Properties

Label 2254.4.a.z.1.14
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 200x^{12} + 15521x^{10} - 598294x^{8} + 12167812x^{6} - 125559722x^{4} + 539505876x^{2} - 324615200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(8.18737\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +8.18737 q^{3} +4.00000 q^{4} -0.929896 q^{5} -16.3747 q^{6} -8.00000 q^{8} +40.0330 q^{9} +1.85979 q^{10} +24.7919 q^{11} +32.7495 q^{12} -49.9754 q^{13} -7.61340 q^{15} +16.0000 q^{16} -47.0882 q^{17} -80.0660 q^{18} +28.1884 q^{19} -3.71959 q^{20} -49.5838 q^{22} +23.0000 q^{23} -65.4989 q^{24} -124.135 q^{25} +99.9508 q^{26} +106.706 q^{27} -83.2679 q^{29} +15.2268 q^{30} +104.094 q^{31} -32.0000 q^{32} +202.981 q^{33} +94.1763 q^{34} +160.132 q^{36} -131.894 q^{37} -56.3768 q^{38} -409.167 q^{39} +7.43917 q^{40} -214.694 q^{41} -0.790748 q^{43} +99.1676 q^{44} -37.2265 q^{45} -46.0000 q^{46} +45.0818 q^{47} +130.998 q^{48} +248.271 q^{50} -385.528 q^{51} -199.902 q^{52} -643.028 q^{53} -213.412 q^{54} -23.0539 q^{55} +230.789 q^{57} +166.536 q^{58} -368.943 q^{59} -30.4536 q^{60} +82.7460 q^{61} -208.189 q^{62} +64.0000 q^{64} +46.4719 q^{65} -405.961 q^{66} -47.0400 q^{67} -188.353 q^{68} +188.309 q^{69} +321.872 q^{71} -320.264 q^{72} +301.612 q^{73} +263.788 q^{74} -1016.34 q^{75} +112.754 q^{76} +818.334 q^{78} -648.828 q^{79} -14.8783 q^{80} -207.250 q^{81} +429.389 q^{82} -267.912 q^{83} +43.7871 q^{85} +1.58150 q^{86} -681.745 q^{87} -198.335 q^{88} +27.0437 q^{89} +74.4531 q^{90} +92.0000 q^{92} +852.259 q^{93} -90.1635 q^{94} -26.2123 q^{95} -261.996 q^{96} -233.648 q^{97} +992.495 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 28 q^{2} + 56 q^{4} - 112 q^{8} + 22 q^{9} - 92 q^{11} - 268 q^{15} + 224 q^{16} - 44 q^{18} + 184 q^{22} + 322 q^{23} + 130 q^{25} + 196 q^{29} + 536 q^{30} - 448 q^{32} + 88 q^{36} + 628 q^{37}+ \cdots + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 8.18737 1.57566 0.787830 0.615893i \(-0.211205\pi\)
0.787830 + 0.615893i \(0.211205\pi\)
\(4\) 4.00000 0.500000
\(5\) −0.929896 −0.0831725 −0.0415862 0.999135i \(-0.513241\pi\)
−0.0415862 + 0.999135i \(0.513241\pi\)
\(6\) −16.3747 −1.11416
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 40.0330 1.48270
\(10\) 1.85979 0.0588118
\(11\) 24.7919 0.679549 0.339775 0.940507i \(-0.389649\pi\)
0.339775 + 0.940507i \(0.389649\pi\)
\(12\) 32.7495 0.787830
\(13\) −49.9754 −1.06621 −0.533103 0.846050i \(-0.678974\pi\)
−0.533103 + 0.846050i \(0.678974\pi\)
\(14\) 0 0
\(15\) −7.61340 −0.131051
\(16\) 16.0000 0.250000
\(17\) −47.0882 −0.671797 −0.335899 0.941898i \(-0.609040\pi\)
−0.335899 + 0.941898i \(0.609040\pi\)
\(18\) −80.0660 −1.04843
\(19\) 28.1884 0.340361 0.170181 0.985413i \(-0.445565\pi\)
0.170181 + 0.985413i \(0.445565\pi\)
\(20\) −3.71959 −0.0415862
\(21\) 0 0
\(22\) −49.5838 −0.480514
\(23\) 23.0000 0.208514
\(24\) −65.4989 −0.557080
\(25\) −124.135 −0.993082
\(26\) 99.9508 0.753922
\(27\) 106.706 0.760577
\(28\) 0 0
\(29\) −83.2679 −0.533188 −0.266594 0.963809i \(-0.585898\pi\)
−0.266594 + 0.963809i \(0.585898\pi\)
\(30\) 15.2268 0.0926674
\(31\) 104.094 0.603093 0.301547 0.953451i \(-0.402497\pi\)
0.301547 + 0.953451i \(0.402497\pi\)
\(32\) −32.0000 −0.176777
\(33\) 202.981 1.07074
\(34\) 94.1763 0.475032
\(35\) 0 0
\(36\) 160.132 0.741352
\(37\) −131.894 −0.586034 −0.293017 0.956107i \(-0.594659\pi\)
−0.293017 + 0.956107i \(0.594659\pi\)
\(38\) −56.3768 −0.240672
\(39\) −409.167 −1.67998
\(40\) 7.43917 0.0294059
\(41\) −214.694 −0.817796 −0.408898 0.912580i \(-0.634087\pi\)
−0.408898 + 0.912580i \(0.634087\pi\)
\(42\) 0 0
\(43\) −0.790748 −0.00280437 −0.00140219 0.999999i \(-0.500446\pi\)
−0.00140219 + 0.999999i \(0.500446\pi\)
\(44\) 99.1676 0.339775
\(45\) −37.2265 −0.123320
\(46\) −46.0000 −0.147442
\(47\) 45.0818 0.139912 0.0699558 0.997550i \(-0.477714\pi\)
0.0699558 + 0.997550i \(0.477714\pi\)
\(48\) 130.998 0.393915
\(49\) 0 0
\(50\) 248.271 0.702215
\(51\) −385.528 −1.05852
\(52\) −199.902 −0.533103
\(53\) −643.028 −1.66654 −0.833271 0.552865i \(-0.813535\pi\)
−0.833271 + 0.552865i \(0.813535\pi\)
\(54\) −213.412 −0.537809
\(55\) −23.0539 −0.0565198
\(56\) 0 0
\(57\) 230.789 0.536294
\(58\) 166.536 0.377021
\(59\) −368.943 −0.814106 −0.407053 0.913404i \(-0.633444\pi\)
−0.407053 + 0.913404i \(0.633444\pi\)
\(60\) −30.4536 −0.0655257
\(61\) 82.7460 0.173681 0.0868405 0.996222i \(-0.472323\pi\)
0.0868405 + 0.996222i \(0.472323\pi\)
\(62\) −208.189 −0.426451
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 46.4719 0.0886790
\(66\) −405.961 −0.757126
\(67\) −47.0400 −0.0857739 −0.0428869 0.999080i \(-0.513656\pi\)
−0.0428869 + 0.999080i \(0.513656\pi\)
\(68\) −188.353 −0.335899
\(69\) 188.309 0.328548
\(70\) 0 0
\(71\) 321.872 0.538017 0.269009 0.963138i \(-0.413304\pi\)
0.269009 + 0.963138i \(0.413304\pi\)
