Properties

Label 2254.4.a.z.1.12
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 200x^{12} + 15521x^{10} - 598294x^{8} + 12167812x^{6} - 125559722x^{4} + 539505876x^{2} - 324615200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(5.47743\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +5.47743 q^{3} +4.00000 q^{4} +6.20172 q^{5} -10.9549 q^{6} -8.00000 q^{8} +3.00226 q^{9} -12.4034 q^{10} -33.0895 q^{11} +21.9097 q^{12} -34.5381 q^{13} +33.9695 q^{15} +16.0000 q^{16} +131.015 q^{17} -6.00452 q^{18} -13.5939 q^{19} +24.8069 q^{20} +66.1789 q^{22} +23.0000 q^{23} -43.8195 q^{24} -86.5386 q^{25} +69.0761 q^{26} -131.446 q^{27} +66.8864 q^{29} -67.9390 q^{30} -308.319 q^{31} -32.0000 q^{32} -181.245 q^{33} -262.030 q^{34} +12.0090 q^{36} +200.638 q^{37} +27.1878 q^{38} -189.180 q^{39} -49.6138 q^{40} +300.162 q^{41} -141.539 q^{43} -132.358 q^{44} +18.6192 q^{45} -46.0000 q^{46} +247.281 q^{47} +87.6389 q^{48} +173.077 q^{50} +717.626 q^{51} -138.152 q^{52} +190.653 q^{53} +262.892 q^{54} -205.212 q^{55} -74.4597 q^{57} -133.773 q^{58} +818.525 q^{59} +135.878 q^{60} -539.384 q^{61} +616.637 q^{62} +64.0000 q^{64} -214.196 q^{65} +362.490 q^{66} -465.724 q^{67} +524.061 q^{68} +125.981 q^{69} -214.039 q^{71} -24.0181 q^{72} -1054.49 q^{73} -401.276 q^{74} -474.009 q^{75} -54.3757 q^{76} +378.360 q^{78} +719.679 q^{79} +99.2276 q^{80} -801.047 q^{81} -600.324 q^{82} +3.76807 q^{83} +812.520 q^{85} +283.077 q^{86} +366.366 q^{87} +264.716 q^{88} -1068.75 q^{89} -37.2384 q^{90} +92.0000 q^{92} -1688.79 q^{93} -494.562 q^{94} -84.3057 q^{95} -175.278 q^{96} -1226.84 q^{97} -99.3431 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 28 q^{2} + 56 q^{4} - 112 q^{8} + 22 q^{9} - 92 q^{11} - 268 q^{15} + 224 q^{16} - 44 q^{18} + 184 q^{22} + 322 q^{23} + 130 q^{25} + 196 q^{29} + 536 q^{30} - 448 q^{32} + 88 q^{36} + 628 q^{37}+ \cdots + 1800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 5.47743 1.05413 0.527066 0.849824i \(-0.323292\pi\)
0.527066 + 0.849824i \(0.323292\pi\)
\(4\) 4.00000 0.500000
\(5\) 6.20172 0.554699 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(6\) −10.9549 −0.745384
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 3.00226 0.111195
\(10\) −12.4034 −0.392232
\(11\) −33.0895 −0.906986 −0.453493 0.891260i \(-0.649822\pi\)
−0.453493 + 0.891260i \(0.649822\pi\)
\(12\) 21.9097 0.527066
\(13\) −34.5381 −0.736857 −0.368428 0.929656i \(-0.620104\pi\)
−0.368428 + 0.929656i \(0.620104\pi\)
\(14\) 0 0
\(15\) 33.9695 0.584726
\(16\) 16.0000 0.250000
\(17\) 131.015 1.86917 0.934583 0.355744i \(-0.115772\pi\)
0.934583 + 0.355744i \(0.115772\pi\)
\(18\) −6.00452 −0.0786266
\(19\) −13.5939 −0.164140 −0.0820699 0.996627i \(-0.526153\pi\)
−0.0820699 + 0.996627i \(0.526153\pi\)
\(20\) 24.8069 0.277350
\(21\) 0 0
\(22\) 66.1789 0.641336
\(23\) 23.0000 0.208514
\(24\) −43.8195 −0.372692
\(25\) −86.5386 −0.692309
\(26\) 69.0761 0.521036
\(27\) −131.446 −0.936918
\(28\) 0 0
\(29\) 66.8864 0.428293 0.214146 0.976802i \(-0.431303\pi\)
0.214146 + 0.976802i \(0.431303\pi\)
\(30\) −67.9390 −0.413464
\(31\) −308.319 −1.78631 −0.893156 0.449747i \(-0.851514\pi\)
−0.893156 + 0.449747i \(0.851514\pi\)
\(32\) −32.0000 −0.176777
\(33\) −181.245 −0.956083
\(34\) −262.030 −1.32170
\(35\) 0 0
\(36\) 12.0090 0.0555974
\(37\) 200.638 0.891478 0.445739 0.895163i \(-0.352941\pi\)
0.445739 + 0.895163i \(0.352941\pi\)
\(38\) 27.1878 0.116064
\(39\) −189.180 −0.776744
\(40\) −49.6138 −0.196116
\(41\) 300.162 1.14335 0.571675 0.820480i \(-0.306294\pi\)
0.571675 + 0.820480i \(0.306294\pi\)
\(42\) 0 0
\(43\) −141.539 −0.501964 −0.250982 0.967992i \(-0.580753\pi\)
−0.250982 + 0.967992i \(0.580753\pi\)
\(44\) −132.358 −0.453493
\(45\) 18.6192 0.0616797
\(46\) −46.0000 −0.147442
\(47\) 247.281 0.767439 0.383720 0.923450i \(-0.374643\pi\)
0.383720 + 0.923450i \(0.374643\pi\)
\(48\) 87.6389 0.263533
\(49\) 0 0
\(50\) 173.077 0.489536
\(51\) 717.626 1.97035
\(52\) −138.152 −0.368428
\(53\) 190.653 0.494117 0.247058 0.969001i \(-0.420536\pi\)
0.247058 + 0.969001i \(0.420536\pi\)
\(54\) 262.892 0.662501
\(55\) −205.212 −0.503104
\(56\) 0 0
\(57\) −74.4597 −0.173025
\(58\) −133.773 −0.302849
\(59\) 818.525 1.80615 0.903076 0.429481i \(-0.141304\pi\)
0.903076 + 0.429481i \(0.141304\pi\)
\(60\) 135.878 0.292363
\(61\) −539.384 −1.13215 −0.566075 0.824354i \(-0.691539\pi\)
−0.566075 + 0.824354i \(0.691539\pi\)
\(62\) 616.637 1.26311
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −214.196 −0.408734
\(66\) 362.490 0.676053
\(67\) −465.724 −0.849213 −0.424606 0.905378i \(-0.639587\pi\)
−0.424606 + 0.905378i \(0.639587\pi\)
\(68\) 524.061 0.934583
\(69\) 125.981 0.219802
\(70\) 0 0
\(71\) −214.039 −0.357771 −0.178885 0.983870i \(-0.557249\pi\)
−0.178885 + 0.983870i \(0.557249\pi\)
\(72\) −24.0181 −0.0393133
