Properties

Label 2254.4.a.y.1.7
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.83354\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.83354 q^{3} +4.00000 q^{4} +17.7022 q^{5} +7.66708 q^{6} +8.00000 q^{8} -12.3040 q^{9} +35.4044 q^{10} -12.8553 q^{11} +15.3342 q^{12} +1.76114 q^{13} +67.8620 q^{15} +16.0000 q^{16} -35.3413 q^{17} -24.6079 q^{18} +23.6430 q^{19} +70.8087 q^{20} -25.7106 q^{22} +23.0000 q^{23} +30.6683 q^{24} +188.367 q^{25} +3.52229 q^{26} -150.673 q^{27} +308.379 q^{29} +135.724 q^{30} +120.796 q^{31} +32.0000 q^{32} -49.2812 q^{33} -70.6827 q^{34} -49.2159 q^{36} +437.043 q^{37} +47.2860 q^{38} +6.75141 q^{39} +141.617 q^{40} -468.412 q^{41} -374.758 q^{43} -51.4211 q^{44} -217.807 q^{45} +46.0000 q^{46} +409.343 q^{47} +61.3366 q^{48} +376.734 q^{50} -135.482 q^{51} +7.04457 q^{52} +25.6072 q^{53} -301.347 q^{54} -227.567 q^{55} +90.6364 q^{57} +616.759 q^{58} +637.206 q^{59} +271.448 q^{60} +624.507 q^{61} +241.592 q^{62} +64.0000 q^{64} +31.1761 q^{65} -98.5625 q^{66} +376.758 q^{67} -141.365 q^{68} +88.1714 q^{69} +435.818 q^{71} -98.4318 q^{72} +988.465 q^{73} +874.086 q^{74} +722.113 q^{75} +94.5721 q^{76} +13.5028 q^{78} +524.171 q^{79} +283.235 q^{80} -245.405 q^{81} -936.823 q^{82} +1087.48 q^{83} -625.619 q^{85} -749.517 q^{86} +1182.18 q^{87} -102.842 q^{88} +133.439 q^{89} -435.614 q^{90} +92.0000 q^{92} +463.077 q^{93} +818.685 q^{94} +418.533 q^{95} +122.673 q^{96} -1160.72 q^{97} +158.171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.83354 0.737765 0.368883 0.929476i \(-0.379740\pi\)
0.368883 + 0.929476i \(0.379740\pi\)
\(4\) 4.00000 0.500000
\(5\) 17.7022 1.58333 0.791665 0.610955i \(-0.209214\pi\)
0.791665 + 0.610955i \(0.209214\pi\)
\(6\) 7.66708 0.521679
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −12.3040 −0.455703
\(10\) 35.4044 1.11958
\(11\) −12.8553 −0.352365 −0.176182 0.984358i \(-0.556375\pi\)
−0.176182 + 0.984358i \(0.556375\pi\)
\(12\) 15.3342 0.368883
\(13\) 1.76114 0.0375733 0.0187867 0.999824i \(-0.494020\pi\)
0.0187867 + 0.999824i \(0.494020\pi\)
\(14\) 0 0
\(15\) 67.8620 1.16813
\(16\) 16.0000 0.250000
\(17\) −35.3413 −0.504208 −0.252104 0.967700i \(-0.581123\pi\)
−0.252104 + 0.967700i \(0.581123\pi\)
\(18\) −24.6079 −0.322230
\(19\) 23.6430 0.285478 0.142739 0.989760i \(-0.454409\pi\)
0.142739 + 0.989760i \(0.454409\pi\)
\(20\) 70.8087 0.791665
\(21\) 0 0
\(22\) −25.7106 −0.249160
\(23\) 23.0000 0.208514
\(24\) 30.6683 0.260839
\(25\) 188.367 1.50694
\(26\) 3.52229 0.0265684
\(27\) −150.673 −1.07397
\(28\) 0 0
\(29\) 308.379 1.97464 0.987321 0.158739i \(-0.0507428\pi\)
0.987321 + 0.158739i \(0.0507428\pi\)
\(30\) 135.724 0.825990
\(31\) 120.796 0.699859 0.349929 0.936776i \(-0.386206\pi\)
0.349929 + 0.936776i \(0.386206\pi\)
\(32\) 32.0000 0.176777
\(33\) −49.2812 −0.259963
\(34\) −70.6827 −0.356529
\(35\) 0 0
\(36\) −49.2159 −0.227851
\(37\) 437.043 1.94188 0.970938 0.239331i \(-0.0769282\pi\)
0.970938 + 0.239331i \(0.0769282\pi\)
\(38\) 47.2860 0.201863
\(39\) 6.75141 0.0277203
\(40\) 141.617 0.559792
\(41\) −468.412 −1.78423 −0.892117 0.451804i \(-0.850781\pi\)
−0.892117 + 0.451804i \(0.850781\pi\)
\(42\) 0 0
\(43\) −374.758 −1.32907 −0.664536 0.747256i \(-0.731371\pi\)
−0.664536 + 0.747256i \(0.731371\pi\)
\(44\) −51.4211 −0.176182
\(45\) −217.807 −0.721528
\(46\) 46.0000 0.147442
\(47\) 409.343 1.27040 0.635200 0.772348i \(-0.280918\pi\)
0.635200 + 0.772348i \(0.280918\pi\)
\(48\) 61.3366 0.184441
\(49\) 0 0
\(50\) 376.734 1.06556
\(51\) −135.482 −0.371987
\(52\) 7.04457 0.0187867
\(53\) 25.6072 0.0663663 0.0331832 0.999449i \(-0.489436\pi\)
0.0331832 + 0.999449i \(0.489436\pi\)
\(54\) −301.347 −0.759409
\(55\) −227.567 −0.557910
\(56\) 0 0
\(57\) 90.6364 0.210616
\(58\) 616.759 1.39628
\(59\) 637.206 1.40605 0.703027 0.711163i \(-0.251831\pi\)
0.703027 + 0.711163i \(0.251831\pi\)
\(60\) 271.448 0.584063
\(61\) 624.507 1.31082 0.655409 0.755274i \(-0.272496\pi\)
0.655409 + 0.755274i \(0.272496\pi\)
\(62\) 241.592 0.494875
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 31.1761 0.0594910
\(66\) −98.5625 −0.183821
\(67\) 376.758 0.686990 0.343495 0.939155i \(-0.388389\pi\)
0.343495 + 0.939155i \(0.388389\pi\)
\(68\) −141.365 −0.252104
\(69\) 88.1714 0.153835
\(70\) 0 0
\(71\) 435.818 0.728480 0.364240 0.931305i \(-0.381329\pi\)
0.364240 + 0.931305i \(0.381329\pi\)
\(72\) −98.4318 −0.161115
\(73\) 988.465 1.58481 0.792405 0.609995i \(-0.208829\pi\)
0.792405 + 0.609995i \(0.208829\pi\)
\(74\) 874.086 1.37311
\(75\) 722.113 1.11177
\(76\) 94.5721 0.142739
\(77\) 0 0
\(78\) 13.5028 0.0196012
\(79\) 524.171 0.746504 0.373252 0.927730i \(-0.378243\pi\)
0.373252 + 0.927730i \(0.378243\pi\)
\(80\) 283.235 0.395833
\(81\) −245.405 −0.336632
\(82\) −936.823 −1.26164