\(72\) −320.264 −0.524215
\(73\) 301.612 0.483575 0.241787 0.970329i \(-0.422266\pi\)
0.241787 + 0.970329i \(0.422266\pi\)
\(74\) 263.788 0.414389
\(75\) −1016.34 −1.56476
\(76\) 112.754 0.170181
\(77\) 0 0
\(78\) 818.334 1.18792
\(79\) −648.828 −0.924036 −0.462018 0.886871i \(-0.652874\pi\)
−0.462018 + 0.886871i \(0.652874\pi\)
\(80\) −14.8783 −0.0207931
\(81\) −207.250 −0.284293
\(82\) 429.389 0.578269
\(83\) −267.912 −0.354303 −0.177152 0.984184i \(-0.556688\pi\)
−0.177152 + 0.984184i \(0.556688\pi\)
\(84\) 0 0
\(85\) 43.7871 0.0558750
\(86\) 1.58150 0.00198299
\(87\) −681.745 −0.840123
\(88\) −198.335 −0.240257
\(89\) 27.0437 0.0322093 0.0161046 0.999870i \(-0.494874\pi\)
0.0161046 + 0.999870i \(0.494874\pi\)
\(90\) 74.4531 0.0872005
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 852.259 0.950270
\(94\) −90.1635 −0.0989325
\(95\) −26.2123 −0.0283087
\(96\) −261.996 −0.278540
\(97\) −233.648 −0.244571 −0.122285 0.992495i \(-0.539022\pi\)
−0.122285 + 0.992495i \(0.539022\pi\)
\(98\) 0 0
\(99\) 992.495 1.00757
\(100\) −496.541 −0.496541
\(101\) 1626.81 1.60271 0.801353 0.598192i \(-0.204114\pi\)
0.801353 + 0.598192i \(0.204114\pi\)
\(102\) 771.056 0.748490
\(103\) −884.505 −0.846144 −0.423072 0.906096i \(-0.639048\pi\)
−0.423072 + 0.906096i \(0.639048\pi\)
\(104\) 399.803 0.376961
\(105\) 0 0
\(106\) 1286.06 1.17842
\(107\) −86.7017 −0.0783343 −0.0391672 0.999233i \(-0.512470\pi\)
−0.0391672 + 0.999233i \(0.512470\pi\)
\(108\) 426.824 0.380288
\(109\) −20.1154 −0.0176762 −0.00883812 0.999961i \(-0.502813\pi\)
−0.00883812 + 0.999961i \(0.502813\pi\)
\(110\) 46.1078 0.0399655
\(111\) −1079.87 −0.923390
\(112\) 0 0
\(113\) 1258.57 1.04775 0.523876 0.851794i \(-0.324485\pi\)
0.523876 + 0.851794i \(0.324485\pi\)
\(114\) −461.578 −0.379217
\(115\) −21.3876 −0.0173427
\(116\) −333.072 −0.266594
\(117\) −2000.67 −1.58087
\(118\) 737.886 0.575660
\(119\) 0 0
\(120\) 60.9072 0.0463337
\(121\) −716.361 −0.538213
\(122\) −165.492 −0.122811
\(123\) −1757.78 −1.28857
\(124\) 416.377 0.301547
\(125\) 231.670 0.165770
\(126\) 0 0
\(127\) 1543.27 1.07829 0.539145 0.842213i \(-0.318748\pi\)
0.539145 + 0.842213i \(0.318748\pi\)
\(128\) −128.000 −0.0883883
\(129\) −6.47414 −0.00441873
\(130\) −92.9439 −0.0627055
\(131\) −2001.30 −1.33477 −0.667384 0.744713i \(-0.732586\pi\)
−0.667384 + 0.744713i \(0.732586\pi\)
\(132\) 811.922 0.535369
\(133\) 0 0
\(134\) 94.0800 0.0606513
\(135\) −99.2255 −0.0632591
\(136\) 376.705 0.237516
\(137\) −2170.60 −1.35363 −0.676813 0.736155i \(-0.736639\pi\)
−0.676813 + 0.736155i \(0.736639\pi\)
\(138\) −376.619 −0.232318
\(139\) −1546.53 −0.943702 −0.471851 0.881678i \(-0.656414\pi\)
−0.471851 + 0.881678i \(0.656414\pi\)
\(140\) 0 0
\(141\) 369.101 0.220453
\(142\) −643.745 −0.380435
\(143\) −1238.99 −0.724540
\(144\) 640.528 0.370676
\(145\) 77.4305 0.0443466
\(146\) −603.223 −0.341939
\(147\) 0 0
\(148\) −527.576 −0.293017
\(149\) 1758.33 0.966767 0.483384 0.875409i \(-0.339408\pi\)
0.483384 + 0.875409i \(0.339408\pi\)
\(150\) 2032.68 1.10645
\(151\) −1070.02 −0.576670 −0.288335 0.957530i \(-0.593102\pi\)
−0.288335 + 0.957530i \(0.593102\pi\)
\(152\) −225.507 −0.120336
\(153\) −1885.08 −0.996077
\(154\) 0 0
\(155\) −96.7969 −0.0501607
\(156\) −1636.67 −0.839989
\(157\) −2070.79 −1.05266 −0.526329 0.850281i \(-0.676432\pi\)
−0.526329 + 0.850281i \(0.676432\pi\)
\(158\) 1297.66 0.653392
\(159\) −5264.71 −2.62590
\(160\) 29.7567 0.0147030
\(161\) 0 0
\(162\) 414.500 0.201026
\(163\) 265.619 0.127637 0.0638187 0.997962i \(-0.479672\pi\)
0.0638187 + 0.997962i \(0.479672\pi\)
\(164\) −858.778 −0.408898
\(165\) −188.751 −0.0890560
\(166\) 535.824 0.250530
\(167\) 1210.08 0.560713 0.280356 0.959896i \(-0.409547\pi\)
0.280356 + 0.959896i \(0.409547\pi\)
\(168\) 0 0
\(169\) 300.540 0.136796
\(170\) −87.5742 −0.0395096
\(171\) 1128.47 0.504655
\(172\) −3.16299 −0.00140219
\(173\) −1516.28 −0.666364 −0.333182 0.942863i \(-0.608122\pi\)
−0.333182 + 0.942863i \(0.608122\pi\)
\(174\) 1363.49 0.594057
\(175\) 0 0
\(176\) 396.671 0.169887
\(177\) −3020.67 −1.28275
\(178\) −54.0874 −0.0227754
\(179\) −1605.41 −0.670358 −0.335179 0.942154i \(-0.608797\pi\)
−0.335179 + 0.942154i \(0.608797\pi\)
\(180\) −148.906 −0.0616601
\(181\) −1845.59 −0.757910 −0.378955 0.925415i \(-0.623717\pi\)
−0.378955 + 0.925415i \(0.623717\pi\)
\(182\) 0 0
\(183\) 677.472 0.273662
\(184\) −184.000 −0.0737210
\(185\) 122.648 0.0487419
\(186\) −1704.52 −0.671942
\(187\) −1167.41 −0.456519
\(188\) 180.327 0.0699558
\(189\) 0 0
\(190\) 52.4246 0.0200173
\(191\) 151.354 0.0573382 0.0286691 0.999589i \(-0.490873\pi\)
0.0286691 + 0.999589i \(0.490873\pi\)
\(192\) 523.992 0.196957
\(193\) −402.106 −0.149970 −0.0749851 0.997185i \(-0.523891\pi\)
−0.0749851 + 0.997185i \(0.523891\pi\)
\(194\) 467.296 0.172938
\(195\) 380.483 0.139728
\(196\) 0 0