\(73\) −1054.49 −1.69067 −0.845333 0.534240i \(-0.820598\pi\)
−0.845333 + 0.534240i \(0.820598\pi\)
\(74\) −401.276 −0.630370
\(75\) −474.009 −0.729785
\(76\) −54.3757 −0.0820699
\(77\) 0 0
\(78\) 378.360 0.549241
\(79\) 719.679 1.02494 0.512470 0.858705i \(-0.328731\pi\)
0.512470 + 0.858705i \(0.328731\pi\)
\(80\) 99.2276 0.138675
\(81\) −801.047 −1.09883
\(82\) −600.324 −0.808471
\(83\) 3.76807 0.00498313 0.00249156 0.999997i \(-0.499207\pi\)
0.00249156 + 0.999997i \(0.499207\pi\)
\(84\) 0 0
\(85\) 812.520 1.03683
\(86\) 283.077 0.354942
\(87\) 366.366 0.451477
\(88\) 264.716 0.320668
\(89\) −1068.75 −1.27289 −0.636445 0.771322i \(-0.719596\pi\)
−0.636445 + 0.771322i \(0.719596\pi\)
\(90\) −37.2384 −0.0436141
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −1688.79 −1.88301
\(94\) −494.562 −0.542661
\(95\) −84.3057 −0.0910482
\(96\) −175.278 −0.186346
\(97\) −1226.84 −1.28420 −0.642099 0.766622i \(-0.721936\pi\)
−0.642099 + 0.766622i \(0.721936\pi\)
\(98\) 0 0
\(99\) −99.3431 −0.100852
\(100\) −346.154 −0.346154
\(101\) −1784.33 −1.75790 −0.878949 0.476915i \(-0.841755\pi\)
−0.878949 + 0.476915i \(0.841755\pi\)
\(102\) −1435.25 −1.39325
\(103\) −1084.01 −1.03700 −0.518499 0.855078i \(-0.673509\pi\)
−0.518499 + 0.855078i \(0.673509\pi\)
\(104\) 276.305 0.260518
\(105\) 0 0
\(106\) −381.306 −0.349393
\(107\) −1564.66 −1.41366 −0.706829 0.707385i \(-0.749875\pi\)
−0.706829 + 0.707385i \(0.749875\pi\)
\(108\) −525.784 −0.468459
\(109\) −1508.66 −1.32572 −0.662858 0.748745i \(-0.730657\pi\)
−0.662858 + 0.748745i \(0.730657\pi\)
\(110\) 410.423 0.355748
\(111\) 1098.98 0.939735
\(112\) 0 0
\(113\) 2038.04 1.69666 0.848332 0.529464i \(-0.177607\pi\)
0.848332 + 0.529464i \(0.177607\pi\)
\(114\) 148.919 0.122347
\(115\) 142.640 0.115663
\(116\) 267.546 0.214146
\(117\) −103.692 −0.0819346
\(118\) −1637.05 −1.27714
\(119\) 0 0
\(120\) −271.756 −0.206732
\(121\) −236.088 −0.177376
\(122\) 1078.77 0.800550
\(123\) 1644.12 1.20524
\(124\) −1233.27 −0.893156
\(125\) −1311.90 −0.938722
\(126\) 0 0
\(127\) 1823.60 1.27416 0.637079 0.770799i \(-0.280143\pi\)
0.637079 + 0.770799i \(0.280143\pi\)
\(128\) −128.000 −0.0883883
\(129\) −775.268 −0.529136
\(130\) 428.391 0.289018
\(131\) −2049.89 −1.36717 −0.683586 0.729870i \(-0.739581\pi\)
−0.683586 + 0.729870i \(0.739581\pi\)
\(132\) −724.981 −0.478042
\(133\) 0 0
\(134\) 931.448 0.600484
\(135\) −815.192 −0.519708
\(136\) −1048.12 −0.660850
\(137\) −1188.62 −0.741243 −0.370621 0.928784i \(-0.620855\pi\)
−0.370621 + 0.928784i \(0.620855\pi\)
\(138\) −251.962 −0.155423
\(139\) 1766.39 1.07787 0.538934 0.842348i \(-0.318827\pi\)
0.538934 + 0.842348i \(0.318827\pi\)
\(140\) 0 0
\(141\) 1354.46 0.808982
\(142\) 428.077 0.252982
\(143\) 1142.85 0.668319
\(144\) 48.0362 0.0277987
\(145\) 414.811 0.237574
\(146\) 2108.98 1.19548
\(147\) 0 0
\(148\) 802.552 0.445739
\(149\) −959.466 −0.527534 −0.263767 0.964586i \(-0.584965\pi\)
−0.263767 + 0.964586i \(0.584965\pi\)
\(150\) 948.019 0.516036
\(151\) −2428.87 −1.30900 −0.654499 0.756063i \(-0.727120\pi\)
−0.654499 + 0.756063i \(0.727120\pi\)
\(152\) 108.751 0.0580322
\(153\) 393.342 0.207842
\(154\) 0 0
\(155\) −1912.11 −0.990866
\(156\) −756.720 −0.388372
\(157\) 2885.04 1.46657 0.733285 0.679921i \(-0.237986\pi\)
0.733285 + 0.679921i \(0.237986\pi\)
\(158\) −1439.36 −0.724741
\(159\) 1044.29 0.520865
\(160\) −198.455 −0.0980579
\(161\) 0 0
\(162\) 1602.09 0.776991
\(163\) 91.4630 0.0439505 0.0219753 0.999759i \(-0.493004\pi\)
0.0219753 + 0.999759i \(0.493004\pi\)
\(164\) 1200.65 0.571675
\(165\) −1124.03 −0.530338
\(166\) −7.53614 −0.00352360
\(167\) −1957.04 −0.906829 −0.453415 0.891300i \(-0.649794\pi\)
−0.453415 + 0.891300i \(0.649794\pi\)
\(168\) 0 0
\(169\) −1004.12 −0.457042
\(170\) −1625.04 −0.733146
\(171\) −40.8125 −0.0182515
\(172\) −566.155 −0.250982
\(173\) −1428.78 −0.627907 −0.313954 0.949438i \(-0.601654\pi\)
−0.313954 + 0.949438i \(0.601654\pi\)
\(174\) −732.731 −0.319243
\(175\) 0 0
\(176\) −529.431 −0.226746
\(177\) 4483.42 1.90392
\(178\) 2137.50 0.900069
\(179\) 3461.98 1.44559 0.722794 0.691063i \(-0.242857\pi\)
0.722794 + 0.691063i \(0.242857\pi\)
\(180\) 74.4768 0.0308398
\(181\) −3521.15 −1.44600 −0.722998 0.690850i \(-0.757237\pi\)
−0.722998 + 0.690850i \(0.757237\pi\)
\(182\) 0 0
\(183\) −2954.44 −1.19343
\(184\) −184.000 −0.0737210
\(185\) 1244.30 0.494502
\(186\) 3377.59 1.33149
\(187\) −4335.22 −1.69531
\(188\) 989.124 0.383720
\(189\) 0 0
\(190\) 168.611 0.0643808
\(191\) 20.3079 0.00769333 0.00384667 0.999993i \(-0.498776\pi\)
0.00384667 + 0.999993i \(0.498776\pi\)
\(192\) 350.556 0.131767
\(193\) 3213.22 1.19841 0.599203 0.800597i \(-0.295484\pi\)
0.599203 + 0.800597i \(0.295484\pi\)
\(194\) 2453.69 0.908065
\(195\) −1173.24 −0.430859
\(196\) 0 0
\(197\) −2414.42 −0.873200 −0.436600 0.899656i \(-0.643817\pi\)