\(83\) 1087.48 1.43814 0.719072 0.694935i \(-0.244567\pi\)
0.719072 + 0.694935i \(0.244567\pi\)
\(84\) 0 0
\(85\) −625.619 −0.798328
\(86\) −749.517 −0.939796
\(87\) 1182.18 1.45682
\(88\) −102.842 −0.124580
\(89\) 133.439 0.158927 0.0794637 0.996838i \(-0.474679\pi\)
0.0794637 + 0.996838i \(0.474679\pi\)
\(90\) −435.614 −0.510197
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 463.077 0.516331
\(94\) 818.685 0.898308
\(95\) 418.533 0.452006
\(96\) 122.673 0.130420
\(97\) −1160.72 −1.21498 −0.607492 0.794326i \(-0.707824\pi\)
−0.607492 + 0.794326i \(0.707824\pi\)
\(98\) 0 0
\(99\) 158.171 0.160574
\(100\) 753.468 0.753468
\(101\) −1652.54 −1.62806 −0.814031 0.580822i \(-0.802731\pi\)
−0.814031 + 0.580822i \(0.802731\pi\)
\(102\) −270.965 −0.263035
\(103\) −683.529 −0.653885 −0.326942 0.945044i \(-0.606018\pi\)
−0.326942 + 0.945044i \(0.606018\pi\)
\(104\) 14.0891 0.0132842
\(105\) 0 0
\(106\) 51.2143 0.0469281
\(107\) 113.864 0.102876 0.0514378 0.998676i \(-0.483620\pi\)
0.0514378 + 0.998676i \(0.483620\pi\)
\(108\) −602.693 −0.536983
\(109\) 99.4872 0.0874234 0.0437117 0.999044i \(-0.486082\pi\)
0.0437117 + 0.999044i \(0.486082\pi\)
\(110\) −455.133 −0.394502
\(111\) 1675.42 1.43265
\(112\) 0 0
\(113\) 802.538 0.668110 0.334055 0.942554i \(-0.391583\pi\)
0.334055 + 0.942554i \(0.391583\pi\)
\(114\) 181.273 0.148928
\(115\) 407.150 0.330147
\(116\) 1233.52 0.987321
\(117\) −21.6691 −0.0171223
\(118\) 1274.41 0.994230
\(119\) 0 0
\(120\) 542.896 0.412995
\(121\) −1165.74 −0.875839
\(122\) 1249.01 0.926889
\(123\) −1795.67 −1.31635
\(124\) 483.184 0.349929
\(125\) 1121.73 0.802648
\(126\) 0 0
\(127\) −991.403 −0.692699 −0.346349 0.938106i \(-0.612579\pi\)
−0.346349 + 0.938106i \(0.612579\pi\)
\(128\) 128.000 0.0883883
\(129\) −1436.65 −0.980544
\(130\) 62.3521 0.0420665
\(131\) 1137.96 0.758960 0.379480 0.925200i \(-0.376103\pi\)
0.379480 + 0.925200i \(0.376103\pi\)
\(132\) −197.125 −0.129981
\(133\) 0 0
\(134\) 753.516 0.485775
\(135\) −2667.25 −1.70044
\(136\) −282.731 −0.178264
\(137\) −292.179 −0.182208 −0.0911042 0.995841i \(-0.529040\pi\)
−0.0911042 + 0.995841i \(0.529040\pi\)
\(138\) 176.343 0.108778
\(139\) 1024.65 0.625247 0.312623 0.949877i \(-0.398792\pi\)
0.312623 + 0.949877i \(0.398792\pi\)
\(140\) 0 0
\(141\) 1569.23 0.937256
\(142\) 871.636 0.515113
\(143\) −22.6400 −0.0132395
\(144\) −196.864 −0.113926
\(145\) 5458.98 3.12651
\(146\) 1976.93 1.12063
\(147\) 0 0
\(148\) 1748.17 0.970938
\(149\) −2851.69 −1.56791 −0.783957 0.620815i \(-0.786802\pi\)
−0.783957 + 0.620815i \(0.786802\pi\)
\(150\) 1444.23 0.786137
\(151\) 190.564 0.102701 0.0513505 0.998681i \(-0.483647\pi\)
0.0513505 + 0.998681i \(0.483647\pi\)
\(152\) 189.144 0.100932
\(153\) 434.839 0.229769
\(154\) 0 0
\(155\) 2138.35 1.10811
\(156\) 27.0056 0.0138601
\(157\) −3246.21 −1.65016 −0.825081 0.565015i \(-0.808871\pi\)
−0.825081 + 0.565015i \(0.808871\pi\)
\(158\) 1048.34 0.527858
\(159\) 98.1661 0.0489628
\(160\) 566.470 0.279896
\(161\) 0 0
\(162\) −490.810 −0.238035
\(163\) −1102.67 −0.529866 −0.264933 0.964267i \(-0.585350\pi\)
−0.264933 + 0.964267i \(0.585350\pi\)
\(164\) −1873.65 −0.892117
\(165\) −872.385 −0.411607
\(166\) 2174.95 1.01692
\(167\) −3145.55 −1.45755 −0.728773 0.684755i \(-0.759909\pi\)
−0.728773 + 0.684755i \(0.759909\pi\)
\(168\) 0 0
\(169\) −2193.90 −0.998588
\(170\) −1251.24 −0.564503
\(171\) −290.903 −0.130093
\(172\) −1499.03 −0.664536
\(173\) 3639.65 1.59952 0.799761 0.600319i \(-0.204960\pi\)
0.799761 + 0.600319i \(0.204960\pi\)
\(174\) 2364.37 1.03013
\(175\) 0 0
\(176\) −205.685 −0.0880912
\(177\) 2442.75 1.03734
\(178\) 266.879 0.112379
\(179\) −1453.90 −0.607094 −0.303547 0.952816i \(-0.598171\pi\)
−0.303547 + 0.952816i \(0.598171\pi\)
\(180\) −871.228 −0.360764
\(181\) −1659.81 −0.681618 −0.340809 0.940133i \(-0.610701\pi\)
−0.340809 + 0.940133i \(0.610701\pi\)
\(182\) 0 0
\(183\) 2394.07 0.967076
\(184\) 184.000 0.0737210
\(185\) 7736.61 3.07463
\(186\) 926.153 0.365101
\(187\) 454.323 0.177665
\(188\) 1637.37 0.635200
\(189\) 0 0
\(190\) 837.066 0.319616
\(191\) −2117.44 −0.802161 −0.401081 0.916043i \(-0.631365\pi\)
−0.401081 + 0.916043i \(0.631365\pi\)
\(192\) 245.347 0.0922206
\(193\) 2182.27 0.813904 0.406952 0.913450i \(-0.366592\pi\)
0.406952 + 0.913450i \(0.366592\pi\)
\(194\) −2321.44 −0.859123
\(195\) 119.515 0.0438904
\(196\) 0 0
\(197\) −2360.71 −0.853776 −0.426888 0.904304i \(-0.640390\pi\)
−0.426888 + 0.904304i \(0.640390\pi\)
\(198\) 316.342 0.113543
\(199\) −1637.87 −0.583445 −0.291723 0.956503i \(-0.594228\pi\)
−0.291723 + 0.956503i \(0.594228\pi\)
\(200\) 1506.94 0.532782
\(201\) 1444.32 0.506837
\(202\) −3305.09 −1.15121
\(203\) 0 0
\(204\) −541.930 −0.185994
\(205\) −8291.91 −2.82503
\(206\) −1367.06 −0.462366