\(197\) −541.200 −0.195730 −0.0978651 0.995200i \(-0.531201\pi\)
−0.0978651 + 0.995200i \(0.531201\pi\)
\(198\) −1984.99 −0.712460
\(199\) −4526.94 −1.61259 −0.806297 0.591511i \(-0.798532\pi\)
−0.806297 + 0.591511i \(0.798532\pi\)
\(200\) 993.082 0.351108
\(201\) −385.134 −0.135150
\(202\) −3253.61 −1.13328
\(203\) 0 0
\(204\) −1542.11 −0.529262
\(205\) 199.644 0.0680181
\(206\) 1769.01 0.598314
\(207\) 920.759 0.309165
\(208\) −799.606 −0.266552
\(209\) 698.845 0.231292
\(210\) 0 0
\(211\) −1026.64 −0.334960 −0.167480 0.985875i \(-0.553563\pi\)
−0.167480 + 0.985875i \(0.553563\pi\)
\(212\) −2572.11 −0.833271
\(213\) 2635.29 0.847732
\(214\) 173.403 0.0553907
\(215\) 0.735314 0.000233246 0
\(216\) −853.648 −0.268905
\(217\) 0 0
\(218\) 40.2309 0.0124990
\(219\) 2469.40 0.761949
\(220\) −92.2156 −0.0282599
\(221\) 2353.25 0.716275
\(222\) 2159.73 0.652935
\(223\) 1590.16 0.477512 0.238756 0.971080i \(-0.423260\pi\)
0.238756 + 0.971080i \(0.423260\pi\)
\(224\) 0 0
\(225\) −4969.51 −1.47245
\(226\) −2517.13 −0.740873
\(227\) 4829.13 1.41199 0.705993 0.708219i \(-0.250501\pi\)
0.705993 + 0.708219i \(0.250501\pi\)
\(228\) 923.156 0.268147
\(229\) 5916.43 1.70729 0.853643 0.520859i \(-0.174388\pi\)
0.853643 + 0.520859i \(0.174388\pi\)
\(230\) 42.7752 0.0122631
\(231\) 0 0
\(232\) 666.143 0.188511
\(233\) 3505.15 0.985537 0.492768 0.870161i \(-0.335985\pi\)
0.492768 + 0.870161i \(0.335985\pi\)
\(234\) 4001.33 1.11784
\(235\) −41.9214 −0.0116368
\(236\) −1475.77 −0.407053
\(237\) −5312.19 −1.45597
\(238\) 0 0
\(239\) −1133.93 −0.306895 −0.153447 0.988157i \(-0.549038\pi\)
−0.153447 + 0.988157i \(0.549038\pi\)
\(240\) −121.814 −0.0327629
\(241\) 2264.96 0.605389 0.302695 0.953088i \(-0.402114\pi\)
0.302695 + 0.953088i \(0.402114\pi\)
\(242\) 1432.72 0.380574
\(243\) −4577.89 −1.20853
\(244\) 330.984 0.0868405
\(245\) 0 0
\(246\) 3515.56 0.911155
\(247\) −1408.73 −0.362896
\(248\) −832.755 −0.213226
\(249\) −2193.50 −0.558262
\(250\) −463.340 −0.117217
\(251\) −1409.31 −0.354401 −0.177200 0.984175i \(-0.556704\pi\)
−0.177200 + 0.984175i \(0.556704\pi\)
\(252\) 0 0
\(253\) 570.214 0.141696
\(254\) −3086.53 −0.762466
\(255\) 358.501 0.0880401
\(256\) 256.000 0.0625000
\(257\) −2174.35 −0.527752 −0.263876 0.964557i \(-0.585001\pi\)
−0.263876 + 0.964557i \(0.585001\pi\)
\(258\) 12.9483 0.00312452
\(259\) 0 0
\(260\) 185.888 0.0443395
\(261\) −3333.46 −0.790560
\(262\) 4002.61 0.943824
\(263\) 1107.47 0.259656 0.129828 0.991537i \(-0.458558\pi\)
0.129828 + 0.991537i \(0.458558\pi\)
\(264\) −1623.84 −0.378563
\(265\) 597.950 0.138610
\(266\) 0 0
\(267\) 221.417 0.0507509
\(268\) −188.160 −0.0428869
\(269\) 5159.43 1.16943 0.584714 0.811239i \(-0.301207\pi\)
0.584714 + 0.811239i \(0.301207\pi\)
\(270\) 198.451 0.0447309
\(271\) −2325.93 −0.521365 −0.260683 0.965425i \(-0.583948\pi\)
−0.260683 + 0.965425i \(0.583948\pi\)
\(272\) −753.411 −0.167949
\(273\) 0 0
\(274\) 4341.20 0.957158
\(275\) −3077.55 −0.674848
\(276\) 753.238 0.164274
\(277\) 5121.59 1.11093 0.555463 0.831541i \(-0.312541\pi\)
0.555463 + 0.831541i \(0.312541\pi\)
\(278\) 3093.05 0.667298
\(279\) 4167.21 0.894209
\(280\) 0 0
\(281\) −8796.14 −1.86738 −0.933690 0.358083i \(-0.883430\pi\)
−0.933690 + 0.358083i \(0.883430\pi\)
\(282\) −738.202 −0.155884
\(283\) 265.327 0.0557316 0.0278658 0.999612i \(-0.491129\pi\)
0.0278658 + 0.999612i \(0.491129\pi\)
\(284\) 1287.49 0.269009
\(285\) −214.610 −0.0446049
\(286\) 2477.97 0.512327
\(287\) 0 0
\(288\) −1281.06 −0.262107
\(289\) −2695.71 −0.548688
\(290\) −154.861 −0.0313578
\(291\) −1912.96 −0.385361
\(292\) 1206.45 0.241787
\(293\) −1877.36 −0.374324 −0.187162 0.982329i \(-0.559929\pi\)
−0.187162 + 0.982329i \(0.559929\pi\)
\(294\) 0 0
\(295\) 343.079 0.0677112
\(296\) 1055.15 0.207194
\(297\) 2645.45 0.516850
\(298\) −3516.67 −0.683608
\(299\) −1149.43 −0.222319
\(300\) −4065.37 −0.782380
\(301\) 0 0
\(302\) 2140.04 0.407767
\(303\) 13319.3 2.52532
\(304\) 451.015 0.0850904
\(305\) −76.9452 −0.0144455
\(306\) 3770.16 0.704332
\(307\) −760.529 −0.141387 −0.0706933 0.997498i \(-0.522521\pi\)
−0.0706933 + 0.997498i \(0.522521\pi\)
\(308\) 0 0
\(309\) −7241.76 −1.33324
\(310\) 193.594 0.0354690
\(311\) 2859.73 0.521417 0.260708 0.965418i \(-0.416044\pi\)
0.260708 + 0.965418i \(0.416044\pi\)
\(312\) 3273.34 0.593962
\(313\) 5618.47 1.01462 0.507308 0.861765i \(-0.330641\pi\)
0.507308 + 0.861765i \(0.330641\pi\)
\(314\) 4141.59 0.744342
\(315\) 0 0
\(316\) −2595.31 −0.462018
\(317\) −2261.50 −0.400689 −0.200344 0.979726i \(-0.564206\pi\)
−0.200344 + 0.979726i \(0.564206\pi\)
\(318\) 10529.4 1.85679
\(319\) −2064.37 −0.362328
\(320\) −59.5134 −0.0103966
\(321\) −709.859 −0.123428
\(322\) 0 0
\(323\) −1327.34 −0.228654
\(324\) −828.999 −0.142147
\(325\) 6203.71 1.05883
\(326\) −531.238 −0.0902532
\(327\) −164.693 −0.0278517