−0.436600 + 0.899656i \(0.643817\pi\)
\(198\) 198.686 0.0713132
\(199\) 3260.30 1.16139 0.580694 0.814122i \(-0.302781\pi\)
0.580694 + 0.814122i \(0.302781\pi\)
\(200\) 692.309 0.244768
\(201\) −2550.97 −0.895182
\(202\) 3568.67 1.24302
\(203\) 0 0
\(204\) 2870.51 0.985175
\(205\) 1861.52 0.634216
\(206\) 2168.02 0.733269
\(207\) 69.0520 0.0231857
\(208\) −552.609 −0.184214
\(209\) 449.815 0.148873
\(210\) 0 0
\(211\) 3217.94 1.04991 0.524957 0.851129i \(-0.324081\pi\)
0.524957 + 0.851129i \(0.324081\pi\)
\(212\) 762.612 0.247058
\(213\) −1172.38 −0.377138
\(214\) 3129.32 0.999607
\(215\) −877.784 −0.278439
\(216\) 1051.57 0.331251
\(217\) 0 0
\(218\) 3017.31 0.937423
\(219\) −5775.89 −1.78219
\(220\) −820.847 −0.251552
\(221\) −4525.01 −1.37731
\(222\) −2197.96 −0.664493
\(223\) −5062.61 −1.52026 −0.760128 0.649773i \(-0.774864\pi\)
−0.760128 + 0.649773i \(0.774864\pi\)
\(224\) 0 0
\(225\) −259.811 −0.0769812
\(226\) −4076.09 −1.19972
\(227\) −4694.40 −1.37259 −0.686295 0.727323i \(-0.740764\pi\)
−0.686295 + 0.727323i \(0.740764\pi\)
\(228\) −297.839 −0.0865126
\(229\) −2771.67 −0.799813 −0.399907 0.916556i \(-0.630957\pi\)
−0.399907 + 0.916556i \(0.630957\pi\)
\(230\) −285.279 −0.0817859
\(231\) 0 0
\(232\) −535.091 −0.151424
\(233\) −4911.35 −1.38092 −0.690458 0.723372i \(-0.742591\pi\)
−0.690458 + 0.723372i \(0.742591\pi\)
\(234\) 207.385 0.0579365
\(235\) 1533.57 0.425698
\(236\) 3274.10 0.903076
\(237\) 3941.99 1.08042
\(238\) 0 0
\(239\) 2841.87 0.769143 0.384571 0.923095i \(-0.374349\pi\)
0.384571 + 0.923095i \(0.374349\pi\)
\(240\) 543.512 0.146182
\(241\) 544.531 0.145545 0.0727725 0.997349i \(-0.476815\pi\)
0.0727725 + 0.997349i \(0.476815\pi\)
\(242\) 472.176 0.125424
\(243\) −838.641 −0.221394
\(244\) −2157.54 −0.566075
\(245\) 0 0
\(246\) −3288.23 −0.852236
\(247\) 469.508 0.120948
\(248\) 2466.55 0.631557
\(249\) 20.6394 0.00525287
\(250\) 2623.81 0.663777
\(251\) 88.4254 0.0222365 0.0111182 0.999938i \(-0.496461\pi\)
0.0111182 + 0.999938i \(0.496461\pi\)
\(252\) 0 0
\(253\) −761.057 −0.189120
\(254\) −3647.19 −0.900966
\(255\) 4450.52 1.09295
\(256\) 256.000 0.0625000
\(257\) 984.317 0.238911 0.119455 0.992840i \(-0.461885\pi\)
0.119455 + 0.992840i \(0.461885\pi\)
\(258\) 1550.54 0.374156
\(259\) 0 0
\(260\) −856.782 −0.204367
\(261\) 200.810 0.0476239
\(262\) 4099.77 0.966736
\(263\) −1161.57 −0.272340 −0.136170 0.990685i \(-0.543479\pi\)
−0.136170 + 0.990685i \(0.543479\pi\)
\(264\) 1449.96 0.338026
\(265\) 1182.38 0.274086
\(266\) 0 0
\(267\) −5854.00 −1.34179
\(268\) −1862.90 −0.424606
\(269\) 4147.30 0.940020 0.470010 0.882661i \(-0.344250\pi\)
0.470010 + 0.882661i \(0.344250\pi\)
\(270\) 1630.38 0.367489
\(271\) 3680.51 0.824999 0.412500 0.910958i \(-0.364656\pi\)
0.412500 + 0.910958i \(0.364656\pi\)
\(272\) 2096.24 0.467292
\(273\) 0 0
\(274\) 2377.23 0.524138
\(275\) 2863.52 0.627914
\(276\) 503.924 0.109901
\(277\) −4958.58 −1.07557 −0.537784 0.843083i \(-0.680738\pi\)
−0.537784 + 0.843083i \(0.680738\pi\)
\(278\) −3532.79 −0.762168
\(279\) −925.653 −0.198629
\(280\) 0 0
\(281\) −2739.24 −0.581528 −0.290764 0.956795i \(-0.593909\pi\)
−0.290764 + 0.956795i \(0.593909\pi\)
\(282\) −2708.93 −0.572037
\(283\) 1295.94 0.272211 0.136105 0.990694i \(-0.456541\pi\)
0.136105 + 0.990694i \(0.456541\pi\)
\(284\) −856.155 −0.178885
\(285\) −461.779 −0.0959769
\(286\) −2285.69 −0.472573
\(287\) 0 0
\(288\) −96.0723 −0.0196567
\(289\) 12252.0 2.49379
\(290\) −829.622 −0.167990
\(291\) −6719.96 −1.35371
\(292\) −4217.96 −0.845333
\(293\) 9016.11 1.79770 0.898851 0.438254i \(-0.144403\pi\)
0.898851 + 0.438254i \(0.144403\pi\)
\(294\) 0 0
\(295\) 5076.27 1.00187
\(296\) −1605.10 −0.315185
\(297\) 4349.48 0.849772
\(298\) 1918.93 0.373023
\(299\) −794.376 −0.153645
\(300\) −1896.04 −0.364893
\(301\) 0 0
\(302\) 4857.74 0.925601
\(303\) −9773.56 −1.85306
\(304\) −217.503 −0.0410350
\(305\) −3345.11 −0.628002
\(306\) −786.683 −0.146966
\(307\) 1380.95 0.256726 0.128363 0.991727i \(-0.459028\pi\)
0.128363 + 0.991727i \(0.459028\pi\)
\(308\) 0 0
\(309\) −5937.60 −1.09313
\(310\) 3824.22 0.700648
\(311\) −298.237 −0.0543777 −0.0271889 0.999630i \(-0.508656\pi\)
−0.0271889 + 0.999630i \(0.508656\pi\)
\(312\) 1513.44 0.274621
\(313\) −8201.17 −1.48102 −0.740508 0.672048i \(-0.765415\pi\)
−0.740508 + 0.672048i \(0.765415\pi\)
\(314\) −5770.09 −1.03702
\(315\) 0 0
\(316\) 2878.72 0.512470
\(317\) −3381.81 −0.599184 −0.299592 0.954067i \(-0.596851\pi\)
−0.299592 + 0.954067i \(0.596851\pi\)
\(318\) −2088.58 −0.368307
\(319\) −2213.23 −0.388455
\(320\) 396.910 0.0693374
\(321\) −8570.31 −1.49018
\(322\) 0 0
\(323\) −1781.01 −0.306805
\(324\) −3204.19 −0.549415
\(325\) 2988.88 0.510132
\(326\) −182.926 −0.0310777
\(327\) −8263.56 −1.39748
\(328\) −2401.29 −0.404236
\(329\) 0 0
