pi\)
\(602\) 0 0
\(603\) 14865.5 1.00393
\(604\) −1665.17 −0.112177
\(605\) −27021.9 −1.81586
\(606\) −7649.71 −0.512786
\(607\) −6775.64 −0.453072 −0.226536 0.974003i \(-0.572740\pi\)
−0.226536 + 0.974003i \(0.572740\pi\)
\(608\) −1641.31 −0.109480
\(609\) 0 0
\(610\) 37567.5 2.49355
\(611\) −6994.99 −0.463154
\(612\) −3131.42 −0.206830
\(613\) 13609.0 0.896677 0.448339 0.893864i \(-0.352016\pi\)
0.448339 + 0.893864i \(0.352016\pi\)
\(614\) −221.355 −0.0145491
\(615\) 23692.6 1.55346
\(616\) 0 0
\(617\) −27132.6 −1.77037 −0.885184 0.465242i \(-0.845967\pi\)
−0.885184 + 0.465242i \(0.845967\pi\)
\(618\) −25696.9 −1.67262
\(619\) −15927.0 −1.03419 −0.517093 0.855929i \(-0.672986\pi\)
−0.517093 + 0.855929i \(0.672986\pi\)
\(620\) −2919.58 −0.189118
\(621\) 397.221 0.0256681
\(622\) 5163.50 0.332858
\(623\) 0 0
\(624\) 3734.12 0.239559
\(625\) 31553.2 2.01940
\(626\) 2809.11 0.179353
\(627\) −543.057 −0.0345895
\(628\) 872.627 0.0554484
\(629\) −2440.22 −0.154687
\(630\) 0 0
\(631\) −609.908 −0.0384787 −0.0192393 0.999815i \(-0.506124\pi\)
−0.0192393 + 0.999815i \(0.506124\pi\)
\(632\) −3388.87 −0.213295
\(633\) 11205.4 0.703593
\(634\) −157.403 −0.00986003
\(635\) 37943.2 2.37123
\(636\) 8756.63 0.545948
\(637\) 0 0
\(638\) 116.951 0.00725728
\(639\) −18914.5 −1.17097
\(640\) −2602.90 −0.160764
\(641\) 4391.42 0.270594 0.135297 0.990805i \(-0.456801\pi\)
0.135297 + 0.990805i \(0.456801\pi\)
\(642\) 15708.7 0.965691
\(643\) −27611.5 −1.69345 −0.846727 0.532028i \(-0.821430\pi\)
−0.846727 + 0.532028i \(0.821430\pi\)
\(644\) 0 0
\(645\) 49097.6 2.99723
\(646\) 3265.08 0.198859
\(647\) 6208.49 0.377250 0.188625 0.982049i \(-0.439597\pi\)
0.188625 + 0.982049i \(0.439597\pi\)
\(648\) 6305.09 0.382234
\(649\) 143.557 0.00868272
\(650\) 18748.5 1.13135
\(651\) 0 0
\(652\) −10282.6 −0.617633
\(653\) −7086.67 −0.424691 −0.212345 0.977195i \(-0.568110\pi\)
−0.212345 + 0.977195i \(0.568110\pi\)
\(654\) −8124.14 −0.485748
\(655\) 56457.5 3.36790
\(656\) −2595.24 −0.154462
\(657\) 9855.65 0.585244
\(658\) 0 0
\(659\) −21839.3 −1.29096 −0.645478 0.763779i \(-0.723342\pi\)
−0.645478 + 0.763779i \(0.723342\pi\)
\(660\) −861.215 −0.0507920
\(661\) 9175.62 0.539925 0.269962 0.962871i \(-0.412989\pi\)
0.269962 + 0.962871i \(0.412989\pi\)
\(662\) 2933.17 0.172207
\(663\) −7428.33 −0.435132
\(664\) 3502.64 0.204712
\(665\) 0 0
\(666\) −3771.34 −0.219424
\(667\) −912.442 −0.0529683
\(668\) 14851.6 0.860216
\(669\) 2265.51 0.130927
\(670\) −24581.0 −1.41738
\(671\) −1361.55 −0.0783338
\(672\) 0 0
\(673\) −30457.6 −1.74451 −0.872253 0.489055i \(-0.837342\pi\)
−0.872253 + 0.489055i \(0.837342\pi\)
\(674\) 1805.70 0.103194
\(675\) 4982.85 0.284133
\(676\) −4565.36 −0.259750
\(677\) 6352.61 0.360636 0.180318 0.983608i \(-0.442287\pi\)
0.180318 + 0.983608i \(0.442287\pi\)
\(678\) −1348.69 −0.0763956