\(328\) 1717.56 0.289135
\(329\) 0 0
\(330\) 377.502 0.0629721
\(331\) 4247.57 0.705340 0.352670 0.935748i \(-0.385274\pi\)
0.352670 + 0.935748i \(0.385274\pi\)
\(332\) −1071.65 −0.177152
\(333\) −5280.12 −0.868915
\(334\) −2420.17 −0.396484
\(335\) 43.7423 0.00713402
\(336\) 0 0
\(337\) 5733.71 0.926811 0.463406 0.886146i \(-0.346627\pi\)
0.463406 + 0.886146i \(0.346627\pi\)
\(338\) −601.080 −0.0967291
\(339\) 10304.4 1.65090
\(340\) 175.148 0.0279375
\(341\) 2580.70 0.409832
\(342\) −2256.93 −0.356845
\(343\) 0 0
\(344\) 6.32598 0.000991495 0
\(345\) −175.108 −0.0273261
\(346\) 3032.57 0.471190
\(347\) −5198.76 −0.804277 −0.402138 0.915579i \(-0.631733\pi\)
−0.402138 + 0.915579i \(0.631733\pi\)
\(348\) −2726.98 −0.420062
\(349\) 8775.86 1.34602 0.673010 0.739633i \(-0.265001\pi\)
0.673010 + 0.739633i \(0.265001\pi\)
\(350\) 0 0
\(351\) −5332.67 −0.810932
\(352\) −793.341 −0.120128
\(353\) 6361.10 0.959114 0.479557 0.877511i \(-0.340797\pi\)
0.479557 + 0.877511i \(0.340797\pi\)
\(354\) 6041.34 0.907044
\(355\) −299.308 −0.0447482
\(356\) 108.175 0.0161046
\(357\) 0 0
\(358\) 3210.82 0.474015
\(359\) −6661.85 −0.979385 −0.489692 0.871895i \(-0.662891\pi\)
−0.489692 + 0.871895i \(0.662891\pi\)
\(360\) 297.812 0.0436002
\(361\) −6064.41 −0.884154
\(362\) 3691.18 0.535924
\(363\) −5865.11 −0.848040
\(364\) 0 0
\(365\) −280.467 −0.0402201
\(366\) −1354.94 −0.193508
\(367\) 6552.70 0.932011 0.466006 0.884782i \(-0.345693\pi\)
0.466006 + 0.884782i \(0.345693\pi\)
\(368\) 368.000 0.0521286
\(369\) −8594.86 −1.21255
\(370\) −245.296 −0.0344657
\(371\) 0 0
\(372\) 3409.03 0.475135
\(373\) 4988.55 0.692486 0.346243 0.938145i \(-0.387457\pi\)
0.346243 + 0.938145i \(0.387457\pi\)
\(374\) 2334.81 0.322808
\(375\) 1896.77 0.261196
\(376\) −360.654 −0.0494663
\(377\) 4161.35 0.568489
\(378\) 0 0
\(379\) 3768.99 0.510818 0.255409 0.966833i \(-0.417790\pi\)
0.255409 + 0.966833i \(0.417790\pi\)
\(380\) −104.849 −0.0141543
\(381\) 12635.3 1.69902
\(382\) −302.708 −0.0405443
\(383\) 58.3576 0.00778572 0.00389286 0.999992i \(-0.498761\pi\)
0.00389286 + 0.999992i \(0.498761\pi\)
\(384\) −1047.98 −0.139270
\(385\) 0 0
\(386\) 804.213 0.106045
\(387\) −31.6560 −0.00415805
\(388\) −934.593 −0.122285
\(389\) −9517.96 −1.24057 −0.620283 0.784378i \(-0.712982\pi\)
−0.620283 + 0.784378i \(0.712982\pi\)
\(390\) −760.966 −0.0988026
\(391\) −1083.03 −0.140079
\(392\) 0 0
\(393\) −16385.4 −2.10314
\(394\) 1082.40 0.138402
\(395\) 603.343 0.0768544
\(396\) 3969.98 0.503785
\(397\) −3250.14 −0.410881 −0.205441 0.978670i \(-0.565863\pi\)
−0.205441 + 0.978670i \(0.565863\pi\)
\(398\) 9053.88 1.14028
\(399\) 0 0
\(400\) −1986.16 −0.248271
\(401\) −1602.93 −0.199617 −0.0998086 0.995007i \(-0.531823\pi\)
−0.0998086 + 0.995007i \(0.531823\pi\)
\(402\) 770.268 0.0955658
\(403\) −5202.15 −0.643022
\(404\) 6507.22 0.801353
\(405\) 192.721 0.0236454
\(406\) 0 0
\(407\) −3269.91 −0.398239
\(408\) 3084.22 0.374245
\(409\) −8648.78 −1.04561 −0.522805 0.852452i \(-0.675115\pi\)
−0.522805 + 0.852452i \(0.675115\pi\)
\(410\) −399.287 −0.0480961
\(411\) −17771.5 −2.13285
\(412\) −3538.02 −0.423072
\(413\) 0 0
\(414\) −1841.52 −0.218613
\(415\) 249.131 0.0294683
\(416\) 1599.21 0.188480
\(417\) −12662.0 −1.48695
\(418\) −1397.69 −0.163548
\(419\) 920.296 0.107302 0.0536509 0.998560i \(-0.482914\pi\)
0.0536509 + 0.998560i \(0.482914\pi\)
\(420\) 0 0
\(421\) −10677.9 −1.23613 −0.618064 0.786128i \(-0.712083\pi\)
−0.618064 + 0.786128i \(0.712083\pi\)
\(422\) 2053.27 0.236853
\(423\) 1804.76 0.207448
\(424\) 5144.23 0.589212
\(425\) 5845.30 0.667150
\(426\) −5270.57 −0.599437
\(427\) 0 0
\(428\) −346.807 −0.0391672
\(429\) −10144.0 −1.14163
\(430\) −1.47063 −0.000164930 0
\(431\) −10662.8 −1.19167 −0.595834 0.803108i \(-0.703178\pi\)
−0.595834 + 0.803108i \(0.703178\pi\)
\(432\) 1707.30 0.190144
\(433\) −666.389 −0.0739599 −0.0369799 0.999316i \(-0.511774\pi\)
−0.0369799 + 0.999316i \(0.511774\pi\)
\(434\) 0 0
\(435\) 633.952 0.0698751
\(436\) −80.4618 −0.00883812
\(437\) 648.334 0.0709703
\(438\) −4938.81 −0.538780
\(439\) −203.557 −0.0221304 −0.0110652 0.999939i \(-0.503522\pi\)
−0.0110652 + 0.999939i \(0.503522\pi\)
\(440\) 184.431 0.0199828
\(441\) 0 0
\(442\) −4706.50 −0.506483
\(443\) −15540.0 −1.66665 −0.833327 0.552781i \(-0.813567\pi\)
−0.833327 + 0.552781i \(0.813567\pi\)
\(444\) −4319.46 −0.461695
\(445\) −25.1478 −0.00267892
\(446\) −3180.33 −0.337652
\(447\) 14396.1 1.52330
\(448\) 0 0
\(449\) −3811.42 −0.400606 −0.200303 0.979734i \(-0.564193\pi\)
−0.200303 + 0.979734i \(0.564193\pi\)
\(450\) 9939.02 1.04118
\(451\) −5322.68 −0.555733
\(452\) 5034.27 0.523876
\(453\) −8760.66 −0.908636
\(454\) −9658.27 −0.998425
\(455\) 0 0
\(456\) −1846.31 −0.189609
\(457\) −5391.26 −0.551844 −0.275922 0.961180i \(-0.588983\pi\)
−0.275922 + 0.961180i \(0.588983\pi\)