\(330\) 2248.07 0.375006
\(331\) −5397.39 −0.896276 −0.448138 0.893964i \(-0.647913\pi\)
−0.448138 + 0.893964i \(0.647913\pi\)
\(332\) 15.0723 0.00249156
\(333\) 602.367 0.0991277
\(334\) 3914.08 0.641225
\(335\) −2888.29 −0.471057
\(336\) 0 0
\(337\) −6266.75 −1.01297 −0.506486 0.862248i \(-0.669056\pi\)
−0.506486 + 0.862248i \(0.669056\pi\)
\(338\) 2008.24 0.323178
\(339\) 11163.2 1.78851
\(340\) 3250.08 0.518413
\(341\) 10202.1 1.62016
\(342\) 81.6249 0.0129058
\(343\) 0 0
\(344\) 1132.31 0.177471
\(345\) 781.299 0.121924
\(346\) 2857.56 0.443998
\(347\) 2727.90 0.422022 0.211011 0.977484i \(-0.432324\pi\)
0.211011 + 0.977484i \(0.432324\pi\)
\(348\) 1465.46 0.225739
\(349\) 10329.3 1.58428 0.792142 0.610337i \(-0.208966\pi\)
0.792142 + 0.610337i \(0.208966\pi\)
\(350\) 0 0
\(351\) 4539.89 0.690374
\(352\) 1058.86 0.160334
\(353\) 5759.95 0.868474 0.434237 0.900799i \(-0.357018\pi\)
0.434237 + 0.900799i \(0.357018\pi\)
\(354\) −8966.83 −1.34628
\(355\) −1327.41 −0.198455
\(356\) −4275.00 −0.636445
\(357\) 0 0
\(358\) −6923.95 −1.02219
\(359\) 11297.9 1.66094 0.830471 0.557063i \(-0.188072\pi\)
0.830471 + 0.557063i \(0.188072\pi\)
\(360\) −148.954 −0.0218071
\(361\) −6674.21 −0.973058
\(362\) 7042.31 1.02247
\(363\) −1293.16 −0.186978
\(364\) 0 0
\(365\) −6539.65 −0.937811
\(366\) 5908.88 0.843886
\(367\) −1522.31 −0.216524 −0.108262 0.994122i \(-0.534528\pi\)
−0.108262 + 0.994122i \(0.534528\pi\)
\(368\) 368.000 0.0521286
\(369\) 901.164 0.127135
\(370\) −2488.60 −0.349666
\(371\) 0 0
\(372\) −6755.18 −0.941505
\(373\) −10906.0 −1.51391 −0.756956 0.653466i \(-0.773314\pi\)
−0.756956 + 0.653466i \(0.773314\pi\)
\(374\) 8670.44 1.19876
\(375\) −7185.87 −0.989537
\(376\) −1978.25 −0.271331
\(377\) −2310.13 −0.315590
\(378\) 0 0
\(379\) −2611.22 −0.353904 −0.176952 0.984220i \(-0.556624\pi\)
−0.176952 + 0.984220i \(0.556624\pi\)
\(380\) −337.223 −0.0455241
\(381\) 9988.63 1.34313
\(382\) −40.6158 −0.00544001
\(383\) 5232.93 0.698147 0.349073 0.937095i \(-0.386496\pi\)
0.349073 + 0.937095i \(0.386496\pi\)
\(384\) −701.111 −0.0931730
\(385\) 0 0
\(386\) −6426.43 −0.847401
\(387\) −424.936 −0.0558158
\(388\) −4907.38 −0.642099
\(389\) −8167.82 −1.06459 −0.532294 0.846560i \(-0.678670\pi\)
−0.532294 + 0.846560i \(0.678670\pi\)
\(390\) 2346.48 0.304664
\(391\) 3013.35 0.389748
\(392\) 0 0
\(393\) −11228.1 −1.44118
\(394\) 4828.84 0.617445
\(395\) 4463.25 0.568533
\(396\) −397.373 −0.0504261
\(397\) 2607.28 0.329611 0.164806 0.986326i \(-0.447300\pi\)
0.164806 + 0.986326i \(0.447300\pi\)
\(398\) −6520.59 −0.821226
\(399\) 0 0
\(400\) −1384.62 −0.173077
\(401\) −130.007 −0.0161901 −0.00809507 0.999967i \(-0.502577\pi\)
−0.00809507 + 0.999967i \(0.502577\pi\)
\(402\) 5101.94 0.632990
\(403\) 10648.7 1.31626
\(404\) −7137.33 −0.878949
\(405\) −4967.88 −0.609520
\(406\) 0 0
\(407\) −6639.00 −0.808558
\(408\) −5741.01 −0.696624
\(409\) 8857.36 1.07083 0.535414 0.844590i \(-0.320156\pi\)
0.535414 + 0.844590i \(0.320156\pi\)
\(410\) −3723.04 −0.448458
\(411\) −6510.56 −0.781368
\(412\) −4336.05 −0.518499
\(413\) 0 0
\(414\) −138.104 −0.0163948
\(415\) 23.3685 0.00276414
\(416\) 1105.22 0.130259
\(417\) 9675.30 1.13622
\(418\) −899.630 −0.105269
\(419\) 3417.59 0.398473 0.199236 0.979951i \(-0.436154\pi\)
0.199236 + 0.979951i \(0.436154\pi\)
\(420\) 0 0
\(421\) 9191.52 1.06406 0.532028 0.846727i \(-0.321430\pi\)
0.532028 + 0.846727i \(0.321430\pi\)
\(422\) −6435.87 −0.742401
\(423\) 742.402 0.0853352
\(424\) −1525.22 −0.174697
\(425\) −11337.9 −1.29404
\(426\) 2344.77 0.266677
\(427\) 0 0
\(428\) −6258.64 −0.706829
\(429\) 6259.86 0.704496
\(430\) 1755.57 0.196886
\(431\) −3208.01 −0.358525 −0.179263 0.983801i \(-0.557371\pi\)
−0.179263 + 0.983801i \(0.557371\pi\)
\(432\) −2103.14 −0.234230
\(433\) 8630.72 0.957889 0.478945 0.877845i \(-0.341019\pi\)
0.478945 + 0.877845i \(0.341019\pi\)
\(434\) 0 0
\(435\) 2272.10 0.250434
\(436\) −6034.63 −0.662858
\(437\) −312.660 −0.0342255
\(438\) 11551.8 1.26020
\(439\) 17516.1 1.90432 0.952162 0.305593i \(-0.0988546\pi\)
0.952162 + 0.305593i \(0.0988546\pi\)
\(440\) 1641.69 0.177874
\(441\) 0 0
\(442\) 9050.02 0.973904
\(443\) −5727.68 −0.614289 −0.307145 0.951663i \(-0.599374\pi\)
−0.307145 + 0.951663i \(0.599374\pi\)
\(444\) 4395.92 0.469868
\(445\) −6628.09 −0.706071
\(446\) 10125.2 1.07498
\(447\) −5255.41 −0.556090
\(448\) 0 0
\(449\) −10630.0 −1.11728 −0.558642 0.829409i \(-0.688677\pi\)
−0.558642 + 0.829409i \(0.688677\pi\)
\(450\) 519.623 0.0544339
\(451\) −9932.19 −1.03700
\(452\) 8152.18 0.848332
\(453\) −13304.0 −1.37986
\(454\) 9388.80 0.970568
\(455\) 0 0
\(456\) 595.678 0.0611736
\(457\) −11770.0 −1.20477 −0.602383 0.798207i \(-0.705782\pi\)
−0.602383 + 0.798207i \(0.705782\pi\)
\(458\) 5543.34 0.565553
\(459\) −17221.4 −1.75126
\(460\) 570.559 0.0578314