\(679\) 0 0
\(680\) 5177.98 0.292009
\(681\) −13352.2 −0.751335
\(682\) 105.813 0.00594106
\(683\) −27906.0 −1.56339 −0.781693 0.623664i \(-0.785643\pi\)
−0.781693 + 0.623664i \(0.785643\pi\)
\(684\) 5046.14 0.282082
\(685\) 279.427 0.0155859
\(686\) 0 0
\(687\) −2682.65 −0.148980
\(688\) −5378.06 −0.298018
\(689\) 9902.22 0.547524
\(690\) 6719.11 0.370713
\(691\) 1272.77 0.0700703 0.0350351 0.999386i \(-0.488846\pi\)
0.0350351 + 0.999386i \(0.488846\pi\)
\(692\) 5897.10 0.323951
\(693\) 0 0
\(694\) 17236.4 0.942775
\(695\) 52719.2 2.87735
\(696\) −2279.68 −0.124154
\(697\) 5162.74 0.280563
\(698\) 22701.3 1.23102
\(699\) 22802.0 1.23383
\(700\) 0 0
\(701\) −15411.1 −0.830342 −0.415171 0.909743i \(-0.636278\pi\)
−0.415171 + 0.909743i \(0.636278\pi\)
\(702\) 1122.27 0.0603380
\(703\) 3932.32 0.210968
\(704\) 94.3360 0.00505031
\(705\) −31447.0 −1.67995
\(706\) −19495.0 −1.03924
\(707\) 0 0
\(708\) −2798.29 −0.148540
\(709\) −23720.1 −1.25646 −0.628228 0.778029i \(-0.716220\pi\)
−0.628228 + 0.778029i \(0.716220\pi\)
\(710\) 31276.3 1.65321
\(711\) 10418.9 0.549565
\(712\) 5209.97 0.274230
\(713\) −825.545 −0.0433617
\(714\) 0 0
\(715\) −973.884 −0.0509387
\(716\) 7654.57 0.399532
\(717\) 15260.0 0.794832
\(718\) 10657.7 0.553959
\(719\) 2497.80 0.129558 0.0647791 0.997900i \(-0.479366\pi\)
0.0647791 + 0.997900i \(0.479366\pi\)
\(720\) 8002.50 0.414216
\(721\) 0 0
\(722\) 8456.46 0.435896
\(723\) −40246.7 −2.07025
\(724\) 3666.04 0.188187
\(725\) −11445.9 −0.586333
\(726\) −19090.0 −0.975888
\(727\) 1811.18 0.0923977 0.0461989 0.998932i \(-0.485289\pi\)
0.0461989 + 0.998932i \(0.485289\pi\)
\(728\) 0 0
\(729\) −16035.3 −0.814676
\(730\) −16296.9 −0.826267
\(731\) 10698.6 0.541318
\(732\) 26540.1 1.34009
\(733\) −6029.72 −0.303837 −0.151919 0.988393i \(-0.548545\pi\)
−0.151919 + 0.988393i \(0.548545\pi\)
\(734\) −11187.1 −0.562566
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 890.881 0.0445265
\(738\) 7978.96 0.397980
\(739\) 15068.2 0.750060 0.375030 0.927013i \(-0.377632\pi\)
0.375030 + 0.927013i \(0.377632\pi\)
\(740\) 6236.13 0.309790
\(741\) 11970.4 0.593448
\(742\) 0 0
\(743\) 7079.01 0.349534 0.174767 0.984610i \(-0.444083\pi\)
0.174767 + 0.984610i \(0.444083\pi\)
\(744\) −2062.57 −0.101637
\(745\) −30389.9 −1.49449
\(746\) −2358.68 −0.115760
\(747\) −10768.7 −0.527452
\(748\) −187.664 −0.00917334
\(749\) 0 0
\(750\) 47769.6 2.32573
\(751\) 7405.69 0.359837 0.179918 0.983682i \(-0.442417\pi\)
0.179918 + 0.983682i \(0.442417\pi\)
\(752\) 3444.65 0.167039
\(753\) 9843.08 0.476363
\(754\) −2577.92 −0.124512
\(755\) −8465.39 −0.408062
\(756\) 0 0
\(757\) 36065.1 1.73158 0.865791 0.500405i \(-0.166816\pi\)
0.865791 + 0.500405i \(0.166816\pi\)
\(758\) 5526.65 0.264825
\(759\) −243.518 −0.0116458
\(760\) −8344.09 −0.398252
\(761\) −25000.1 −1.19087 −0.595437 0.803402i \(-0.703021\pi\)