\(458\) −11832.9 −1.20723
\(459\) −5024.59 −0.510954
\(460\) −85.5505 −0.00867133
\(461\) −1512.84 −0.152841 −0.0764207 0.997076i \(-0.524349\pi\)
−0.0764207 + 0.997076i \(0.524349\pi\)
\(462\) 0 0
\(463\) 9939.43 0.997678 0.498839 0.866695i \(-0.333760\pi\)
0.498839 + 0.866695i \(0.333760\pi\)
\(464\) −1332.29 −0.133297
\(465\) −792.512 −0.0790363
\(466\) −7010.30 −0.696880
\(467\) 8514.31 0.843673 0.421836 0.906672i \(-0.361386\pi\)
0.421836 + 0.906672i \(0.361386\pi\)
\(468\) −8002.66 −0.790434
\(469\) 0 0
\(470\) 83.8427 0.00822846
\(471\) −16954.4 −1.65863
\(472\) 2951.54 0.287830
\(473\) −19.6042 −0.00190571
\(474\) 10624.4 1.02952
\(475\) −3499.18 −0.338007
\(476\) 0 0
\(477\) −25742.3 −2.47099
\(478\) 2267.86 0.217008
\(479\) −8661.25 −0.826185 −0.413093 0.910689i \(-0.635551\pi\)
−0.413093 + 0.910689i \(0.635551\pi\)
\(480\) 243.629 0.0231668
\(481\) 6591.46 0.624833
\(482\) −4529.92 −0.428075
\(483\) 0 0
\(484\) −2865.44 −0.269106
\(485\) 217.269 0.0203416
\(486\) 9155.78 0.854557
\(487\) 20654.5 1.92186 0.960930 0.276793i \(-0.0892717\pi\)
0.960930 + 0.276793i \(0.0892717\pi\)
\(488\) −661.968 −0.0614055
\(489\) 2174.72 0.201113
\(490\) 0 0
\(491\) 6176.18 0.567673 0.283836 0.958873i \(-0.408393\pi\)
0.283836 + 0.958873i \(0.408393\pi\)
\(492\) −7031.13 −0.644284
\(493\) 3920.93 0.358195
\(494\) 2817.46 0.256606
\(495\) −922.917 −0.0838021
\(496\) 1665.51 0.150773
\(497\) 0 0
\(498\) 4386.99 0.394751
\(499\) −19317.7 −1.73302 −0.866511 0.499158i \(-0.833643\pi\)
−0.866511 + 0.499158i \(0.833643\pi\)
\(500\) 926.680 0.0828848
\(501\) 9907.40 0.883493
\(502\) 2818.61 0.250599
\(503\) −3625.42 −0.321370 −0.160685 0.987006i \(-0.551370\pi\)
−0.160685 + 0.987006i \(0.551370\pi\)
\(504\) 0 0
\(505\) −1512.76 −0.133301
\(506\) −1140.43 −0.100194
\(507\) 2460.63 0.215543
\(508\) 6173.06 0.539145
\(509\) −7028.83 −0.612077 −0.306039 0.952019i \(-0.599004\pi\)
−0.306039 + 0.952019i \(0.599004\pi\)
\(510\) −717.002 −0.0622537
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 3007.87 0.258871
\(514\) 4348.70 0.373177
\(515\) 822.498 0.0703759
\(516\) −25.8966 −0.00220937
\(517\) 1117.66 0.0950769
\(518\) 0 0
\(519\) −12414.4 −1.04996
\(520\) −371.775 −0.0313528
\(521\) −16658.2 −1.40078 −0.700391 0.713759i \(-0.746991\pi\)
−0.700391 + 0.713759i \(0.746991\pi\)
\(522\) 6666.93 0.559011
\(523\) 12541.8 1.04859 0.524297 0.851536i \(-0.324328\pi\)
0.524297 + 0.851536i \(0.324328\pi\)
\(524\) −8005.21 −0.667384
\(525\) 0 0
\(526\) −2214.94 −0.183604
\(527\) −4901.61 −0.405156
\(528\) 3247.69 0.267685
\(529\) 529.000 0.0434783
\(530\) −1195.90 −0.0980123
\(531\) −14769.9 −1.20708
\(532\) 0 0
\(533\) 10729.4 0.871939
\(534\) −442.833 −0.0358863
\(535\) 80.6236 0.00651526
\(536\) 376.320 0.0303256
\(537\) −13144.1 −1.05626
\(538\) −10318.9 −0.826911
\(539\) 0 0
\(540\) −396.902 −0.0316295
\(541\) −14463.9 −1.14945 −0.574726 0.818346i \(-0.694891\pi\)
−0.574726 + 0.818346i \(0.694891\pi\)
\(542\) 4651.85 0.368661
\(543\) −15110.5 −1.19421
\(544\) 1506.82 0.118758
\(545\) 18.7053 0.00147018
\(546\) 0 0
\(547\) 754.766 0.0589972 0.0294986 0.999565i \(-0.490609\pi\)
0.0294986 + 0.999565i \(0.490609\pi\)
\(548\) −8682.40 −0.676813
\(549\) 3312.57 0.257518
\(550\) 6155.10 0.477190
\(551\) −2347.19 −0.181477
\(552\) −1506.48 −0.116159
\(553\) 0 0
\(554\) −10243.2 −0.785544
\(555\) 1004.16 0.0768006
\(556\) −6186.10 −0.471851
\(557\) 13788.9 1.04893 0.524464 0.851433i \(-0.324266\pi\)
0.524464 + 0.851433i \(0.324266\pi\)
\(558\) −8334.42 −0.632301
\(559\) 39.5179 0.00299004
\(560\) 0 0
\(561\) −9557.98 −0.719319
\(562\) 17592.3 1.32044
\(563\) −21277.1 −1.59276 −0.796379 0.604798i \(-0.793254\pi\)
−0.796379 + 0.604798i \(0.793254\pi\)
\(564\) 1476.40 0.110227
\(565\) −1170.34 −0.0871442
\(566\) −530.654 −0.0394082
\(567\) 0 0
\(568\) −2574.98 −0.190218
\(569\) −4588.21 −0.338046 −0.169023 0.985612i \(-0.554061\pi\)
−0.169023 + 0.985612i \(0.554061\pi\)
\(570\) 429.220 0.0315404
\(571\) −13123.8 −0.961845 −0.480922 0.876763i \(-0.659698\pi\)
−0.480922 + 0.876763i \(0.659698\pi\)
\(572\) −4955.94 −0.362270
\(573\) 1239.19 0.0903455
\(574\) 0 0
\(575\) −2855.11 −0.207072
\(576\) 2562.11 0.185338
\(577\) −13006.8 −0.938437 −0.469219 0.883082i \(-0.655464\pi\)
−0.469219 + 0.883082i \(0.655464\pi\)
\(578\) 5391.41 0.387981
\(579\) −3292.19 −0.236302
\(580\) 309.722 0.0221733
\(581\) 0 0
\(582\) 3825.93 0.272491
\(583\) −15941.9 −1.13250
\(584\) −2412.89 −0.170969
\(585\) 1860.41 0.131485
\(586\) 3754.73 0.264687
\(587\) 4411.66 0.310202 0.155101 0.987899i \(-0.450430\pi\)
0.155101 + 0.987899i \(0.450430\pi\)
\(588\) 0 0
\(589\) 2934.25 0.205270
\(590\) −686.157 −0.0478791
\(591\) −4431.00 −0.308404
\(592\) −2110.31 −0.146508
\(593\) 16590.1 1.14886 0.574430 0.818554i \(-0.305224\pi\)
0.574430 + 0.818554i \(0.305224\pi\)
\(594\) −5290.89 −0.365468