\(461\) −7341.33 −0.741692 −0.370846 0.928694i \(-0.620932\pi\)
−0.370846 + 0.928694i \(0.620932\pi\)
\(462\) 0 0
\(463\) −790.087 −0.0793055 −0.0396528 0.999214i \(-0.512625\pi\)
−0.0396528 + 0.999214i \(0.512625\pi\)
\(464\) 1070.18 0.107073
\(465\) −10473.4 −1.04450
\(466\) 9822.71 0.976455
\(467\) −11197.3 −1.10953 −0.554765 0.832007i \(-0.687192\pi\)
−0.554765 + 0.832007i \(0.687192\pi\)
\(468\) −414.769 −0.0409673
\(469\) 0 0
\(470\) −3067.14 −0.301014
\(471\) 15802.6 1.54596
\(472\) −6548.20 −0.638571
\(473\) 4683.44 0.455274
\(474\) −7883.98 −0.763973
\(475\) 1176.40 0.113635
\(476\) 0 0
\(477\) 572.390 0.0549432
\(478\) −5683.74 −0.543866
\(479\) −3193.04 −0.304580 −0.152290 0.988336i \(-0.548665\pi\)
−0.152290 + 0.988336i \(0.548665\pi\)
\(480\) −1087.02 −0.103366
\(481\) −6929.65 −0.656891
\(482\) −1089.06 −0.102916
\(483\) 0 0
\(484\) −944.352 −0.0886882
\(485\) −7608.55 −0.712343
\(486\) 1677.28 0.156550
\(487\) 232.509 0.0216345 0.0108172 0.999941i \(-0.496557\pi\)
0.0108172 + 0.999941i \(0.496557\pi\)
\(488\) 4315.08 0.400275
\(489\) 500.982 0.0463297
\(490\) 0 0
\(491\) 10186.1 0.936239 0.468119 0.883665i \(-0.344932\pi\)
0.468119 + 0.883665i \(0.344932\pi\)
\(492\) 6576.46 0.602622
\(493\) 8763.13 0.800551
\(494\) −939.015 −0.0855228
\(495\) −616.099 −0.0559426
\(496\) −4933.10 −0.446578
\(497\) 0 0
\(498\) −41.2787 −0.00371434
\(499\) −10320.8 −0.925893 −0.462947 0.886386i \(-0.653208\pi\)
−0.462947 + 0.886386i \(0.653208\pi\)
\(500\) −5247.62 −0.469361
\(501\) −10719.6 −0.955918
\(502\) −176.851 −0.0157236
\(503\) −3638.41 −0.322522 −0.161261 0.986912i \(-0.551556\pi\)
−0.161261 + 0.986912i \(0.551556\pi\)
\(504\) 0 0
\(505\) −11065.9 −0.975105
\(506\) 1522.11 0.133728
\(507\) −5500.01 −0.481783
\(508\) 7294.39 0.637079
\(509\) 9977.47 0.868848 0.434424 0.900709i \(-0.356952\pi\)
0.434424 + 0.900709i \(0.356952\pi\)
\(510\) −8901.04 −0.772833
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 1786.87 0.153786
\(514\) −1968.63 −0.168935
\(515\) −6722.74 −0.575222
\(516\) −3101.07 −0.264568
\(517\) −8182.39 −0.696056
\(518\) 0 0
\(519\) −7826.03 −0.661897
\(520\) 1713.56 0.144509
\(521\) −15983.2 −1.34402 −0.672012 0.740540i \(-0.734570\pi\)
−0.672012 + 0.740540i \(0.734570\pi\)
\(522\) −401.621 −0.0336752
\(523\) −1082.49 −0.0905051 −0.0452525 0.998976i \(-0.514409\pi\)
−0.0452525 + 0.998976i \(0.514409\pi\)
\(524\) −8199.55 −0.683586
\(525\) 0 0
\(526\) 2323.14 0.192573
\(527\) −40394.4 −3.33892
\(528\) −2899.92 −0.239021
\(529\) 529.000 0.0434783
\(530\) −2364.75 −0.193808
\(531\) 2457.43 0.200835
\(532\) 0 0
\(533\) −10367.0 −0.842486
\(534\) 11708.0 0.948792
\(535\) −9703.59 −0.784154
\(536\) 3725.79 0.300242
\(537\) 18962.7 1.52384
\(538\) −8294.60 −0.664695
\(539\) 0 0
\(540\) −3260.77 −0.259854
\(541\) −16237.3 −1.29038 −0.645190 0.764022i \(-0.723222\pi\)
−0.645190 + 0.764022i \(0.723222\pi\)
\(542\) −7361.01 −0.583363
\(543\) −19286.9 −1.52427
\(544\) −4192.48 −0.330425
\(545\) −9356.27 −0.735374
\(546\) 0 0
\(547\) 23219.5 1.81498 0.907489 0.420077i \(-0.137997\pi\)
0.907489 + 0.420077i \(0.137997\pi\)
\(548\) −4754.46 −0.370621
\(549\) −1619.37 −0.125889
\(550\) −5727.03 −0.444003
\(551\) −909.248 −0.0702999
\(552\) −1007.85 −0.0777117
\(553\) 0 0
\(554\) 9917.16 0.760541
\(555\) 6815.57 0.521270
\(556\) 7065.58 0.538934
\(557\) 49.7701 0.00378604 0.00189302 0.999998i \(-0.499397\pi\)
0.00189302 + 0.999998i \(0.499397\pi\)
\(558\) 1851.31 0.140452
\(559\) 4888.47 0.369875
\(560\) 0 0
\(561\) −23745.9 −1.78708
\(562\) 5478.48 0.411202
\(563\) −10025.6 −0.750492 −0.375246 0.926925i \(-0.622442\pi\)
−0.375246 + 0.926925i \(0.622442\pi\)
\(564\) 5417.86 0.404491
\(565\) 12639.4 0.941138
\(566\) −2591.88 −0.192482
\(567\) 0 0
\(568\) 1712.31 0.126491
\(569\) −22242.7 −1.63877 −0.819387 0.573240i \(-0.805686\pi\)
−0.819387 + 0.573240i \(0.805686\pi\)
\(570\) 923.558 0.0678659
\(571\) 8262.28 0.605544 0.302772 0.953063i \(-0.402088\pi\)
0.302772 + 0.953063i \(0.402088\pi\)
\(572\) 4571.38 0.334159
\(573\) 111.235 0.00810979
\(574\) 0 0
\(575\) −1990.39 −0.144356
\(576\) 192.145 0.0138994
\(577\) 6055.19 0.436882 0.218441 0.975850i \(-0.429903\pi\)
0.218441 + 0.975850i \(0.429903\pi\)
\(578\) −24503.9 −1.76337
\(579\) 17600.2 1.26328
\(580\) 1659.24 0.118787
\(581\) 0 0
\(582\) 13439.9 0.957220
\(583\) −6308.60 −0.448157
\(584\) 8435.91 0.597741
\(585\) −643.071 −0.0454491
\(586\) −18032.2 −1.27117
\(587\) 27901.4 1.96186 0.980931 0.194358i \(-0.0622623\pi\)
0.980931 + 0.194358i \(0.0622623\pi\)
\(588\) 0 0
\(589\) 4191.26 0.293205
\(590\) −10152.5 −0.708429
\(591\) −13224.8 −0.920468
\(592\) 3210.21 0.222869
\(593\) −17495.5 −1.21156 −0.605780 0.795632i \(-0.707139\pi\)
−0.605780 + 0.795632i \(0.707139\pi\)
\(594\) −8698.95 −0.600879
\(595\) 0 0
\(596\) −3837.86 −0.263767
\(597\) 17858.1 1.22426
