Properties

Label 2254.4.a.y.1.6
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.55871\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.55871 q^{3} +4.00000 q^{4} -17.9984 q^{5} +7.11742 q^{6} +8.00000 q^{8} -14.3356 q^{9} -35.9968 q^{10} -43.1362 q^{11} +14.2348 q^{12} +67.9392 q^{13} -64.0511 q^{15} +16.0000 q^{16} +5.75059 q^{17} -28.6712 q^{18} -102.206 q^{19} -71.9936 q^{20} -86.2723 q^{22} +23.0000 q^{23} +28.4697 q^{24} +198.943 q^{25} +135.878 q^{26} -147.101 q^{27} +23.0752 q^{29} -128.102 q^{30} -222.171 q^{31} +32.0000 q^{32} -153.509 q^{33} +11.5012 q^{34} -57.3423 q^{36} +39.2972 q^{37} -204.412 q^{38} +241.776 q^{39} -143.987 q^{40} +373.067 q^{41} +5.34174 q^{43} -172.545 q^{44} +258.018 q^{45} +46.0000 q^{46} +299.732 q^{47} +56.9394 q^{48} +397.885 q^{50} +20.4647 q^{51} +271.757 q^{52} -6.53059 q^{53} -294.203 q^{54} +776.382 q^{55} -363.721 q^{57} +46.1504 q^{58} +620.866 q^{59} -256.204 q^{60} -106.016 q^{61} -444.343 q^{62} +64.0000 q^{64} -1222.80 q^{65} -307.018 q^{66} -382.646 q^{67} +23.0024 q^{68} +81.8503 q^{69} -765.836 q^{71} -114.685 q^{72} +69.0434 q^{73} +78.5943 q^{74} +707.979 q^{75} -408.824 q^{76} +483.552 q^{78} +598.857 q^{79} -287.974 q^{80} -136.431 q^{81} +746.134 q^{82} +927.174 q^{83} -103.501 q^{85} +10.6835 q^{86} +82.1180 q^{87} -345.089 q^{88} +1549.42 q^{89} +516.035 q^{90} +92.0000 q^{92} -790.644 q^{93} +599.463 q^{94} +1839.54 q^{95} +113.879 q^{96} -314.236 q^{97} +618.382 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.55871 0.684874 0.342437 0.939541i \(-0.388748\pi\)
0.342437 + 0.939541i \(0.388748\pi\)
\(4\) 4.00000 0.500000
\(5\) −17.9984 −1.60983 −0.804913 0.593393i \(-0.797788\pi\)
−0.804913 + 0.593393i \(0.797788\pi\)
\(6\) 7.11742 0.484279
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −14.3356 −0.530947
\(10\) −35.9968 −1.13832
\(11\) −43.1362 −1.18237 −0.591184 0.806537i \(-0.701339\pi\)
−0.591184 + 0.806537i \(0.701339\pi\)
\(12\) 14.2348 0.342437
\(13\) 67.9392 1.44946 0.724729 0.689034i \(-0.241965\pi\)
0.724729 + 0.689034i \(0.241965\pi\)
\(14\) 0 0
\(15\) −64.0511 −1.10253
\(16\) 16.0000 0.250000
\(17\) 5.75059 0.0820425 0.0410213 0.999158i \(-0.486939\pi\)
0.0410213 + 0.999158i \(0.486939\pi\)
\(18\) −28.6712 −0.375436
\(19\) −102.206 −1.23409 −0.617043 0.786929i \(-0.711670\pi\)
−0.617043 + 0.786929i \(0.711670\pi\)
\(20\) −71.9936 −0.804913
\(21\) 0 0
\(22\) −86.2723 −0.836060
\(23\) 23.0000 0.208514
\(24\) 28.4697 0.242140
\(25\) 198.943 1.59154
\(26\) 135.878 1.02492
\(27\) −147.101 −1.04851
\(28\) 0 0
\(29\) 23.0752 0.147757 0.0738786 0.997267i \(-0.476462\pi\)
0.0738786 + 0.997267i \(0.476462\pi\)
\(30\) −128.102 −0.779605
\(31\) −222.171 −1.28720 −0.643600 0.765362i \(-0.722560\pi\)
−0.643600 + 0.765362i \(0.722560\pi\)
\(32\) 32.0000 0.176777
\(33\) −153.509 −0.809773
\(34\) 11.5012 0.0580128
\(35\) 0 0
\(36\) −57.3423 −0.265474
\(37\) 39.2972 0.174606 0.0873029 0.996182i \(-0.472175\pi\)
0.0873029 + 0.996182i \(0.472175\pi\)
\(38\) −204.412 −0.872631
\(39\) 241.776 0.992696
\(40\) −143.987 −0.569160