\(207\) −282.991 −0.0950206
\(208\) 28.1783 0.00939333
\(209\) −303.938 −0.100592
\(210\) 0 0
\(211\) −3272.61 −1.06775 −0.533877 0.845562i \(-0.679265\pi\)
−0.533877 + 0.845562i \(0.679265\pi\)
\(212\) 102.429 0.0331832
\(213\) 1670.73 0.537447
\(214\) 227.729 0.0727441
\(215\) −6634.04 −2.10436
\(216\) −1205.39 −0.379705
\(217\) 0 0
\(218\) 198.974 0.0618177
\(219\) 3789.32 1.16922
\(220\) −910.266 −0.278955
\(221\) −62.2412 −0.0189448
\(222\) 3350.84 1.01304
\(223\) 958.723 0.287896 0.143948 0.989585i \(-0.454020\pi\)
0.143948 + 0.989585i \(0.454020\pi\)
\(224\) 0 0
\(225\) −2317.66 −0.686715
\(226\) 1605.08 0.472425
\(227\) −5186.74 −1.51655 −0.758273 0.651937i \(-0.773957\pi\)
−0.758273 + 0.651937i \(0.773957\pi\)
\(228\) 362.546 0.105308
\(229\) 2383.61 0.687833 0.343916 0.939000i \(-0.388246\pi\)
0.343916 + 0.939000i \(0.388246\pi\)
\(230\) 814.300 0.233449
\(231\) 0 0
\(232\) 2467.03 0.698141
\(233\) −2433.77 −0.684298 −0.342149 0.939646i \(-0.611155\pi\)
−0.342149 + 0.939646i \(0.611155\pi\)
\(234\) −43.3381 −0.0121073
\(235\) 7246.26 2.01146
\(236\) 2548.82 0.703027
\(237\) 2009.43 0.550745
\(238\) 0 0
\(239\) 2088.03 0.565118 0.282559 0.959250i \(-0.408817\pi\)
0.282559 + 0.959250i \(0.408817\pi\)
\(240\) 1085.79 0.292032
\(241\) −2757.56 −0.737055 −0.368527 0.929617i \(-0.620138\pi\)
−0.368527 + 0.929617i \(0.620138\pi\)
\(242\) −2331.48 −0.619312
\(243\) 3127.41 0.825611
\(244\) 2498.03 0.655409
\(245\) 0 0
\(246\) −3591.35 −0.930797
\(247\) 41.6387 0.0107264
\(248\) 966.369 0.247437
\(249\) 4168.88 1.06101
\(250\) 2243.47 0.567558
\(251\) 3013.45 0.757799 0.378899 0.925438i \(-0.376303\pi\)
0.378899 + 0.925438i \(0.376303\pi\)
\(252\) 0 0
\(253\) −295.672 −0.0734732
\(254\) −1982.81 −0.489812
\(255\) −2398.33 −0.588979
\(256\) 256.000 0.0625000
\(257\) 3800.48 0.922441 0.461220 0.887286i \(-0.347412\pi\)
0.461220 + 0.887286i \(0.347412\pi\)
\(258\) −2873.30 −0.693349
\(259\) 0 0
\(260\) 124.704 0.0297455
\(261\) −3794.29 −0.899849
\(262\) 2275.91 0.536666
\(263\) −6668.63 −1.56352 −0.781759 0.623581i \(-0.785677\pi\)
−0.781759 + 0.623581i \(0.785677\pi\)
\(264\) −394.250 −0.0919106
\(265\) 453.303 0.105080
\(266\) 0 0
\(267\) 511.545 0.117251
\(268\) 1507.03 0.343495
\(269\) 1576.33 0.357287 0.178644 0.983914i \(-0.442829\pi\)
0.178644 + 0.983914i \(0.442829\pi\)
\(270\) −5334.49 −1.20240
\(271\) −2209.64 −0.495298 −0.247649 0.968850i \(-0.579658\pi\)
−0.247649 + 0.968850i \(0.579658\pi\)
\(272\) −565.462 −0.126052
\(273\) 0 0
\(274\) −584.359 −0.128841
\(275\) −2421.51 −0.530992
\(276\) 352.686 0.0769173
\(277\) −5837.67 −1.26625 −0.633126 0.774049i \(-0.718228\pi\)
−0.633126 + 0.774049i \(0.718228\pi\)
\(278\) 2049.29 0.442116
\(279\) −1486.27 −0.318927
\(280\) 0 0
\(281\) −1211.54 −0.257205 −0.128602 0.991696i \(-0.541049\pi\)
−0.128602 + 0.991696i \(0.541049\pi\)
\(282\) 3138.46 0.662740
\(283\) 405.766 0.0852306 0.0426153 0.999092i \(-0.486431\pi\)
0.0426153 + 0.999092i \(0.486431\pi\)
\(284\) 1743.27 0.364240
\(285\) 1604.46 0.333474
\(286\) −45.2800 −0.00936175
\(287\) 0 0
\(288\) −393.727 −0.0805576
\(289\) −3663.99 −0.745774
\(290\) 10918.0 2.21078
\(291\) −4449.67 −0.896373
\(292\) 3953.86 0.792405
\(293\) −207.808 −0.0414343 −0.0207172 0.999785i \(-0.506595\pi\)
−0.0207172 + 0.999785i \(0.506595\pi\)
\(294\) 0 0
\(295\) 11279.9 2.22625
\(296\) 3496.34 0.686557
\(297\) 1936.95 0.378428
\(298\) −5703.37 −1.10868
\(299\) 40.5063 0.00783458
\(300\) 2888.45 0.555883
\(301\) 0 0
\(302\) 381.127 0.0726205
\(303\) −6335.09 −1.20113
\(304\) 378.288 0.0713695
\(305\) 11055.1 2.07546
\(306\) 869.678 0.162471
\(307\) 176.655 0.0328411 0.0164206 0.999865i \(-0.494773\pi\)
0.0164206 + 0.999865i \(0.494773\pi\)
\(308\) 0 0
\(309\) −2620.34 −0.482413
\(310\) 4276.71 0.783551
\(311\) 5548.20 1.01161 0.505804 0.862649i \(-0.331196\pi\)
0.505804 + 0.862649i \(0.331196\pi\)
\(312\) 54.0113 0.00980060
\(313\) 604.396 0.109145 0.0545727 0.998510i \(-0.482620\pi\)
0.0545727 + 0.998510i \(0.482620\pi\)
\(314\) −6492.41 −1.16684
\(315\) 0 0
\(316\) 2096.68 0.373252
\(317\) 3411.08 0.604370 0.302185 0.953249i \(-0.402284\pi\)
0.302185 + 0.953249i \(0.402284\pi\)
\(318\) 196.332 0.0346219
\(319\) −3964.30 −0.695794
\(320\) 1132.94 0.197916
\(321\) 436.504 0.0758980
\(322\) 0 0
\(323\) −835.576 −0.143940
\(324\) −981.620 −0.168316
\(325\) 331.741 0.0566206
\(326\) −2205.35 −0.374672
\(327\) 381.388 0.0644979
\(328\) −3747.29 −0.630822
\(329\) 0 0
\(330\) −1744.77 −0.291050
\(331\) 4188.89 0.695596 0.347798 0.937570i \(-0.386930\pi\)
0.347798 + 0.937570i \(0.386930\pi\)
\(332\) 4349.91 0.719072
\(333\) −5377.36 −0.884918
\(334\) −6291.11 −1.03064
\(335\) 6669.44 1.08773
\(336\) 0 0
\(337\) −6636.34 −1.07271 −0.536357 0.843991i \(-0.680200\pi\)