\(598\) 1588.75 0.108644
\(599\) −14796.2 −1.00928 −0.504638 0.863331i \(-0.668374\pi\)
−0.504638 + 0.863331i \(0.668374\pi\)
\(600\) 3792.07 0.258018
\(601\) 11251.3 0.763645 0.381822 0.924236i \(-0.375297\pi\)
0.381822 + 0.924236i \(0.375297\pi\)
\(602\) 0 0
\(603\) −1398.22 −0.0944280
\(604\) −9715.48 −0.654499
\(605\) −1464.15 −0.0983906
\(606\) 19547.1 1.31031
\(607\) −13458.7 −0.899954 −0.449977 0.893040i \(-0.648568\pi\)
−0.449977 + 0.893040i \(0.648568\pi\)
\(608\) 435.005 0.0290161
\(609\) 0 0
\(610\) 6690.23 0.444065
\(611\) −8540.61 −0.565493
\(612\) 1573.37 0.103921
\(613\) 7640.16 0.503398 0.251699 0.967806i \(-0.419011\pi\)
0.251699 + 0.967806i \(0.419011\pi\)
\(614\) −2761.90 −0.181533
\(615\) 10196.4 0.668547
\(616\) 0 0
\(617\) 9352.41 0.610233 0.305117 0.952315i \(-0.401305\pi\)
0.305117 + 0.952315i \(0.401305\pi\)
\(618\) 11875.2 0.772962
\(619\) −21690.8 −1.40844 −0.704221 0.709981i \(-0.748704\pi\)
−0.704221 + 0.709981i \(0.748704\pi\)
\(620\) −7648.43 −0.495433
\(621\) −3023.26 −0.195361
\(622\) 596.474 0.0384509
\(623\) 0 0
\(624\) −3026.88 −0.194186
\(625\) 2681.26 0.171601
\(626\) 16402.3 1.04724
\(627\) 2463.83 0.156931
\(628\) 11540.2 0.733285
\(629\) 26286.6 1.66632
\(630\) 0 0
\(631\) −11758.9 −0.741860 −0.370930 0.928661i \(-0.620961\pi\)
−0.370930 + 0.928661i \(0.620961\pi\)
\(632\) −5757.43 −0.362371
\(633\) 17626.0 1.10675
\(634\) 6763.62 0.423687
\(635\) 11309.4 0.706774
\(636\) 4177.15 0.260432
\(637\) 0 0
\(638\) 4426.47 0.274679
\(639\) −642.600 −0.0397823
\(640\) −793.821 −0.0490289
\(641\) 14895.7 0.917853 0.458927 0.888474i \(-0.348234\pi\)
0.458927 + 0.888474i \(0.348234\pi\)
\(642\) 17140.6 1.05372
\(643\) −3546.00 −0.217482 −0.108741 0.994070i \(-0.534682\pi\)
−0.108741 + 0.994070i \(0.534682\pi\)
\(644\) 0 0
\(645\) −4808.00 −0.293511
\(646\) 3562.02 0.216944
\(647\) −20297.2 −1.23333 −0.616666 0.787225i \(-0.711517\pi\)
−0.616666 + 0.787225i \(0.711517\pi\)
\(648\) 6408.38 0.388495
\(649\) −27084.6 −1.63815
\(650\) −5977.75 −0.360718
\(651\) 0 0
\(652\) 365.852 0.0219753
\(653\) 22257.7 1.33386 0.666931 0.745120i \(-0.267608\pi\)
0.666931 + 0.745120i \(0.267608\pi\)
\(654\) 16527.1 0.988168
\(655\) −12712.8 −0.758369
\(656\) 4802.59 0.285838
\(657\) −3165.85 −0.187993
\(658\) 0 0
\(659\) 25374.9 1.49995 0.749974 0.661468i \(-0.230066\pi\)
0.749974 + 0.661468i \(0.230066\pi\)
\(660\) −4496.13 −0.265169
\(661\) −5372.01 −0.316107 −0.158054 0.987431i \(-0.550522\pi\)
−0.158054 + 0.987431i \(0.550522\pi\)
\(662\) 10794.8 0.633763
\(663\) −24785.4 −1.45187
\(664\) −30.1446 −0.00176180
\(665\) 0 0
\(666\) −1204.73 −0.0700939
\(667\) 1538.39 0.0893052
\(668\) −7828.17 −0.453415
\(669\) −27730.1 −1.60255
\(670\) 5776.58 0.333088
\(671\) 17847.9 1.02684
\(672\) 0 0
\(673\) −27056.0 −1.54967 −0.774837 0.632161i \(-0.782168\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(674\) 12533.5 0.716279
\(675\) 11375.2 0.648637
\(676\) −4016.49 −0.228521
\(677\) 19666.8 1.11648 0.558241 0.829679i \(-0.311477\pi\)
0.558241 + 0.829679i \(0.311477\pi\)
\(678\) −22326.5 −1.26467
\(679\) 0 0
\(680\) −6500.16 −0.366573
\(681\) −25713.2 −1.44689
\(682\) −20404.2 −1.14563
\(683\) −10452.5 −0.585582 −0.292791 0.956177i \(-0.594584\pi\)
−0.292791 + 0.956177i \(0.594584\pi\)
\(684\) −163.250 −0.00912575
\(685\) −7371.47 −0.411167
\(686\) 0 0
\(687\) −15181.6 −0.843109
\(688\) −2264.62 −0.125491
\(689\) −6584.79 −0.364093
\(690\) −1562.60 −0.0862132
\(691\) 33865.8 1.86442 0.932210 0.361917i \(-0.117878\pi\)
0.932210 + 0.361917i \(0.117878\pi\)
\(692\) −5715.11 −0.313954
\(693\) 0 0
\(694\) −5455.80 −0.298414
\(695\) 10954.7 0.597892
\(696\) −2930.92 −0.159621
\(697\) 39325.7 2.13711
\(698\) −20658.6 −1.12026
\(699\) −26901.6 −1.45567
\(700\) 0 0
\(701\) 24826.7 1.33765 0.668825 0.743420i \(-0.266797\pi\)
0.668825 + 0.743420i \(0.266797\pi\)
\(702\) −9079.78 −0.488168
\(703\) −2727.45 −0.146327
\(704\) −2117.72 −0.113373
\(705\) 8400.02 0.448742
\(706\) −11519.9 −0.614104
\(707\) 0 0
\(708\) 17933.7 0.951961
\(709\) −14204.2 −0.752397 −0.376199 0.926539i \(-0.622769\pi\)
−0.376199 + 0.926539i \(0.622769\pi\)
\(710\) 2654.82 0.140329
\(711\) 2160.66 0.113968
\(712\) 8550.00 0.450035
\(713\) −7091.33 −0.372472
\(714\) 0 0
\(715\) 7087.62 0.370716
\(716\) 13847.9 0.722794
\(717\) 15566.1 0.810778
\(718\) −22595.7 −1.17446
\(719\) 1154.15 0.0598643 0.0299321 0.999552i \(-0.490471\pi\)
0.0299321 + 0.999552i \(0.490471\pi\)
\(720\) 297.907 0.0154199
\(721\) 0 0
\(722\) 13348.4 0.688056
\(723\) 2982.63 0.153424
\(724\) −14084.6 −0.722998
\(725\) −5788.25 −0.296511
\(726\) 2586.31 0.132214
\(727\) 23346.6 1.19103 0.595514 0.803345i \(-0.296949\pi\)
0.595514 + 0.803345i \(0.296949\pi\)
\(728\) 0 0
\(729\) 17034.7 0.865451
\(730\) 13079.3 0.663132
\(731\) −18543.7 −0.938254