\(41\) 373.067 1.42105 0.710527 0.703670i \(-0.248456\pi\)
0.710527 + 0.703670i \(0.248456\pi\)
\(42\) 0 0
\(43\) 5.34174 0.0189444 0.00947219 0.999955i \(-0.496985\pi\)
0.00947219 + 0.999955i \(0.496985\pi\)
\(44\) −172.545 −0.591184
\(45\) 258.018 0.854733
\(46\) 46.0000 0.147442
\(47\) 299.732 0.930220 0.465110 0.885253i \(-0.346015\pi\)
0.465110 + 0.885253i \(0.346015\pi\)
\(48\) 56.9394 0.171219
\(49\) 0 0
\(50\) 397.885 1.12539
\(51\) 20.4647 0.0561888
\(52\) 271.757 0.724729
\(53\) −6.53059 −0.0169254 −0.00846269 0.999964i \(-0.502694\pi\)
−0.00846269 + 0.999964i \(0.502694\pi\)
\(54\) −294.203 −0.741406
\(55\) 776.382 1.90341
\(56\) 0 0
\(57\) −363.721 −0.845194
\(58\) 46.1504 0.104480
\(59\) 620.866 1.37000 0.684999 0.728544i \(-0.259802\pi\)
0.684999 + 0.728544i \(0.259802\pi\)
\(60\) −256.204 −0.551264
\(61\) −106.016 −0.222524 −0.111262 0.993791i \(-0.535489\pi\)
−0.111262 + 0.993791i \(0.535489\pi\)
\(62\) −444.343 −0.910187
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −1222.80 −2.33338
\(66\) −307.018 −0.572596
\(67\) −382.646 −0.697727 −0.348863 0.937174i \(-0.613432\pi\)
−0.348863 + 0.937174i \(0.613432\pi\)
\(68\) 23.0024 0.0410213
\(69\) 81.8503 0.142806
\(70\) 0 0
\(71\) −765.836 −1.28011 −0.640056 0.768328i \(-0.721089\pi\)
−0.640056 + 0.768328i \(0.721089\pi\)
\(72\) −114.685 −0.187718
\(73\) 69.0434 0.110697 0.0553487 0.998467i \(-0.482373\pi\)
0.0553487 + 0.998467i \(0.482373\pi\)
\(74\) 78.5943 0.123465
\(75\) 707.979 1.09001
\(76\) −408.824 −0.617043
\(77\) 0 0
\(78\) 483.552 0.701942
\(79\) 598.857 0.852869 0.426434 0.904519i \(-0.359770\pi\)
0.426434 + 0.904519i \(0.359770\pi\)
\(80\) −287.974 −0.402457
\(81\) −136.431 −0.187147
\(82\) 746.134 1.00484
\(83\) 927.174 1.22615 0.613076 0.790024i \(-0.289932\pi\)
0.613076 + 0.790024i \(0.289932\pi\)
\(84\) 0 0
\(85\) −103.501 −0.132074
\(86\) 10.6835 0.0133957
\(87\) 82.1180 0.101195
\(88\) −345.089 −0.418030
\(89\) 1549.42 1.84537 0.922685 0.385554i \(-0.125990\pi\)
0.922685 + 0.385554i \(0.125990\pi\)
\(90\) 516.035 0.604388
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −790.644 −0.881569
\(94\) 599.463 0.657765
\(95\) 1839.54 1.98666
\(96\) 113.879 0.121070
\(97\) −314.236 −0.328926 −0.164463 0.986383i \(-0.552589\pi\)
−0.164463 + 0.986383i \(0.552589\pi\)
\(98\) 0 0
\(99\) 618.382 0.627775
\(100\) 795.770 0.795770
\(101\) −364.705 −0.359302 −0.179651 0.983730i \(-0.557497\pi\)
−0.179651 + 0.983730i \(0.557497\pi\)
\(102\) 40.9294 0.0397315
\(103\) 1135.92 1.08665 0.543326 0.839522i \(-0.317165\pi\)
0.543326 + 0.839522i \(0.317165\pi\)
\(104\) 543.514 0.512461
\(105\) 0 0
\(106\) −13.0612 −0.0119680
\(107\) 111.698 0.100919 0.0504593 0.998726i \(-0.483931\pi\)
0.0504593 + 0.998726i \(0.483931\pi\)
\(108\) −588.405 −0.524253
\(109\) 1242.59 1.09191 0.545957 0.837813i \(-0.316166\pi\)
0.545957 + 0.837813i \(0.316166\pi\)
\(110\) 1552.76 1.34591
\(111\) 139.847 0.119583
\(112\) 0 0
\(113\) −1772.81 −1.47586 −0.737929 0.674879i \(-0.764196\pi\)
−0.737929 + 0.674879i \(0.764196\pi\)
\(114\) −727.442 −0.597642
\(115\) −413.963 −0.335672