−0.536357 + 0.843991i \(0.680200\pi\)
\(338\) −4387.80 −0.706109
\(339\) 3076.56 0.492908
\(340\) −2502.48 −0.399164
\(341\) −1552.87 −0.246606
\(342\) −581.806 −0.0919897
\(343\) 0 0
\(344\) −2998.07 −0.469898
\(345\) 1560.83 0.243571
\(346\) 7279.30 1.13103
\(347\) −6131.61 −0.948594 −0.474297 0.880365i \(-0.657298\pi\)
−0.474297 + 0.880365i \(0.657298\pi\)
\(348\) 4728.74 0.728411
\(349\) 3262.19 0.500346 0.250173 0.968201i \(-0.419512\pi\)
0.250173 + 0.968201i \(0.419512\pi\)
\(350\) 0 0
\(351\) −265.357 −0.0403525
\(352\) −411.369 −0.0622899
\(353\) −3571.08 −0.538440 −0.269220 0.963079i \(-0.586766\pi\)
−0.269220 + 0.963079i \(0.586766\pi\)
\(354\) 4885.51 0.733508
\(355\) 7714.93 1.15342
\(356\) 533.757 0.0794637
\(357\) 0 0
\(358\) −2907.81 −0.429280
\(359\) −9336.26 −1.37256 −0.686280 0.727337i \(-0.740758\pi\)
−0.686280 + 0.727337i \(0.740758\pi\)
\(360\) −1742.46 −0.255099
\(361\) −6300.01 −0.918502
\(362\) −3319.62 −0.481976
\(363\) −4468.92 −0.646163
\(364\) 0 0
\(365\) 17498.0 2.50928
\(366\) 4788.15 0.683826
\(367\) 3146.68 0.447562 0.223781 0.974639i \(-0.428160\pi\)
0.223781 + 0.974639i \(0.428160\pi\)
\(368\) 368.000 0.0521286
\(369\) 5763.32 0.813080
\(370\) 15473.2 2.17409
\(371\) 0 0
\(372\) 1852.31 0.258166
\(373\) 6076.92 0.843568 0.421784 0.906696i \(-0.361404\pi\)
0.421784 + 0.906696i \(0.361404\pi\)
\(374\) 908.646 0.125628
\(375\) 4300.21 0.592166
\(376\) 3274.74 0.449154
\(377\) 543.100 0.0741938
\(378\) 0 0
\(379\) 11561.3 1.56692 0.783462 0.621439i \(-0.213452\pi\)
0.783462 + 0.621439i \(0.213452\pi\)
\(380\) 1674.13 0.226003
\(381\) −3800.58 −0.511049
\(382\) −4234.88 −0.567214
\(383\) −5732.41 −0.764784 −0.382392 0.924000i \(-0.624900\pi\)
−0.382392 + 0.924000i \(0.624900\pi\)
\(384\) 490.693 0.0652098
\(385\) 0 0
\(386\) 4364.54 0.575517
\(387\) 4611.02 0.605662
\(388\) −4642.89 −0.607492
\(389\) 5054.23 0.658766 0.329383 0.944196i \(-0.393159\pi\)
0.329383 + 0.944196i \(0.393159\pi\)
\(390\) 239.029 0.0310352
\(391\) −812.851 −0.105135
\(392\) 0 0
\(393\) 4362.40 0.559934
\(394\) −4721.43 −0.603711
\(395\) 9278.96 1.18196
\(396\) 632.684 0.0802868
\(397\) −11883.1 −1.50226 −0.751128 0.660157i \(-0.770490\pi\)
−0.751128 + 0.660157i \(0.770490\pi\)
\(398\) −3275.74 −0.412558
\(399\) 0 0
\(400\) 3013.87 0.376734
\(401\) 9048.50 1.12683 0.563417 0.826172i \(-0.309486\pi\)
0.563417 + 0.826172i \(0.309486\pi\)
\(402\) 2888.63 0.358388
\(403\) 212.739 0.0262960
\(404\) −6610.17 −0.814031
\(405\) −4344.20 −0.533001
\(406\) 0 0
\(407\) −5618.31 −0.684249
\(408\) −1083.86 −0.131517
\(409\) −4185.35 −0.505995 −0.252998 0.967467i \(-0.581416\pi\)
−0.252998 + 0.967467i \(0.581416\pi\)
\(410\) −16583.8 −1.99760
\(411\) −1120.08 −0.134427
\(412\) −2734.12 −0.326942
\(413\) 0 0
\(414\) −565.983 −0.0671897
\(415\) 19250.7 2.27706
\(416\) 56.3566 0.00664209
\(417\) 3928.02 0.461285
\(418\) −607.875 −0.0711296
\(419\) 2669.40 0.311238 0.155619 0.987817i \(-0.450263\pi\)
0.155619 + 0.987817i \(0.450263\pi\)
\(420\) 0 0
\(421\) 2415.44 0.279623 0.139811 0.990178i \(-0.455350\pi\)
0.139811 + 0.990178i \(0.455350\pi\)
\(422\) −6545.22 −0.755016
\(423\) −5036.54 −0.578924
\(424\) 204.857 0.0234640
\(425\) −6657.15 −0.759809
\(426\) 3341.45 0.380032
\(427\) 0 0
\(428\) 455.458 0.0514378
\(429\) −86.7913 −0.00976766
\(430\) −13268.1 −1.48801
\(431\) 1589.04 0.177590 0.0887951 0.996050i \(-0.471698\pi\)
0.0887951 + 0.996050i \(0.471698\pi\)
\(432\) −2410.77 −0.268492
\(433\) 15266.3 1.69435 0.847174 0.531316i \(-0.178302\pi\)
0.847174 + 0.531316i \(0.178302\pi\)
\(434\) 0 0
\(435\) 20927.2 2.30663
\(436\) 397.949 0.0437117
\(437\) 543.789 0.0595263
\(438\) 7578.64 0.826762
\(439\) −6933.07 −0.753753 −0.376876 0.926264i \(-0.623002\pi\)
−0.376876 + 0.926264i \(0.623002\pi\)
\(440\) −1820.53 −0.197251
\(441\) 0 0
\(442\) −124.482 −0.0133960
\(443\) −16808.6 −1.80271 −0.901356 0.433078i \(-0.857427\pi\)
−0.901356 + 0.433078i \(0.857427\pi\)
\(444\) 6701.69 0.716324
\(445\) 2362.17 0.251635
\(446\) 1917.45 0.203573
\(447\) −10932.1 −1.15675
\(448\) 0 0
\(449\) 859.080 0.0902951 0.0451476 0.998980i \(-0.485624\pi\)
0.0451476 + 0.998980i \(0.485624\pi\)
\(450\) −4635.33 −0.485581
\(451\) 6021.56 0.628702
\(452\) 3210.15 0.334055
\(453\) 730.533 0.0757692
\(454\) −10373.5 −1.07236
\(455\) 0 0
\(456\) 725.092 0.0744639
\(457\) 16138.1 1.65188 0.825939 0.563759i \(-0.190645\pi\)
0.825939 + 0.563759i \(0.190645\pi\)
\(458\) 4767.23 0.486371
\(459\) 5325.00 0.541503
\(460\) 1628.60 0.165074
\(461\) −15143.7 −1.52996 −0.764982 0.644052i \(-0.777252\pi\)
−0.764982 + 0.644052i \(0.777252\pi\)
\(462\) 0 0
\(463\) −1664.21 −0.167046 −0.0835230 0.996506i \(-0.526617\pi\)
−0.0835230 + 0.996506i \(0.526617\pi\)
\(464\) 4934.07 0.493660
\(465\) 8197.46 0.817523