\(732\) −11817.8 −0.596717
\(733\) −9077.04 −0.457392 −0.228696 0.973498i \(-0.573446\pi\)
−0.228696 + 0.973498i \(0.573446\pi\)
\(734\) 3044.63 0.153105
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 15410.6 0.770224
\(738\) −1802.33 −0.0898978
\(739\) 9440.48 0.469924 0.234962 0.972005i \(-0.424503\pi\)
0.234962 + 0.972005i \(0.424503\pi\)
\(740\) 4977.20 0.247251
\(741\) 2571.70 0.127495
\(742\) 0 0
\(743\) 10012.1 0.494360 0.247180 0.968970i \(-0.420496\pi\)
0.247180 + 0.968970i \(0.420496\pi\)
\(744\) 13510.4 0.665744
\(745\) −5950.34 −0.292622
\(746\) 21811.9 1.07050
\(747\) 11.3127 0.000554098 0
\(748\) −17340.9 −0.847654
\(749\) 0 0
\(750\) 14371.7 0.699709
\(751\) −35032.6 −1.70221 −0.851103 0.524998i \(-0.824066\pi\)
−0.851103 + 0.524998i \(0.824066\pi\)
\(752\) 3956.50 0.191860
\(753\) 484.344 0.0234402
\(754\) 4620.25 0.223156
\(755\) −15063.2 −0.726099
\(756\) 0 0
\(757\) 20473.5 0.982990 0.491495 0.870880i \(-0.336451\pi\)
0.491495 + 0.870880i \(0.336451\pi\)
\(758\) 5222.44 0.250248
\(759\) −4168.64 −0.199357
\(760\) 674.446 0.0321904
\(761\) −11785.2 −0.561384 −0.280692 0.959798i \(-0.590564\pi\)
−0.280692 + 0.959798i \(0.590564\pi\)
\(762\) −19977.3 −0.949737
\(763\) 0 0
\(764\) 81.2315 0.00384667
\(765\) 2439.40 0.115290
\(766\) −10465.9 −0.493664
\(767\) −28270.3 −1.33087
\(768\) 1402.22 0.0658833
\(769\) 39423.6 1.84870 0.924352 0.381541i \(-0.124607\pi\)
0.924352 + 0.381541i \(0.124607\pi\)
\(770\) 0 0
\(771\) 5391.53 0.251843
\(772\) 12852.9 0.599203
\(773\) 1520.27 0.0707377 0.0353689 0.999374i \(-0.488739\pi\)
0.0353689 + 0.999374i \(0.488739\pi\)
\(774\) 849.872 0.0394677
\(775\) 26681.5 1.23668
\(776\) 9814.75 0.454032
\(777\) 0 0
\(778\) 16335.6 0.752777
\(779\) −4080.37 −0.187669
\(780\) −4692.97 −0.215430
\(781\) 7082.42 0.324493
\(782\) −6026.70 −0.275594
\(783\) −8791.95 −0.401275
\(784\) 0 0
\(785\) 17892.2 0.813505
\(786\) 22456.2 1.01907
\(787\) −30954.4 −1.40204 −0.701020 0.713141i \(-0.747272\pi\)
−0.701020 + 0.713141i \(0.747272\pi\)
\(788\) −9657.68 −0.436600
\(789\) −6362.41 −0.287082
\(790\) −8926.50 −0.402013
\(791\) 0 0
\(792\) 794.745 0.0356566
\(793\) 18629.3 0.834232
\(794\) −5214.56 −0.233070
\(795\) 6476.39 0.288923
\(796\) 13041.2 0.580694
\(797\) −8988.94 −0.399504 −0.199752 0.979846i \(-0.564014\pi\)
−0.199752 + 0.979846i \(0.564014\pi\)
\(798\) 0 0
\(799\) 32397.6 1.43447
\(800\) 2769.24 0.122384
\(801\) −3208.66 −0.141539
\(802\) 260.014 0.0114482
\(803\) 34892.5 1.53341
\(804\) −10203.9 −0.447591
\(805\) 0 0
\(806\) −21297.5 −0.930734
\(807\) 22716.6 0.990906
\(808\) 14274.7 0.621511
\(809\) −15850.2 −0.688832 −0.344416 0.938817i \(-0.611923\pi\)
−0.344416 + 0.938817i \(0.611923\pi\)
\(810\) 9935.75 0.430996
\(811\) −1135.12 −0.0491485 −0.0245742 0.999698i \(-0.507823\pi\)
−0.0245742 + 0.999698i \(0.507823\pi\)
\(812\) 0 0
\(813\) 20159.7 0.869658
\(814\) 13278.0 0.571737
\(815\) 567.228 0.0243793
\(816\) 11482.0 0.492587
\(817\) 1924.06 0.0823923
\(818\) −17714.7 −0.757189
\(819\) 0 0
\(820\) 7446.08 0.317108
\(821\) 38631.2 1.64219 0.821094 0.570793i \(-0.193364\pi\)
0.821094 + 0.570793i \(0.193364\pi\)
\(822\) 13021.1 0.552511
\(823\) 2640.09 0.111820 0.0559100 0.998436i \(-0.482194\pi\)
0.0559100 + 0.998436i \(0.482194\pi\)
\(824\) 8672.10 0.366634
\(825\) 15684.7 0.661905
\(826\) 0 0
\(827\) 10061.4 0.423058 0.211529 0.977372i \(-0.432156\pi\)
0.211529 + 0.977372i \(0.432156\pi\)
\(828\) 276.208 0.0115929
\(829\) 22225.7 0.931160 0.465580 0.885006i \(-0.345846\pi\)
0.465580 + 0.885006i \(0.345846\pi\)
\(830\) −46.7371 −0.00195454
\(831\) −27160.3 −1.13379
\(832\) −2210.44 −0.0921071
\(833\) 0 0
\(834\) −19350.6 −0.803425
\(835\) −12137.0 −0.503017
\(836\) 1799.26 0.0744363
\(837\) 40527.3 1.67363
\(838\) −6835.17 −0.281763
\(839\) 7883.29 0.324388 0.162194 0.986759i \(-0.448143\pi\)
0.162194 + 0.986759i \(0.448143\pi\)
\(840\) 0 0
\(841\) −19915.2 −0.816565
\(842\) −18383.0 −0.752401
\(843\) −15004.0 −0.613007
\(844\) 12871.7 0.524957
\(845\) −6227.29 −0.253521
\(846\) −1484.80 −0.0603411
\(847\) 0 0
\(848\) 3050.45 0.123529
\(849\) 7098.42 0.286946
\(850\) 22675.7 0.915025
\(851\) 4614.67 0.185886
\(852\) −4689.53 −0.188569
\(853\) −37123.6 −1.49014 −0.745069 0.666987i \(-0.767584\pi\)
−0.745069 + 0.666987i \(0.767584\pi\)
\(854\) 0 0
\(855\) −253.108 −0.0101241
\(856\) 12517.3 0.499803
\(857\) −6403.50 −0.255238 −0.127619 0.991823i \(-0.540734\pi\)
−0.127619 + 0.991823i \(0.540734\pi\)
\(858\) −12519.7 −0.498154
\(859\) −12039.5 −0.478209 −0.239105 0.970994i \(-0.576854\pi\)
−0.239105 + 0.970994i \(0.576854\pi\)
\(860\) −3511.13 −0.139219
\(861\) 0 0
\(862\) 6416.02 0.253515
\(863\) −24935.7 −0.983570 −0.491785 0.870717i \(-0.663655\pi\)
−0.491785 + 0.870717i \(0.663655\pi\)
\(864\) 4206.27 0.165625
\(865\) −8860.89 −0.348300