\(595\) 0 0
\(596\) 7033.33 0.483384
\(597\) −37063.7 −2.54090
\(598\) 2298.87 0.157204
\(599\) −21989.1 −1.49992 −0.749960 0.661483i \(-0.769927\pi\)
−0.749960 + 0.661483i \(0.769927\pi\)
\(600\) 8130.73 0.553226
\(601\) 10366.9 0.703621 0.351811 0.936071i \(-0.385566\pi\)
0.351811 + 0.936071i \(0.385566\pi\)
\(602\) 0 0
\(603\) −1883.15 −0.127177
\(604\) −4280.09 −0.288335
\(605\) 666.142 0.0447645
\(606\) −26638.5 −1.78567
\(607\) 18204.4 1.21729 0.608645 0.793442i \(-0.291713\pi\)
0.608645 + 0.793442i \(0.291713\pi\)
\(608\) −902.030 −0.0601680
\(609\) 0 0
\(610\) 153.890 0.0102145
\(611\) −2252.98 −0.149175
\(612\) −7540.32 −0.498038
\(613\) 4955.64 0.326520 0.163260 0.986583i \(-0.447799\pi\)
0.163260 + 0.986583i \(0.447799\pi\)
\(614\) 1521.06 0.0999754
\(615\) 1634.56 0.107173
\(616\) 0 0
\(617\) 6462.50 0.421670 0.210835 0.977522i \(-0.432382\pi\)
0.210835 + 0.977522i \(0.432382\pi\)
\(618\) 14483.5 0.942740
\(619\) −24210.9 −1.57208 −0.786041 0.618175i \(-0.787872\pi\)
−0.786041 + 0.618175i \(0.787872\pi\)
\(620\) −387.188 −0.0250804
\(621\) 2454.24 0.158591
\(622\) −5719.47 −0.368697
\(623\) 0 0
\(624\) −6546.67 −0.419995
\(625\) 15301.5 0.979295
\(626\) −11236.9 −0.717442
\(627\) 5721.70 0.364438
\(628\) −8283.17 −0.526329
\(629\) 6210.65 0.393696
\(630\) 0 0
\(631\) 26854.7 1.69424 0.847122 0.531399i \(-0.178333\pi\)
0.847122 + 0.531399i \(0.178333\pi\)
\(632\) 5190.62 0.326696
\(633\) −8405.45 −0.527783
\(634\) 4523.00 0.283330
\(635\) −1435.08 −0.0896840
\(636\) −21058.8 −1.31295
\(637\) 0 0
\(638\) 4128.74 0.256204
\(639\) 12885.5 0.797720
\(640\) 119.027 0.00735148
\(641\) −26485.5 −1.63200 −0.816002 0.578049i \(-0.803814\pi\)
−0.816002 + 0.578049i \(0.803814\pi\)
\(642\) 1419.72 0.0872769
\(643\) 4717.54 0.289334 0.144667 0.989480i \(-0.453789\pi\)
0.144667 + 0.989480i \(0.453789\pi\)
\(644\) 0 0
\(645\) 6.02028 0.000367517 0
\(646\) 2654.68 0.161683
\(647\) −24950.0 −1.51605 −0.758026 0.652224i \(-0.773836\pi\)
−0.758026 + 0.652224i \(0.773836\pi\)
\(648\) 1658.00 0.100513
\(649\) −9146.80 −0.553225
\(650\) −12407.4 −0.748706
\(651\) 0 0
\(652\) 1062.48 0.0638187
\(653\) −8336.75 −0.499605 −0.249803 0.968297i \(-0.580366\pi\)
−0.249803 + 0.968297i \(0.580366\pi\)
\(654\) 329.385 0.0196942
\(655\) 1861.00 0.111016
\(656\) −3435.11 −0.204449
\(657\) 12074.4 0.716998
\(658\) 0 0
\(659\) 2792.93 0.165094 0.0825471 0.996587i \(-0.473695\pi\)
0.0825471 + 0.996587i \(0.473695\pi\)
\(660\) −755.003 −0.0445280
\(661\) 16190.8 0.952724 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(662\) −8495.14 −0.498751
\(663\) 19266.9 1.12861
\(664\) 2143.30 0.125265
\(665\) 0 0
\(666\) 10560.2 0.614415
\(667\) −1915.16 −0.111177
\(668\) 4840.33 0.280356
\(669\) 13019.3 0.752397
\(670\) −87.4846 −0.00504452
\(671\) 2051.43 0.118025
\(672\) 0 0
\(673\) 23556.4 1.34923 0.674616 0.738169i \(-0.264309\pi\)
0.674616 + 0.738169i \(0.264309\pi\)
\(674\) −11467.4 −0.655354
\(675\) −13246.0 −0.755316
\(676\) 1202.16 0.0683978
\(677\) 10509.5 0.596621 0.298311 0.954469i \(-0.403577\pi\)
0.298311 + 0.954469i \(0.403577\pi\)
\(678\) −20608.7 −1.16736
\(679\) 0 0
\(680\) −350.297 −0.0197548
\(681\) 39537.9 2.22481
\(682\) −5161.39 −0.289795
\(683\) −16935.1 −0.948762 −0.474381 0.880320i \(-0.657328\pi\)
−0.474381 + 0.880320i \(0.657328\pi\)
\(684\) 4513.87 0.252328
\(685\) 2018.43 0.112584
\(686\) 0 0
\(687\) 48440.0 2.69010
\(688\) −12.6520 −0.000701093 0
\(689\) 32135.6 1.77688
\(690\) 350.217 0.0193225
\(691\) −7831.98 −0.431176 −0.215588 0.976484i \(-0.569167\pi\)
−0.215588 + 0.976484i \(0.569167\pi\)
\(692\) −6065.14 −0.333182
\(693\) 0 0
\(694\) 10397.5 0.568710
\(695\) 1438.11 0.0784900
\(696\) 5453.96 0.297028
\(697\) 10109.6 0.549393
\(698\) −17551.7 −0.951780
\(699\) 28698.0 1.55287
\(700\) 0 0
\(701\) 30651.2 1.65147 0.825735 0.564058i \(-0.190761\pi\)
0.825735 + 0.564058i \(0.190761\pi\)
\(702\) 10665.3 0.573415
\(703\) −3717.89 −0.199463
\(704\) 1586.68 0.0849437
\(705\) −343.226 −0.0183356
\(706\) −12722.2 −0.678196
\(707\) 0 0
\(708\) −12082.7 −0.641377
\(709\) 8493.59 0.449906 0.224953 0.974370i \(-0.427777\pi\)
0.224953 + 0.974370i \(0.427777\pi\)
\(710\) 598.616 0.0316418
\(711\) −25974.5 −1.37007
\(712\) −216.350 −0.0113877
\(713\) 2394.17 0.125754
\(714\) 0 0
\(715\) 1152.13 0.0602617
\(716\) −6421.65 −0.335179
\(717\) −9283.91 −0.483562
\(718\) 13323.7 0.692530
\(719\) −20656.9 −1.07145 −0.535726 0.844392i \(-0.679962\pi\)
−0.535726 + 0.844392i \(0.679962\pi\)
\(720\) −595.625 −0.0308300
\(721\) 0 0
\(722\) 12128.8 0.625191
\(723\) 18544.1 0.953888
\(724\) −7382.37 −0.378955
\(725\) 10336.5 0.529500
\(726\) 11730.2 0.599655
\(727\) 3871.26 0.197493 0.0987463 0.995113i \(-0.468517\pi\)
0.0987463 + 0.995113i \(0.468517\pi\)
\(728\) 0 0
\(729\) −31885.1 −1.61993
\(730\) 560.935 0.0284399
\(731\) 37.2349 0.00188397