\(466\) −4867.53 −0.483872
\(467\) −5224.77 −0.517716 −0.258858 0.965915i \(-0.583346\pi\)
−0.258858 + 0.965915i \(0.583346\pi\)
\(468\) −86.6762 −0.00856113
\(469\) 0 0
\(470\) 14492.5 1.42232
\(471\) −12444.5 −1.21743
\(472\) 5097.65 0.497115
\(473\) 4817.63 0.468319
\(474\) 4018.86 0.389435
\(475\) 4453.56 0.430197
\(476\) 0 0
\(477\) −315.070 −0.0302433
\(478\) 4176.05 0.399599
\(479\) 17412.2 1.66092 0.830461 0.557077i \(-0.188077\pi\)
0.830461 + 0.557077i \(0.188077\pi\)
\(480\) 2171.58 0.206497
\(481\) 769.695 0.0729627
\(482\) −5515.12 −0.521176
\(483\) 0 0
\(484\) −4662.97 −0.437919
\(485\) −20547.3 −1.92372
\(486\) 6254.82 0.583795
\(487\) −4595.93 −0.427642 −0.213821 0.976873i \(-0.568591\pi\)
−0.213821 + 0.976873i \(0.568591\pi\)
\(488\) 4996.06 0.463444
\(489\) −4227.15 −0.390917
\(490\) 0 0
\(491\) 19635.7 1.80478 0.902390 0.430921i \(-0.141811\pi\)
0.902390 + 0.430921i \(0.141811\pi\)
\(492\) −7182.70 −0.658173
\(493\) −10898.5 −0.995630
\(494\) 83.2775 0.00758468
\(495\) 2799.97 0.254241
\(496\) 1932.74 0.174965
\(497\) 0 0
\(498\) 8337.77 0.750250
\(499\) 560.550 0.0502879 0.0251439 0.999684i \(-0.491996\pi\)
0.0251439 + 0.999684i \(0.491996\pi\)
\(500\) 4486.94 0.401324
\(501\) −12058.6 −1.07533
\(502\) 6026.91 0.535845
\(503\) 10650.7 0.944114 0.472057 0.881568i \(-0.343512\pi\)
0.472057 + 0.881568i \(0.343512\pi\)
\(504\) 0 0
\(505\) −29253.6 −2.57776
\(506\) −591.343 −0.0519534
\(507\) −8410.40 −0.736724
\(508\) −3965.61 −0.346349
\(509\) 16579.1 1.44372 0.721862 0.692037i \(-0.243287\pi\)
0.721862 + 0.692037i \(0.243287\pi\)
\(510\) −4796.67 −0.416471
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −3562.37 −0.306594
\(514\) 7600.95 0.652264
\(515\) −12100.0 −1.03532
\(516\) −5746.61 −0.490272
\(517\) −5262.22 −0.447644
\(518\) 0 0
\(519\) 13952.7 1.18007
\(520\) 249.409 0.0210332
\(521\) −9210.95 −0.774547 −0.387274 0.921965i \(-0.626583\pi\)
−0.387274 + 0.921965i \(0.626583\pi\)
\(522\) −7588.58 −0.636289
\(523\) 4593.65 0.384066 0.192033 0.981388i \(-0.438492\pi\)
0.192033 + 0.981388i \(0.438492\pi\)
\(524\) 4551.83 0.379480
\(525\) 0 0
\(526\) −13337.3 −1.10557
\(527\) −4269.10 −0.352874
\(528\) −788.500 −0.0649906
\(529\) 529.000 0.0434783
\(530\) 906.605 0.0743027
\(531\) −7840.16 −0.640742
\(532\) 0 0
\(533\) −824.940 −0.0670396
\(534\) 1023.09 0.0829091
\(535\) 2015.65 0.162886
\(536\) 3014.07 0.242888
\(537\) −5573.60 −0.447893
\(538\) 3152.65 0.252640
\(539\) 0 0
\(540\) −10669.0 −0.850222
\(541\) −809.793 −0.0643543 −0.0321772 0.999482i \(-0.510244\pi\)
−0.0321772 + 0.999482i \(0.510244\pi\)
\(542\) −4419.27 −0.350229
\(543\) −6362.95 −0.502874
\(544\) −1130.92 −0.0891322
\(545\) 1761.14 0.138420
\(546\) 0 0
\(547\) 19890.4 1.55476 0.777378 0.629034i \(-0.216549\pi\)
0.777378 + 0.629034i \(0.216549\pi\)
\(548\) −1168.72 −0.0911042
\(549\) −7683.92 −0.597343
\(550\) −4843.02 −0.375468
\(551\) 7291.02 0.563716
\(552\) 705.371 0.0543888
\(553\) 0 0
\(554\) −11675.3 −0.895375
\(555\) 29658.6 2.26836
\(556\) 4098.58 0.312623
\(557\) −19742.2 −1.50180 −0.750899 0.660417i \(-0.770380\pi\)
−0.750899 + 0.660417i \(0.770380\pi\)
\(558\) −2972.54 −0.225516
\(559\) −660.003 −0.0499377
\(560\) 0 0
\(561\) 1741.67 0.131075
\(562\) −2423.08 −0.181871
\(563\) −2565.33 −0.192035 −0.0960175 0.995380i \(-0.530610\pi\)
−0.0960175 + 0.995380i \(0.530610\pi\)
\(564\) 6276.93 0.468628
\(565\) 14206.7 1.05784
\(566\) 811.532 0.0602672
\(567\) 0 0
\(568\) 3486.54 0.257557
\(569\) 3759.53 0.276990 0.138495 0.990363i \(-0.455773\pi\)
0.138495 + 0.990363i \(0.455773\pi\)
\(570\) 3208.92 0.235802
\(571\) −3599.36 −0.263798 −0.131899 0.991263i \(-0.542107\pi\)
−0.131899 + 0.991263i \(0.542107\pi\)
\(572\) −90.5600 −0.00661976
\(573\) −8117.30 −0.591806
\(574\) 0 0
\(575\) 4332.44 0.314218
\(576\) −787.454 −0.0569628
\(577\) −10241.5 −0.738926 −0.369463 0.929245i \(-0.620458\pi\)
−0.369463 + 0.929245i \(0.620458\pi\)
\(578\) −7327.98 −0.527342
\(579\) 8365.83 0.600470
\(580\) 21835.9 1.56326
\(581\) 0 0
\(582\) −8899.35 −0.633831
\(583\) −329.187 −0.0233852
\(584\) 7907.72 0.560315
\(585\) −383.589 −0.0271102
\(586\) −415.615 −0.0292985
\(587\) 26021.6 1.82969 0.914845 0.403805i \(-0.132313\pi\)
0.914845 + 0.403805i \(0.132313\pi\)
\(588\) 0 0
\(589\) 2855.98 0.199794
\(590\) 22559.9 1.57419
\(591\) −9049.89 −0.629886
\(592\) 6992.69 0.485469
\(593\) 9600.90 0.664859 0.332430 0.943128i \(-0.392132\pi\)
0.332430 + 0.943128i \(0.392132\pi\)
\(594\) 3873.90 0.267589
\(595\) 0 0
\(596\) −11406.7 −0.783957
\(597\) −6278.84 −0.430445
\(598\) 81.0126 0.00553988
\(599\) 4093.24 0.279208 0.139604 0.990207i \(-0.455417\pi\)
0.139604 + 0.990207i \(0.455417\pi\)
\(600\) 5776.90 0.393068
\(601\) −23177.0 −1.57306 −0.786531 0.617551i \(-0.788125\pi\)