−0.595437 + 0.803402i \(0.703021\pi\)
\(762\) 26805.4 1.27435
\(763\) 0 0
\(764\) −19006.8 −0.900057
\(765\) −15919.5 −0.752378
\(766\) 5971.77 0.281682
\(767\) −3164.37 −0.148969
\(768\) −1838.85 −0.0863982
\(769\) 24222.7 1.13588 0.567940 0.823070i \(-0.307741\pi\)
0.567940 + 0.823070i \(0.307741\pi\)
\(770\) 0 0
\(771\) −52599.9 −2.45699
\(772\) −16273.0 −0.758649
\(773\) −8817.88 −0.410294 −0.205147 0.978731i \(-0.565767\pi\)
−0.205147 + 0.978731i \(0.565767\pi\)
\(774\) 16534.6 0.767861
\(775\) −10355.9 −0.479992
\(776\) −4885.69 −0.226013
\(777\) 0 0
\(778\) 17932.9 0.826380
\(779\) −8319.54 −0.382642
\(780\) 18983.5 0.871434
\(781\) −1133.53 −0.0519348
\(782\) 1464.13 0.0669530
\(783\) −685.143 −0.0312708
\(784\) 0 0
\(785\) 4436.25 0.201703
\(786\) 39885.1 1.80999
\(787\) 33171.2 1.50245 0.751223 0.660048i \(-0.229464\pi\)
0.751223 + 0.660048i \(0.229464\pi\)
\(788\) −15905.9 −0.719068
\(789\) −31282.2 −1.41150
\(790\) −17228.3 −0.775894
\(791\) 0 0
\(792\) −290.032 −0.0130124
\(793\) 30012.2 1.34396
\(794\) −9490.60 −0.424192
\(795\) 44516.8 1.98597
\(796\) −4028.20 −0.179366
\(797\) −27164.0 −1.20728 −0.603638 0.797258i \(-0.706283\pi\)
−0.603638 + 0.797258i \(0.706283\pi\)
\(798\) 0 0
\(799\) −6852.47 −0.303408
\(800\) −9232.60 −0.408027
\(801\) −16017.8 −0.706569
\(802\) −15392.7 −0.677723
\(803\) 590.642 0.0259568
\(804\) −17365.6 −0.761736
\(805\) 0 0
\(806\) −2332.41 −0.101930
\(807\) 27035.2 1.17929
\(808\) 4259.89 0.185473
\(809\) −22955.1 −0.997600 −0.498800 0.866717i \(-0.666226\pi\)
−0.498800 + 0.866717i \(0.666226\pi\)
\(810\) 32053.8 1.39044
\(811\) 20575.6 0.890883 0.445441 0.895311i \(-0.353047\pi\)
0.445441 + 0.895311i \(0.353047\pi\)
\(812\) 0 0
\(813\) 4010.40 0.173002
\(814\) −226.014 −0.00973191
\(815\) −52274.5 −2.24674
\(816\) 3658.04 0.156933
\(817\) −17240.4 −0.738268
\(818\) 4340.11 0.185511
\(819\) 0 0
\(820\) −13193.7 −0.561881
\(821\) −10861.2 −0.461703 −0.230851 0.972989i \(-0.574151\pi\)
−0.230851 + 0.972989i \(0.574151\pi\)
\(822\) 197.404 0.00837624
\(823\) 5675.36 0.240377 0.120189 0.992751i \(-0.461650\pi\)
0.120189 + 0.992751i \(0.461650\pi\)
\(824\) 14309.8 0.604983
\(825\) −3054.77 −0.128913
\(826\) 0 0
\(827\) −41862.3 −1.76021 −0.880105 0.474778i \(-0.842528\pi\)
−0.880105 + 0.474778i \(0.842528\pi\)
\(828\) 2262.80 0.0949731
\(829\) −25890.1 −1.08468 −0.542340 0.840159i \(-0.682461\pi\)
−0.542340 + 0.840159i \(0.682461\pi\)
\(830\) 17806.7 0.744673
\(831\) −44085.4 −1.84032
\(832\) −2079.42 −0.0866477
\(833\) 0 0
\(834\) 37244.2 1.54635
\(835\) 75502.2 3.12918
\(836\) 302.412 0.0125109
\(837\) −619.893 −0.0255993
\(838\) 25543.1 1.05295
\(839\) 27794.2 1.14370 0.571849 0.820359i \(-0.306226\pi\)
0.571849 + 0.820359i \(0.306226\pi\)
\(840\) 0 0
\(841\) −22815.2 −0.935470
\(842\) 32381.1 1.32533