\(732\) 2709.89 0.136831
\(733\) −12077.1 −0.608562 −0.304281 0.952582i \(-0.598416\pi\)
−0.304281 + 0.952582i \(0.598416\pi\)
\(734\) −13105.4 −0.659031
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −1166.21 −0.0582876
\(738\) 17189.7 0.857402
\(739\) −13369.2 −0.665488 −0.332744 0.943017i \(-0.607975\pi\)
−0.332744 + 0.943017i \(0.607975\pi\)
\(740\) 490.591 0.0243709
\(741\) −11533.8 −0.571800
\(742\) 0 0
\(743\) 3177.57 0.156896 0.0784479 0.996918i \(-0.475004\pi\)
0.0784479 + 0.996918i \(0.475004\pi\)
\(744\) −6818.07 −0.335971
\(745\) −1635.07 −0.0804084
\(746\) −9977.10 −0.489662
\(747\) −10725.3 −0.525327
\(748\) −4669.62 −0.228260
\(749\) 0 0
\(750\) −3793.54 −0.184694
\(751\) 10890.0 0.529135 0.264568 0.964367i \(-0.414771\pi\)
0.264568 + 0.964367i \(0.414771\pi\)
\(752\) 721.308 0.0349779
\(753\) −11538.5 −0.558415
\(754\) −8322.69 −0.401982
\(755\) 995.010 0.0479631
\(756\) 0 0
\(757\) 19313.4 0.927287 0.463644 0.886022i \(-0.346542\pi\)
0.463644 + 0.886022i \(0.346542\pi\)
\(758\) −7537.98 −0.361203
\(759\) 4668.55 0.223264
\(760\) 209.698 0.0100086
\(761\) 1623.10 0.0773159 0.0386579 0.999253i \(-0.487692\pi\)
0.0386579 + 0.999253i \(0.487692\pi\)
\(762\) −25270.6 −1.20139
\(763\) 0 0
\(764\) 605.417 0.0286691
\(765\) 1752.93 0.0828461
\(766\) −116.715 −0.00550534
\(767\) 18438.1 0.868005
\(768\) 2095.97 0.0984787
\(769\) 32253.8 1.51249 0.756244 0.654290i \(-0.227032\pi\)
0.756244 + 0.654290i \(0.227032\pi\)
\(770\) 0 0
\(771\) −17802.2 −0.831557
\(772\) −1608.43 −0.0749851
\(773\) −19470.2 −0.905946 −0.452973 0.891524i \(-0.649637\pi\)
−0.452973 + 0.891524i \(0.649637\pi\)
\(774\) 63.3120 0.00294019
\(775\) −12921.8 −0.598921
\(776\) 1869.19 0.0864689
\(777\) 0 0
\(778\) 19035.9 0.877212
\(779\) −6051.90 −0.278346
\(780\) 1521.93 0.0698640
\(781\) 7979.83 0.365609
\(782\) 2166.06 0.0990511
\(783\) −8885.18 −0.405531
\(784\) 0 0
\(785\) 1925.62 0.0875522
\(786\) 32770.8 1.48715
\(787\) −9749.79 −0.441604 −0.220802 0.975319i \(-0.570868\pi\)
−0.220802 + 0.975319i \(0.570868\pi\)
\(788\) −2164.80 −0.0978651
\(789\) 9067.25 0.409129
\(790\) −1206.69 −0.0543442
\(791\) 0 0
\(792\) −7939.96 −0.356230
\(793\) −4135.27 −0.185180
\(794\) 6500.28 0.290537
\(795\) 4895.63 0.218403
\(796\) −18107.8 −0.806297
\(797\) 21513.8 0.956158 0.478079 0.878317i \(-0.341333\pi\)
0.478079 + 0.878317i \(0.341333\pi\)
\(798\) 0 0
\(799\) −2122.82 −0.0939923
\(800\) 3972.33 0.175554
\(801\) 1082.64 0.0477568
\(802\) 3205.86 0.141151
\(803\) 7477.53 0.328613
\(804\) −1540.54 −0.0675752
\(805\) 0 0
\(806\) 10404.3 0.454685
\(807\) 42242.2 1.84262
\(808\) −13014.4 −0.566642
\(809\) 18997.9 0.825624 0.412812 0.910816i \(-0.364547\pi\)
0.412812 + 0.910816i \(0.364547\pi\)
\(810\) −385.442 −0.0167198
\(811\) 1464.38 0.0634048 0.0317024 0.999497i \(-0.489907\pi\)
0.0317024 + 0.999497i \(0.489907\pi\)
\(812\) 0 0
\(813\) −19043.2 −0.821494
\(814\) 6539.81 0.281597
\(815\) −246.998 −0.0106159
\(816\) −6168.45 −0.264631
\(817\) −22.2899 −0.000954500 0
\(818\) 17297.6 0.739358
\(819\) 0 0
\(820\) 798.574 0.0340090
\(821\) −40491.2 −1.72126 −0.860628 0.509234i \(-0.829929\pi\)
−0.860628 + 0.509234i \(0.829929\pi\)
\(822\) 35543.0 1.50816
\(823\) −8810.58 −0.373168 −0.186584 0.982439i \(-0.559742\pi\)
−0.186584 + 0.982439i \(0.559742\pi\)
\(824\) 7076.04 0.299157
\(825\) −25197.0 −1.06333
\(826\) 0 0
\(827\) 17019.8 0.715644 0.357822 0.933790i \(-0.383519\pi\)
0.357822 + 0.933790i \(0.383519\pi\)
\(828\) 3683.04 0.154583
\(829\) 27122.9 1.13633 0.568166 0.822914i \(-0.307653\pi\)
0.568166 + 0.822914i \(0.307653\pi\)
\(830\) −498.261 −0.0208372
\(831\) 41932.4 1.75044
\(832\) −3198.43 −0.133276
\(833\) 0 0
\(834\) 25324.0 1.05143
\(835\) −1125.25 −0.0466359
\(836\) 2795.38 0.115646
\(837\) 11107.5 0.458699
\(838\) −1840.59 −0.0758738
\(839\) −2294.57 −0.0944188 −0.0472094 0.998885i \(-0.515033\pi\)
−0.0472094 + 0.998885i \(0.515033\pi\)
\(840\) 0 0
\(841\) −17455.5 −0.715710
\(842\) 21355.8 0.874074
\(843\) −72017.2 −2.94235
\(844\) −4106.55 −0.167480
\(845\) −279.471 −0.0113776
\(846\) −3609.52 −0.146688
\(847\) 0 0
\(848\) −10288.5 −0.416635
\(849\) 2172.33 0.0878141
\(850\) −11690.6 −0.471746
\(851\) −3033.56 −0.122197
\(852\) 10541.1 0.423866
\(853\) 24642.9 0.989165 0.494582 0.869131i \(-0.335321\pi\)
0.494582 + 0.869131i \(0.335321\pi\)
\(854\) 0 0
\(855\) −1049.36 −0.0419734
\(856\) 693.614 0.0276954
\(857\) 24067.9 0.959327 0.479663 0.877453i \(-0.340759\pi\)
0.479663 + 0.877453i \(0.340759\pi\)
\(858\) 20288.1 0.807253
\(859\) 16504.8 0.655571 0.327785 0.944752i \(-0.393698\pi\)
0.327785 + 0.944752i \(0.393698\pi\)
\(860\) 2.94125 0.000116623 0
\(861\) 0 0
\(862\) 21325.6 0.842637
\(863\) −15498.1 −0.611309 −0.305655 0.952142i \(-0.598875\pi\)
−0.305655 + 0.952142i \(0.598875\pi\)
\(864\) −3414.59 −0.134452