−0.786531 + 0.617551i \(0.788125\pi\)
\(602\) 0 0
\(603\) −4635.62 −0.313063
\(604\) 762.254 0.0513505
\(605\) −20636.2 −1.38674
\(606\) −12670.2 −0.849325
\(607\) 16351.4 1.09338 0.546690 0.837335i \(-0.315888\pi\)
0.546690 + 0.837335i \(0.315888\pi\)
\(608\) 756.576 0.0504658
\(609\) 0 0
\(610\) 22110.3 1.46757
\(611\) 720.911 0.0477331
\(612\) 1739.36 0.114884
\(613\) 1213.17 0.0799337 0.0399669 0.999201i \(-0.487275\pi\)
0.0399669 + 0.999201i \(0.487275\pi\)
\(614\) 353.310 0.0232222
\(615\) −31787.4 −2.08421
\(616\) 0 0
\(617\) −15954.8 −1.04103 −0.520516 0.853852i \(-0.674261\pi\)
−0.520516 + 0.853852i \(0.674261\pi\)
\(618\) −5240.67 −0.341118
\(619\) 25491.1 1.65521 0.827606 0.561310i \(-0.189702\pi\)
0.827606 + 0.561310i \(0.189702\pi\)
\(620\) 8553.42 0.554054
\(621\) −3465.49 −0.223938
\(622\) 11096.4 0.715314
\(623\) 0 0
\(624\) 108.023 0.00693007
\(625\) −3688.74 −0.236079
\(626\) 1208.79 0.0771774
\(627\) −1165.16 −0.0742136
\(628\) −12984.8 −0.825081
\(629\) −15445.7 −0.979109
\(630\) 0 0
\(631\) 749.075 0.0472587 0.0236293 0.999721i \(-0.492478\pi\)
0.0236293 + 0.999721i \(0.492478\pi\)
\(632\) 4193.37 0.263929
\(633\) −12545.7 −0.787751
\(634\) 6822.16 0.427354
\(635\) −17550.0 −1.09677
\(636\) 392.664 0.0244814
\(637\) 0 0
\(638\) −7928.61 −0.492001
\(639\) −5362.29 −0.331970
\(640\) 2265.88 0.139948
\(641\) 13102.8 0.807378 0.403689 0.914896i \(-0.367728\pi\)
0.403689 + 0.914896i \(0.367728\pi\)
\(642\) 873.008 0.0536680
\(643\) −2023.67 −0.124115 −0.0620575 0.998073i \(-0.519766\pi\)
−0.0620575 + 0.998073i \(0.519766\pi\)
\(644\) 0 0
\(645\) −25431.9 −1.55252
\(646\) −1671.15 −0.101781
\(647\) −10793.3 −0.655842 −0.327921 0.944705i \(-0.606348\pi\)
−0.327921 + 0.944705i \(0.606348\pi\)
\(648\) −1963.24 −0.119018
\(649\) −8191.46 −0.495444
\(650\) 663.483 0.0400368
\(651\) 0 0
\(652\) −4410.70 −0.264933
\(653\) −28123.9 −1.68541 −0.842705 0.538376i \(-0.819038\pi\)
−0.842705 + 0.538376i \(0.819038\pi\)
\(654\) 762.776 0.0456069
\(655\) 20144.3 1.20168
\(656\) −7494.59 −0.446059
\(657\) −12162.0 −0.722202
\(658\) 0 0
\(659\) −8247.28 −0.487509 −0.243755 0.969837i \(-0.578379\pi\)
−0.243755 + 0.969837i \(0.578379\pi\)
\(660\) −3489.54 −0.205803
\(661\) 1576.85 0.0927870 0.0463935 0.998923i \(-0.485227\pi\)
0.0463935 + 0.998923i \(0.485227\pi\)
\(662\) 8377.78 0.491860
\(663\) −238.604 −0.0139768
\(664\) 8699.81 0.508461
\(665\) 0 0
\(666\) −10754.7 −0.625731
\(667\) 7092.72 0.411741
\(668\) −12582.2 −0.728773
\(669\) 3675.30 0.212400
\(670\) 13338.9 0.769143
\(671\) −8028.22 −0.461886
\(672\) 0 0
\(673\) 13689.8 0.784108 0.392054 0.919942i \(-0.371765\pi\)
0.392054 + 0.919942i \(0.371765\pi\)
\(674\) −13272.7 −0.758523
\(675\) −28381.9 −1.61840
\(676\) −8775.59 −0.499294
\(677\) 24316.7 1.38045 0.690226 0.723594i \(-0.257511\pi\)
0.690226 + 0.723594i \(0.257511\pi\)
\(678\) 6153.12 0.348539
\(679\) 0 0
\(680\) −5004.95 −0.282252
\(681\) −19883.6 −1.11885
\(682\) −3105.74 −0.174377
\(683\) −30643.9 −1.71677 −0.858386 0.513004i \(-0.828532\pi\)
−0.858386 + 0.513004i \(0.828532\pi\)
\(684\) −1163.61 −0.0650465
\(685\) −5172.21 −0.288496
\(686\) 0 0
\(687\) 9137.68 0.507459
\(688\) −5996.14 −0.332268
\(689\) 45.0979 0.00249360
\(690\) 3121.65 0.172231
\(691\) −10971.3 −0.604005 −0.302003 0.953307i \(-0.597655\pi\)
−0.302003 + 0.953307i \(0.597655\pi\)
\(692\) 14558.6 0.799761
\(693\) 0 0
\(694\) −12263.2 −0.670757
\(695\) 18138.4 0.989972
\(696\) 9457.47 0.515064
\(697\) 16554.3 0.899625
\(698\) 6524.38 0.353798
\(699\) −9329.94 −0.504851
\(700\) 0 0
\(701\) −19013.4 −1.02443 −0.512215 0.858857i \(-0.671175\pi\)
−0.512215 + 0.858857i \(0.671175\pi\)
\(702\) −530.715 −0.0285335
\(703\) 10333.0 0.554363
\(704\) −822.738 −0.0440456
\(705\) 27778.8 1.48399
\(706\) −7142.16 −0.380735
\(707\) 0 0
\(708\) 9771.02 0.518669
\(709\) 17276.9 0.915158 0.457579 0.889169i \(-0.348717\pi\)
0.457579 + 0.889169i \(0.348717\pi\)
\(710\) 15429.9 0.815594
\(711\) −6449.38 −0.340184
\(712\) 1067.51 0.0561893
\(713\) 2778.31 0.145931
\(714\) 0 0
\(715\) −400.777 −0.0209625
\(716\) −5815.62 −0.303547
\(717\) 8004.54 0.416925
\(718\) −18672.5 −0.970547
\(719\) −33295.7 −1.72701 −0.863504 0.504342i \(-0.831735\pi\)
−0.863504 + 0.504342i \(0.831735\pi\)
\(720\) −3484.91 −0.180382
\(721\) 0 0
\(722\) −12600.0 −0.649479
\(723\) −10571.2 −0.543773
\(724\) −6639.24 −0.340809
\(725\) 58088.5 2.97566
\(726\) −8937.83 −0.456907
\(727\) 8288.99 0.422863 0.211432 0.977393i \(-0.432187\pi\)
0.211432 + 0.977393i \(0.432187\pi\)
\(728\) 0 0
\(729\) 18615.0 0.945739
\(730\) 34996.0 1.77433
\(731\) 13244.5 0.670129
\(732\) 9576.29 0.483538
\(733\) −18902.0 −0.952473 −0.476236 0.879317i \(-0.657999\pi\)
−0.476236 + 0.879317i \(0.657999\pi\)
\(734\) 6293.36 0.316474