\(843\) −6880.92 −0.281129
\(844\) −6239.94 −0.254488
\(845\) −23209.3 −0.944881
\(846\) −10590.4 −0.430385
\(847\) 0 0
\(848\) −4876.30 −0.197468
\(849\) 50830.6 2.05477
\(850\) 18366.5 0.741136
\(851\) 1763.34 0.0710298
\(852\) 22095.5 0.888474
\(853\) 5824.91 0.233812 0.116906 0.993143i \(-0.462702\pi\)
0.116906 + 0.993143i \(0.462702\pi\)
\(854\) 0 0
\(855\) 25653.5 1.02612
\(856\) −8747.71 −0.349288
\(857\) −6258.73 −0.249468 −0.124734 0.992190i \(-0.539808\pi\)
−0.124734 + 0.992190i \(0.539808\pi\)
\(858\) −688.012 −0.0273757
\(859\) −16699.5 −0.663305 −0.331653 0.943402i \(-0.607606\pi\)
−0.331653 + 0.943402i \(0.607606\pi\)
\(860\) −27340.9 −1.08409
\(861\) 0 0
\(862\) −12642.7 −0.499551
\(863\) −30585.2 −1.20641 −0.603206 0.797586i \(-0.706110\pi\)
−0.603206 + 0.797586i \(0.706110\pi\)
\(864\) −552.655 −0.0217612
\(865\) 29979.6 1.17842
\(866\) 27643.5 1.08472
\(867\) 28013.1 1.09732
\(868\) 0 0
\(869\) 624.400 0.0243744
\(870\) −11589.4 −0.451630
\(871\) −19637.4 −0.763936
\(872\) 4524.08 0.175694
\(873\) 15020.8 0.582335
\(874\) −2359.39 −0.0913129
\(875\) 0 0
\(876\) −11513.1 −0.444056
\(877\) −22047.8 −0.848919 −0.424460 0.905447i \(-0.639536\pi\)
−0.424460 + 0.905447i \(0.639536\pi\)
\(878\) 10030.1 0.385534
\(879\) −15228.3 −0.584342
\(880\) 479.584 0.0183713
\(881\) −11579.5 −0.442820 −0.221410 0.975181i \(-0.571066\pi\)
−0.221410 + 0.975181i \(0.571066\pi\)
\(882\) 0 0
\(883\) −35835.5 −1.36575 −0.682876 0.730534i \(-0.739271\pi\)
−0.682876 + 0.730534i \(0.739271\pi\)
\(884\) 4136.61 0.157386
\(885\) −14225.9 −0.540337
\(886\) 20341.0 0.771299
\(887\) −16955.9 −0.641854 −0.320927 0.947104i \(-0.603994\pi\)
−0.320927 + 0.947104i \(0.603994\pi\)
\(888\) 4405.59 0.166489
\(889\) 0 0
\(890\) 26486.4 0.997557
\(891\) −1161.71 −0.0436800
\(892\) −1261.60 −0.0473558
\(893\) 11042.5 0.413798
\(894\) −21469.3 −0.803178
\(895\) 38914.2 1.45336
\(896\) 0 0
\(897\) 5367.80 0.199806
\(898\) −12650.2 −0.470091
\(899\) 1423.93 0.0528263
\(900\) 28385.2 1.05130
\(901\) 9700.47 0.358679
\(902\) 478.173 0.0176512
\(903\) 0 0
\(904\) 751.046 0.0276321
\(905\) 18637.4 0.684560
\(906\) −5980.48 −0.219303
\(907\) 17877.4 0.654476 0.327238 0.944942i \(-0.393882\pi\)
0.327238 + 0.944942i \(0.393882\pi\)
\(908\) 7435.46 0.271756
\(909\) −13096.8 −0.477882
\(910\) 0 0
\(911\) −17375.4 −0.631914 −0.315957 0.948774i \(-0.602325\pi\)
−0.315957 + 0.948774i \(0.602325\pi\)
\(912\) −5894.78 −0.214030
\(913\) −645.361 −0.0233936
\(914\) 18253.4 0.660580
\(915\) 134924. 4.87481
\(916\) 1493.88 0.0538857
\(917\) 0 0
\(918\) 1099.40 0.0395269
\(919\) 42097.2 1.51105 0.755527 0.655118i \(-0.227381\pi\)
0.755527 + 0.655118i \(0.227381\pi\)
\(920\) −3741.67 −0.134086
\(921\) −794.999 −0.0284431
\(922\) 29188.4 1.04259
\(923\) 24986.2 0.891040
\(924\) 0 0
\(925\) 22119.8 0.786264