\(865\) 1409.99 0.0554231
\(866\) 1332.78 0.0522975
\(867\) −22070.7 −0.864546
\(868\) 0 0
\(869\) −16085.7 −0.627928
\(870\) −1267.90 −0.0494092
\(871\) 2350.84 0.0914526
\(872\) 160.924 0.00624949
\(873\) −9353.64 −0.362626
\(874\) −1296.67 −0.0501836
\(875\) 0 0
\(876\) 9877.62 0.380975
\(877\) 43574.1 1.67776 0.838878 0.544319i \(-0.183212\pi\)
0.838878 + 0.544319i \(0.183212\pi\)
\(878\) 407.115 0.0156486
\(879\) −15370.7 −0.589807
\(880\) −368.863 −0.0141299
\(881\) 31820.6 1.21687 0.608435 0.793604i \(-0.291798\pi\)
0.608435 + 0.793604i \(0.291798\pi\)
\(882\) 0 0
\(883\) 8773.52 0.334374 0.167187 0.985925i \(-0.446532\pi\)
0.167187 + 0.985925i \(0.446532\pi\)
\(884\) 9413.00 0.358137
\(885\) 2808.91 0.106690
\(886\) 31080.0 1.17850
\(887\) 46161.4 1.74740 0.873702 0.486461i \(-0.161713\pi\)
0.873702 + 0.486461i \(0.161713\pi\)
\(888\) 8638.92 0.326468
\(889\) 0 0
\(890\) 50.2957 0.00189429
\(891\) −5138.12 −0.193191
\(892\) 6360.65 0.238756
\(893\) 1270.78 0.0476205
\(894\) −28792.2 −1.07713
\(895\) 1492.87 0.0557553
\(896\) 0 0
\(897\) −9410.84 −0.350300
\(898\) 7622.84 0.283271
\(899\) −8667.72 −0.321562
\(900\) −19878.0 −0.736223
\(901\) 30279.0 1.11958
\(902\) 10645.4 0.392962
\(903\) 0 0
\(904\) −10068.5 −0.370437
\(905\) 1716.21 0.0630373
\(906\) 17521.3 0.642502
\(907\) 52766.7 1.93174 0.965870 0.259027i \(-0.0834019\pi\)
0.965870 + 0.259027i \(0.0834019\pi\)
\(908\) 19316.5 0.705993
\(909\) 65125.9 2.37634
\(910\) 0 0
\(911\) −4410.66 −0.160408 −0.0802040 0.996778i \(-0.525557\pi\)
−0.0802040 + 0.996778i \(0.525557\pi\)
\(912\) 3692.62 0.134073
\(913\) −6642.05 −0.240767
\(914\) 10782.5 0.390212
\(915\) −629.979 −0.0227612
\(916\) 23665.7 0.853643
\(917\) 0 0
\(918\) 10049.2 0.361299
\(919\) −30972.6 −1.11174 −0.555872 0.831268i \(-0.687616\pi\)
−0.555872 + 0.831268i \(0.687616\pi\)
\(920\) 171.101 0.00613155
\(921\) −6226.73 −0.222777
\(922\) 3025.68 0.108075
\(923\) −16085.7 −0.573637
\(924\) 0 0
\(925\) 16372.7 0.581980
\(926\) −19878.9 −0.705465
\(927\) −35409.4 −1.25458
\(928\) 2664.57 0.0942553
\(929\) −35284.1 −1.24611 −0.623054 0.782179i \(-0.714108\pi\)
−0.623054 + 0.782179i \(0.714108\pi\)
\(930\) 1585.02 0.0558871
\(931\) 0 0
\(932\) 14020.6 0.492768
\(933\) 23413.7 0.821576
\(934\) −17028.6 −0.596567
\(935\) 1085.57 0.0379698
\(936\) 16005.3 0.558921
\(937\) 36839.6 1.28441 0.642207 0.766531i \(-0.278019\pi\)
0.642207 + 0.766531i \(0.278019\pi\)
\(938\) 0 0
\(939\) 46000.5 1.59869
\(940\) −167.685 −0.00581840
\(941\) −1752.33 −0.0607058 −0.0303529 0.999539i \(-0.509663\pi\)
−0.0303529 + 0.999539i \(0.509663\pi\)
\(942\) 33908.7 1.17283
\(943\) −4937.97 −0.170522
\(944\) −5903.09 −0.203527
\(945\) 0 0
\(946\) 39.2083 0.00134754
\(947\) −46405.9 −1.59239 −0.796193 0.605043i \(-0.793156\pi\)
−0.796193 + 0.605043i \(0.793156\pi\)
\(948\) −21248.8 −0.727983
\(949\) −15073.2 −0.515590
\(950\) 6998.36 0.239007
\(951\) −18515.7 −0.631349
\(952\) 0 0
\(953\) −54948.0 −1.86772 −0.933861 0.357636i \(-0.883583\pi\)
−0.933861 + 0.357636i \(0.883583\pi\)
\(954\) 51484.7 1.74725
\(955\) −140.744 −0.00476896
\(956\) −4535.72 −0.153447
\(957\) −16901.8 −0.570905
\(958\) 17322.5 0.584201
\(959\) 0 0
\(960\) −487.258 −0.0163814
\(961\) −18955.4 −0.636279
\(962\) −13182.9 −0.441824
\(963\) −3470.93 −0.116147
\(964\) 9059.84 0.302695
\(965\) 373.917 0.0124734
\(966\) 0 0
\(967\) −22916.6 −0.762096 −0.381048 0.924555i \(-0.624437\pi\)
−0.381048 + 0.924555i \(0.624437\pi\)
\(968\) 5730.89 0.190287
\(969\) −10867.4 −0.360281
\(970\) −434.537 −0.0143837
\(971\) 27574.4 0.911334 0.455667 0.890150i \(-0.349401\pi\)
0.455667 + 0.890150i \(0.349401\pi\)
\(972\) −18311.6 −0.604263
\(973\) 0 0
\(974\) −41309.0 −1.35896
\(975\) 50792.1 1.66836
\(976\) 1323.94 0.0434203
\(977\) −1829.39 −0.0599051 −0.0299525 0.999551i \(-0.509536\pi\)
−0.0299525 + 0.999551i \(0.509536\pi\)
\(978\) −4349.44 −0.142208
\(979\) 670.465 0.0218878
\(980\) 0 0
\(981\) −805.282 −0.0262086
\(982\) −12352.4 −0.401405
\(983\) −34523.6 −1.12018 −0.560088 0.828433i \(-0.689233\pi\)
−0.560088 + 0.828433i \(0.689233\pi\)
\(984\) 14062.3 0.455578
\(985\) 503.259 0.0162794
\(986\) −7841.86 −0.253282
\(987\) 0 0
\(988\) −5634.91 −0.181448
\(989\) −18.1872 −0.000584752 0
\(990\) 1845.83 0.0592570
\(991\) −11285.5 −0.361751 −0.180875 0.983506i \(-0.557893\pi\)
−0.180875 + 0.983506i \(0.557893\pi\)
\(992\) −3331.02 −0.106613
\(993\) 34776.4 1.11138
\(994\) 0 0
\(995\) 4209.59 0.134123
\(996\) −8773.98 −0.279131
\(997\) 40931.1 1.30020 0.650100 0.759849i \(-0.274727\pi\)
0.650100 + 0.759849i \(0.274727\pi\)
\(998\) 38635.4 1.22543
\(999\) −14073.9 −0.445724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.z.1.14 yes 14
7.6 odd 2 inner 2254.4.a.z.1.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.z.1.1 14 7.6 odd 2 inner
2254.4.a.z.1.14 yes 14 1.1 even 1 trivial