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −4843.33 −0.242071
\(738\) 11526.6 0.574935
\(739\) 7399.62 0.368335 0.184167 0.982895i \(-0.441041\pi\)
0.184167 + 0.982895i \(0.441041\pi\)
\(740\) 30946.4 1.53732
\(741\) 159.624 0.00791353
\(742\) 0 0
\(743\) −1405.27 −0.0693866 −0.0346933 0.999398i \(-0.511045\pi\)
−0.0346933 + 0.999398i \(0.511045\pi\)
\(744\) 3704.61 0.182551
\(745\) −50481.0 −2.48253
\(746\) 12153.8 0.596493
\(747\) −13380.3 −0.655366
\(748\) 1817.29 0.0888326
\(749\) 0 0
\(750\) 8600.43 0.418724
\(751\) 2729.49 0.132624 0.0663118 0.997799i \(-0.478877\pi\)
0.0663118 + 0.997799i \(0.478877\pi\)
\(752\) 6549.48 0.317600
\(753\) 11552.2 0.559078
\(754\) 1086.20 0.0524630
\(755\) 3373.39 0.162610
\(756\) 0 0
\(757\) 5187.94 0.249087 0.124544 0.992214i \(-0.460253\pi\)
0.124544 + 0.992214i \(0.460253\pi\)
\(758\) 23122.6 1.10798
\(759\) −1133.47 −0.0542059
\(760\) 3348.26 0.159808
\(761\) −8820.39 −0.420156 −0.210078 0.977685i \(-0.567372\pi\)
−0.210078 + 0.977685i \(0.567372\pi\)
\(762\) −7601.16 −0.361366
\(763\) 0 0
\(764\) −8469.77 −0.401081
\(765\) 7697.60 0.363800
\(766\) −11464.8 −0.540784
\(767\) 1122.21 0.0528301
\(768\) 981.386 0.0461103
\(769\) −16564.8 −0.776778 −0.388389 0.921495i \(-0.626968\pi\)
−0.388389 + 0.921495i \(0.626968\pi\)
\(770\) 0 0
\(771\) 14569.3 0.680545
\(772\) 8729.09 0.406952
\(773\) −2034.36 −0.0946585 −0.0473292 0.998879i \(-0.515071\pi\)
−0.0473292 + 0.998879i \(0.515071\pi\)
\(774\) 9222.03 0.428268
\(775\) 22754.0 1.05464
\(776\) −9285.77 −0.429562
\(777\) 0 0
\(778\) 10108.5 0.465818
\(779\) −11074.7 −0.509359
\(780\) 478.059 0.0219452
\(781\) −5602.56 −0.256691
\(782\) −1625.70 −0.0743414
\(783\) −46464.5 −2.12070
\(784\) 0 0
\(785\) −57464.9 −2.61275
\(786\) 8724.80 0.395933
\(787\) −4732.04 −0.214332 −0.107166 0.994241i \(-0.534178\pi\)
−0.107166 + 0.994241i \(0.534178\pi\)
\(788\) −9442.86 −0.426888
\(789\) −25564.5 −1.15351
\(790\) 18557.9 0.835774
\(791\) 0 0
\(792\) 1265.37 0.0567713
\(793\) 1099.85 0.0492518
\(794\) −23766.2 −1.06226
\(795\) 1737.75 0.0775243
\(796\) −6551.48 −0.291723
\(797\) 25545.5 1.13534 0.567671 0.823256i \(-0.307845\pi\)
0.567671 + 0.823256i \(0.307845\pi\)
\(798\) 0 0
\(799\) −14466.7 −0.640546
\(800\) 6027.75 0.266391
\(801\) −1641.83 −0.0724237
\(802\) 18097.0 0.796792
\(803\) −12707.0 −0.558431
\(804\) 5777.27 0.253419
\(805\) 0 0
\(806\) 425.478 0.0185941
\(807\) 6042.91 0.263594
\(808\) −13220.3 −0.575607
\(809\) −26674.6 −1.15924 −0.579622 0.814885i \(-0.696800\pi\)
−0.579622 + 0.814885i \(0.696800\pi\)
\(810\) −8688.41 −0.376888
\(811\) 34427.4 1.49064 0.745320 0.666706i \(-0.232297\pi\)
0.745320 + 0.666706i \(0.232297\pi\)
\(812\) 0 0
\(813\) −8470.73 −0.365414
\(814\) −11236.6 −0.483837
\(815\) −19519.7 −0.838953
\(816\) −2167.72 −0.0929968
\(817\) −8860.42 −0.379421
\(818\) −8370.69 −0.357793
\(819\) 0 0
\(820\) −33167.6 −1.41252
\(821\) −7283.95 −0.309637 −0.154818 0.987943i \(-0.549479\pi\)
−0.154818 + 0.987943i \(0.549479\pi\)
\(822\) −2240.16 −0.0950543
\(823\) −5862.49 −0.248303 −0.124152 0.992263i \(-0.539621\pi\)
−0.124152 + 0.992263i \(0.539621\pi\)
\(824\) −5468.23 −0.231183
\(825\) −9282.96 −0.391747
\(826\) 0 0
\(827\) −47141.6 −1.98219 −0.991097 0.133143i \(-0.957493\pi\)
−0.991097 + 0.133143i \(0.957493\pi\)
\(828\) −1131.97 −0.0475103
\(829\) 5182.32 0.217116 0.108558 0.994090i \(-0.465377\pi\)
0.108558 + 0.994090i \(0.465377\pi\)
\(830\) 38501.4 1.61012
\(831\) −22379.0 −0.934197
\(832\) 112.713 0.00469667
\(833\) 0 0
\(834\) 7856.04 0.326178
\(835\) −55683.1 −2.30778
\(836\) −1215.75 −0.0502962
\(837\) −18200.8 −0.751625
\(838\) 5338.80 0.220079
\(839\) 23541.5 0.968704 0.484352 0.874873i \(-0.339055\pi\)
0.484352 + 0.874873i \(0.339055\pi\)
\(840\) 0 0
\(841\) 70708.8 2.89921
\(842\) 4830.87 0.197723
\(843\) −4644.50 −0.189757
\(844\) −13090.4 −0.533877
\(845\) −38836.8 −1.58110
\(846\) −10073.1 −0.409361
\(847\) 0 0
\(848\) 409.715 0.0165916
\(849\) 1555.52 0.0628802
\(850\) −13314.3 −0.537266
\(851\) 10052.0 0.404909
\(852\) 6682.90 0.268724
\(853\) 5075.40 0.203726 0.101863 0.994798i \(-0.467520\pi\)
0.101863 + 0.994798i \(0.467520\pi\)
\(854\) 0 0
\(855\) −5149.62 −0.205980
\(856\) 910.916 0.0363720
\(857\) 8940.83 0.356374 0.178187 0.983997i \(-0.442977\pi\)
0.178187 + 0.983997i \(0.442977\pi\)
\(858\) −173.583 −0.00690678
\(859\) 3592.54 0.142696 0.0713480 0.997451i \(-0.477270\pi\)
0.0713480 + 0.997451i \(0.477270\pi\)
\(860\) −26536.2 −1.05218
\(861\) 0 0
\(862\) 3178.08 0.125575
\(863\) −3297.35 −0.130062 −0.0650308 0.997883i \(-0.520715\pi\)
−0.0650308 + 0.997883i \(0.520715\pi\)
\(864\) −4821.55 −0.189852
\(865\) 64429.7 2.53257
\(866\) 30532.6 1.19808
\(867\) −14046.0 −0.550206
\(868\) 0 0
\(869\) −6738.36 −0.263042
\(870\) 41854.5 1.63103