\(926\) 29258.6 1.03833
\(927\) −43994.9 −1.55877
\(928\) 1269.48 0.0449061
\(929\) −35375.2 −1.24933 −0.624663 0.780894i \(-0.714764\pi\)
−0.624663 + 0.780894i \(0.714764\pi\)
\(930\) −10485.7 −0.369720
\(931\) 0 0
\(932\) −12697.7 −0.446274
\(933\) 18544.7 0.650726
\(934\) −27723.0 −0.971224
\(935\) −954.042 −0.0333695
\(936\) 6393.08 0.223253
\(937\) −51508.1 −1.79583 −0.897917 0.440166i \(-0.854920\pi\)
−0.897917 + 0.440166i \(0.854920\pi\)
\(938\) 0 0
\(939\) 10088.9 0.350629
\(940\) 17511.9 0.607632
\(941\) 14499.3 0.502300 0.251150 0.967948i \(-0.419191\pi\)
0.251150 + 0.967948i \(0.419191\pi\)
\(942\) 3134.05 0.108400
\(943\) −3730.66 −0.128830
\(944\) 1558.28 0.0537264
\(945\) 0 0
\(946\) 990.908 0.0340562
\(947\) 46723.4 1.60328 0.801641 0.597806i \(-0.203961\pi\)
0.801641 + 0.597806i \(0.203961\pi\)
\(948\) −12171.2 −0.416984
\(949\) −13019.3 −0.445338
\(950\) −29596.8 −1.01079
\(951\) −565.312 −0.0192760
\(952\) 0 0
\(953\) 43981.8 1.49498 0.747488 0.664276i \(-0.231260\pi\)
0.747488 + 0.664276i \(0.231260\pi\)
\(954\) 14992.0 0.508787
\(955\) −96626.8 −3.27410
\(956\) −8497.82 −0.287489
\(957\) 420.031 0.0141877
\(958\) −31030.4 −1.04650
\(959\) 0 0
\(960\) −9348.33 −0.314288
\(961\) −28502.7 −0.956755
\(962\) 4981.95 0.166969
\(963\) 26894.4 0.899960
\(964\) 22412.2 0.748804
\(965\) −82728.3 −2.75971
\(966\) 0 0
\(967\) 39862.0 1.32562 0.662810 0.748788i \(-0.269364\pi\)
0.662810 + 0.748788i \(0.269364\pi\)
\(968\) 10630.6 0.352976
\(969\) 11726.6 0.388763
\(970\) −24837.8 −0.822159
\(971\) −3719.48 −0.122929 −0.0614643 0.998109i \(-0.519577\pi\)
−0.0614643 + 0.998109i \(0.519577\pi\)
\(972\) 20779.6 0.685705
\(973\) 0 0
\(974\) −29989.2 −0.986566
\(975\) 67335.3 2.21175
\(976\) −14779.3 −0.484708
\(977\) −49413.7 −1.61810 −0.809050 0.587740i \(-0.800018\pi\)
−0.809050 + 0.587740i \(0.800018\pi\)
\(978\) −36929.9 −1.20745
\(979\) −959.937 −0.0313378
\(980\) 0 0
\(981\) −13909.1 −0.452684
\(982\) 16976.7 0.551679
\(983\) −45374.9 −1.47226 −0.736131 0.676839i \(-0.763349\pi\)
−0.736131 + 0.676839i \(0.763349\pi\)
\(984\) −9320.82 −0.301968
\(985\) −80862.5 −2.61573
\(986\) −2525.40 −0.0815670
\(987\) 0 0
\(988\) −6665.97 −0.214649
\(989\) −7730.96 −0.248565
\(990\) −1474.46 −0.0473348
\(991\) 11620.7 0.372496 0.186248 0.982503i \(-0.440367\pi\)
0.186248 + 0.982503i \(0.440367\pi\)
\(992\) 1148.58 0.0367617
\(993\) 10534.5 0.336658
\(994\) 0 0
\(995\) −20478.5 −0.652475
\(996\) 12579.7 0.400205
\(997\) 37513.6 1.19164 0.595821 0.803117i \(-0.296827\pi\)
0.595821 + 0.803117i \(0.296827\pi\)
\(998\) −3617.80 −0.114749
\(999\) 1324.07 0.0419337
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.z.1.2 14
7.6 odd 2 inner 2254.4.a.z.1.13 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.z.1.2 14 1.1 even 1 trivial
2254.4.a.z.1.13 yes 14 7.6 odd 2 inner