\(866\) −17261.4 −0.677330
\(867\) 67109.3 2.62878
\(868\) 0 0
\(869\) −23813.8 −0.929605
\(870\) −4544.20 −0.177084
\(871\) 16085.2 0.625748
\(872\) 12069.3 0.468712
\(873\) −3683.31 −0.142796
\(874\) 625.320 0.0242011
\(875\) 0 0
\(876\) −23103.6 −0.891093
\(877\) −16043.3 −0.617724 −0.308862 0.951107i \(-0.599948\pi\)
−0.308862 + 0.951107i \(0.599948\pi\)
\(878\) −35032.2 −1.34656
\(879\) 49385.1 1.89502
\(880\) −3283.39 −0.125776
\(881\) 8585.77 0.328333 0.164167 0.986433i \(-0.447506\pi\)
0.164167 + 0.986433i \(0.447506\pi\)
\(882\) 0 0
\(883\) −10383.8 −0.395745 −0.197873 0.980228i \(-0.563403\pi\)
−0.197873 + 0.980228i \(0.563403\pi\)
\(884\) −18100.0 −0.688654
\(885\) 27804.9 1.05610
\(886\) 11455.4 0.434368
\(887\) −136.647 −0.00517267 −0.00258633 0.999997i \(-0.500823\pi\)
−0.00258633 + 0.999997i \(0.500823\pi\)
\(888\) −8791.84 −0.332247
\(889\) 0 0
\(890\) 13256.2 0.499268
\(891\) 26506.2 0.996624
\(892\) −20250.4 −0.760128
\(893\) −3361.52 −0.125967
\(894\) 10510.8 0.393215
\(895\) 21470.2 0.801867
\(896\) 0 0
\(897\) −4351.14 −0.161962
\(898\) 21260.0 0.790039
\(899\) −20622.3 −0.765064
\(900\) −1039.25 −0.0384906
\(901\) 24978.4 0.923587
\(902\) 19864.4 0.733272
\(903\) 0 0
\(904\) −16304.4 −0.599861
\(905\) −21837.2 −0.802093
\(906\) 26607.9 0.975706
\(907\) 27468.1 1.00558 0.502790 0.864408i \(-0.332307\pi\)
0.502790 + 0.864408i \(0.332307\pi\)
\(908\) −18777.6 −0.686295
\(909\) −5357.03 −0.195469
\(910\) 0 0
\(911\) −11545.9 −0.419905 −0.209953 0.977712i \(-0.567331\pi\)
−0.209953 + 0.977712i \(0.567331\pi\)
\(912\) −1191.36 −0.0432563
\(913\) −124.683 −0.00451963
\(914\) 23540.0 0.851898
\(915\) −18322.6 −0.661997
\(916\) −11086.7 −0.399907
\(917\) 0 0
\(918\) 34442.8 1.23833
\(919\) −11651.4 −0.418221 −0.209111 0.977892i \(-0.567057\pi\)
−0.209111 + 0.977892i \(0.567057\pi\)
\(920\) −1141.12 −0.0408930
\(921\) 7564.06 0.270624
\(922\) 14682.7 0.524455
\(923\) 7392.49 0.263626
\(924\) 0 0
\(925\) −17362.9 −0.617178
\(926\) 1580.17 0.0560775
\(927\) −3254.49 −0.115309
\(928\) −2140.36 −0.0757122
\(929\) −861.210 −0.0304148 −0.0152074 0.999884i \(-0.504841\pi\)
−0.0152074 + 0.999884i \(0.504841\pi\)
\(930\) 20946.9 0.738575
\(931\) 0 0
\(932\) −19645.4 −0.690458
\(933\) −1633.57 −0.0573213
\(934\) 22394.7 0.784557
\(935\) −26885.8 −0.940386
\(936\) 829.538 0.0289683
\(937\) 8059.54 0.280997 0.140498 0.990081i \(-0.455130\pi\)
0.140498 + 0.990081i \(0.455130\pi\)
\(938\) 0 0
\(939\) −44921.4 −1.56119
\(940\) 6134.27 0.212849
\(941\) −36315.8 −1.25809 −0.629045 0.777369i \(-0.716554\pi\)
−0.629045 + 0.777369i \(0.716554\pi\)
\(942\) −31605.3 −1.09316
\(943\) 6903.72 0.238405
\(944\) 13096.4 0.451538
\(945\) 0 0
\(946\) −9366.87 −0.321927
\(947\) 38394.7 1.31749 0.658743 0.752368i \(-0.271088\pi\)
0.658743 + 0.752368i \(0.271088\pi\)
\(948\) 15768.0 0.540211
\(949\) 36420.0 1.24578
\(950\) −2352.80 −0.0803524
\(951\) −18523.6 −0.631619
\(952\) 0 0
\(953\) 12564.4 0.427072 0.213536 0.976935i \(-0.431502\pi\)
0.213536 + 0.976935i \(0.431502\pi\)
\(954\) −1144.78 −0.0388507
\(955\) 125.944 0.00426749
\(956\) 11367.5 0.384571
\(957\) −12122.8 −0.409483
\(958\) 6386.07 0.215370
\(959\) 0 0
\(960\) 2174.05 0.0730908
\(961\) 65269.4 2.19091
\(962\) 13859.3 0.464492
\(963\) −4697.51 −0.157191
\(964\) 2178.12 0.0727725
\(965\) 19927.5 0.664755
\(966\) 0 0
\(967\) 14676.0 0.488053 0.244026 0.969769i \(-0.421532\pi\)
0.244026 + 0.969769i \(0.421532\pi\)
\(968\) 1888.70 0.0627121
\(969\) −9755.35 −0.323413
\(970\) 15217.1 0.503703
\(971\) −11481.6 −0.379468 −0.189734 0.981836i \(-0.560763\pi\)
−0.189734 + 0.981836i \(0.560763\pi\)
\(972\) −3354.57 −0.110697
\(973\) 0 0
\(974\) −465.018 −0.0152979
\(975\) 16371.4 0.537747
\(976\) −8630.15 −0.283037
\(977\) −38428.8 −1.25839 −0.629195 0.777248i \(-0.716615\pi\)
−0.629195 + 0.777248i \(0.716615\pi\)
\(978\) −1001.96 −0.0327600
\(979\) 35364.3 1.15449
\(980\) 0 0
\(981\) −4529.38 −0.147413
\(982\) −20372.2 −0.662021
\(983\) 57386.4 1.86200 0.930998 0.365024i \(-0.118939\pi\)
0.930998 + 0.365024i \(0.118939\pi\)
\(984\) −13152.9 −0.426118
\(985\) −14973.6 −0.484363
\(986\) −17526.3 −0.566075
\(987\) 0 0
\(988\) 1878.03 0.0604738
\(989\) −3255.39 −0.104667
\(990\) 1232.20 0.0395574
\(991\) −36085.3 −1.15670 −0.578349 0.815790i \(-0.696303\pi\)
−0.578349 + 0.815790i \(0.696303\pi\)
\(992\) 9866.20 0.315778
\(993\) −29563.8 −0.944793
\(994\) 0 0
\(995\) 20219.5 0.644221
\(996\) 82.5574 0.00262644
\(997\) −31194.6 −0.990917 −0.495459 0.868632i \(-0.665000\pi\)
−0.495459 + 0.868632i \(0.665000\pi\)
\(998\) 20641.5 0.654705
\(999\) −26373.0 −0.835242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.z.1.12 yes 14
7.6 odd 2 inner 2254.4.a.z.1.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2254.4.a.z.1.3 14 7.6 odd 2 inner
2254.4.a.z.1.12 yes 14 1.1 even 1 trivial