\(871\) 663.525 0.0258125
\(872\) 795.898 0.0309088
\(873\) 14281.5 0.553671
\(874\) 1087.58 0.0420914
\(875\) 0 0
\(876\) 15157.3 0.584609
\(877\) 27099.1 1.04341 0.521706 0.853125i \(-0.325296\pi\)
0.521706 + 0.853125i \(0.325296\pi\)
\(878\) −13866.1 −0.532984
\(879\) −796.639 −0.0305688
\(880\) −3641.06 −0.139478
\(881\) −36788.0 −1.40683 −0.703417 0.710777i \(-0.748343\pi\)
−0.703417 + 0.710777i \(0.748343\pi\)
\(882\) 0 0
\(883\) 5402.83 0.205911 0.102956 0.994686i \(-0.467170\pi\)
0.102956 + 0.994686i \(0.467170\pi\)
\(884\) −248.965 −0.00947239
\(885\) 43242.1 1.64245
\(886\) −33617.2 −1.27471
\(887\) 16458.0 0.623004 0.311502 0.950246i \(-0.399168\pi\)
0.311502 + 0.950246i \(0.399168\pi\)
\(888\) 13403.4 0.506518
\(889\) 0 0
\(890\) 4724.33 0.177933
\(891\) 3154.75 0.118617
\(892\) 3834.89 0.143948
\(893\) 9678.10 0.362671
\(894\) −21864.1 −0.817947
\(895\) −25737.3 −0.961231
\(896\) 0 0
\(897\) 155.282 0.00578008
\(898\) 1718.16 0.0638483
\(899\) 37251.0 1.38197
\(900\) −9270.65 −0.343357
\(901\) −904.992 −0.0334624
\(902\) 12043.1 0.444559
\(903\) 0 0
\(904\) 6420.30 0.236213
\(905\) −29382.3 −1.07923
\(906\) 1461.07 0.0535769
\(907\) 51745.1 1.89434 0.947170 0.320731i \(-0.103929\pi\)
0.947170 + 0.320731i \(0.103929\pi\)
\(908\) −20747.0 −0.758273
\(909\) 20332.8 0.741912
\(910\) 0 0
\(911\) 9591.20 0.348815 0.174408 0.984674i \(-0.444199\pi\)
0.174408 + 0.984674i \(0.444199\pi\)
\(912\) 1450.18 0.0526539
\(913\) −13979.8 −0.506752
\(914\) 32276.2 1.16805
\(915\) 42380.3 1.53120
\(916\) 9534.46 0.343916
\(917\) 0 0
\(918\) 10650.0 0.382900
\(919\) −34675.0 −1.24464 −0.622319 0.782763i \(-0.713809\pi\)
−0.622319 + 0.782763i \(0.713809\pi\)
\(920\) 3257.20 0.116725
\(921\) 677.214 0.0242290
\(922\) −30287.4 −1.08185
\(923\) 767.538 0.0273714
\(924\) 0 0
\(925\) 82324.5 2.92628
\(926\) −3328.42 −0.118119
\(927\) 8410.12 0.297977
\(928\) 9868.14 0.349071
\(929\) 10925.9 0.385864 0.192932 0.981212i \(-0.438200\pi\)
0.192932 + 0.981212i \(0.438200\pi\)
\(930\) 16394.9 0.578076
\(931\) 0 0
\(932\) −9735.07 −0.342149
\(933\) 21269.3 0.746328
\(934\) −10449.5 −0.366081
\(935\) 8042.51 0.281303
\(936\) −173.352 −0.00605363
\(937\) 30674.2 1.06946 0.534729 0.845024i \(-0.320414\pi\)
0.534729 + 0.845024i \(0.320414\pi\)
\(938\) 0 0
\(939\) 2316.98 0.0805236
\(940\) 28985.0 1.00573
\(941\) 10554.9 0.365653 0.182826 0.983145i \(-0.441475\pi\)
0.182826 + 0.983145i \(0.441475\pi\)
\(942\) −24888.9 −0.860854
\(943\) −10773.5 −0.372039
\(944\) 10195.3 0.351513
\(945\) 0 0
\(946\) 9635.25 0.331151
\(947\) −23938.4 −0.821431 −0.410715 0.911764i \(-0.634721\pi\)
−0.410715 + 0.911764i \(0.634721\pi\)
\(948\) 8037.72 0.275372
\(949\) 1740.83 0.0595466
\(950\) 8907.13 0.304195
\(951\) 13076.5 0.445883
\(952\) 0 0
\(953\) 36298.6 1.23382 0.616908 0.787035i \(-0.288385\pi\)
0.616908 + 0.787035i \(0.288385\pi\)
\(954\) −630.140 −0.0213853
\(955\) −37483.3 −1.27009
\(956\) 8352.11 0.282559
\(957\) −15197.3 −0.513333
\(958\) 34824.3 1.17445
\(959\) 0 0
\(960\) 4343.17 0.146016
\(961\) −15199.3 −0.510198
\(962\) 1539.39 0.0515924
\(963\) −1400.98 −0.0468807
\(964\) −11030.2 −0.368527
\(965\) 38631.0 1.28868
\(966\) 0 0
\(967\) 35482.9 1.17999 0.589996 0.807406i \(-0.299129\pi\)
0.589996 + 0.807406i \(0.299129\pi\)
\(968\) −9325.93 −0.309656
\(969\) −3203.21 −0.106194
\(970\) −41094.6 −1.36028
\(971\) −15292.1 −0.505405 −0.252703 0.967544i \(-0.581319\pi\)
−0.252703 + 0.967544i \(0.581319\pi\)
\(972\) 12509.6 0.412805
\(973\) 0 0
\(974\) −9191.87 −0.302389
\(975\) 1271.74 0.0417727
\(976\) 9992.11 0.327705
\(977\) −41684.6 −1.36501 −0.682503 0.730883i \(-0.739108\pi\)
−0.682503 + 0.730883i \(0.739108\pi\)
\(978\) −8454.29 −0.276420
\(979\) −1715.40 −0.0560005
\(980\) 0 0
\(981\) −1224.09 −0.0398391
\(982\) 39271.4 1.27617
\(983\) −10056.7 −0.326305 −0.163153 0.986601i \(-0.552166\pi\)
−0.163153 + 0.986601i \(0.552166\pi\)
\(984\) −14365.4 −0.465399
\(985\) −41789.8 −1.35181
\(986\) −21797.1 −0.704017
\(987\) 0 0
\(988\) 166.555 0.00536318
\(989\) −8619.44 −0.277131
\(990\) 5599.94 0.179776
\(991\) 56618.5 1.81488 0.907440 0.420181i \(-0.138034\pi\)
0.907440 + 0.420181i \(0.138034\pi\)
\(992\) 3865.47 0.123719
\(993\) 16058.3 0.513186
\(994\) 0 0
\(995\) −28993.9 −0.923786
\(996\) 16675.5 0.530507
\(997\) −1853.84 −0.0588885 −0.0294443 0.999566i \(-0.509374\pi\)
−0.0294443 + 0.999566i \(0.509374\pi\)
\(998\) 1121.10 0.0355589
\(999\) −65850.7 −2.08551
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.7 11
7.2 even 3 322.4.e.a.277.5 yes 22
7.4 even 3 322.4.e.a.93.5 22
7.6 odd 2 2254.4.a.v.1.5 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.5 22 7.4 even 3
322.4.e.a.277.5 yes 22 7.2 even 3
2254.4.a.v.1.5 11 7.6 odd 2
2254.4.a.y.1.7 11 1.1 even 1 trivial