\(116\) 92.3008 0.0738786
\(117\) −973.948 −0.769586
\(118\) 1241.73 0.968735
\(119\) 0 0
\(120\) −512.409 −0.389803
\(121\) 529.728 0.397992
\(122\) −212.032 −0.157348
\(123\) 1327.64 0.973244
\(124\) −888.686 −0.643600
\(125\) −1330.85 −0.952278
\(126\) 0 0
\(127\) −408.399 −0.285351 −0.142675 0.989770i \(-0.545570\pi\)
−0.142675 + 0.989770i \(0.545570\pi\)
\(128\) 128.000 0.0883883
\(129\) 19.0097 0.0129745
\(130\) −2445.60 −1.64995
\(131\) 2900.00 1.93415 0.967076 0.254489i \(-0.0819074\pi\)
0.967076 + 0.254489i \(0.0819074\pi\)
\(132\) −614.036 −0.404886
\(133\) 0 0
\(134\) −765.293 −0.493367
\(135\) 2647.59 1.68791
\(136\) 46.0047 0.0290064
\(137\) 529.278 0.330068 0.165034 0.986288i \(-0.447227\pi\)
0.165034 + 0.986288i \(0.447227\pi\)
\(138\) 163.701 0.100979
\(139\) 1389.89 0.848121 0.424061 0.905634i \(-0.360604\pi\)
0.424061 + 0.905634i \(0.360604\pi\)
\(140\) 0 0
\(141\) 1066.66 0.637084
\(142\) −1531.67 −0.905176
\(143\) −2930.64 −1.71379
\(144\) −229.369 −0.132737
\(145\) −415.317 −0.237863
\(146\) 138.087 0.0782749
\(147\) 0 0
\(148\) 157.189 0.0873029
\(149\) −2380.71 −1.30896 −0.654480 0.756079i \(-0.727112\pi\)
−0.654480 + 0.756079i \(0.727112\pi\)
\(150\) 1415.96 0.770750
\(151\) 420.845 0.226807 0.113404 0.993549i \(-0.463825\pi\)
0.113404 + 0.993549i \(0.463825\pi\)
\(152\) −817.647 −0.436315
\(153\) −82.4380 −0.0435603
\(154\) 0 0
\(155\) 3998.73 2.07217
\(156\) 967.104 0.496348
\(157\) 189.463 0.0963107 0.0481553 0.998840i \(-0.484666\pi\)
0.0481553 + 0.998840i \(0.484666\pi\)
\(158\) 1197.71 0.603069
\(159\) −23.2405 −0.0115918
\(160\) −575.949 −0.284580
\(161\) 0 0
\(162\) −272.861 −0.132333
\(163\) 3461.69 1.66344 0.831720 0.555196i \(-0.187357\pi\)
0.831720 + 0.555196i \(0.187357\pi\)
\(164\) 1492.27 0.710527
\(165\) 2762.92 1.30359
\(166\) 1854.35 0.867020
\(167\) 1480.75 0.686133 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(168\) 0 0
\(169\) 2418.74 1.10093
\(170\) −207.003 −0.0933905
\(171\) 1465.18 0.655235
\(172\) 21.3670 0.00947219
\(173\) 2966.34 1.30362 0.651811 0.758381i \(-0.274009\pi\)
0.651811 + 0.758381i \(0.274009\pi\)
\(174\) 164.236 0.0715557
\(175\) 0 0
\(176\) −690.178 −0.295592
\(177\) 2209.48 0.938277
\(178\) 3098.84 1.30487
\(179\) −4773.67 −1.99330 −0.996650 0.0817848i \(-0.973938\pi\)
−0.996650 + 0.0817848i \(0.973938\pi\)
\(180\) 1032.07 0.427367
\(181\) −3285.16 −1.34908 −0.674541 0.738238i \(-0.735658\pi\)
−0.674541 + 0.738238i \(0.735658\pi\)
\(182\) 0 0
\(183\) −377.281 −0.152401
\(184\) 184.000 0.0737210
\(185\) −707.286 −0.281085
\(186\) −1581.29 −0.623364
\(187\) −248.058 −0.0970044
\(188\) 1198.93 0.465110
\(189\) 0 0
\(190\) 3679.09 1.40478
\(191\) 825.286 0.312647 0.156324 0.987706i \(-0.450036\pi\)
0.156324 + 0.987706i \(0.450036\pi\)
\(192\) 227.757 0.0856093
\(193\) −126.167 −0.0470553 −0.0235276 0.999723i \(-0.507490\pi\)
−0.0235276 + 0.999723i \(0.507490\pi\)
\(194\) −628.472 −0.232586
\(195\) −4351.58 −1.59807
\(196\) 0 0
\(197\) 3084.18 1.11542 0.557712 0.830034i \(-0.311679\pi\)
0.557712 + 0.830034i \(0.311679\pi\)
\(198\) 1236.76 0.443904
\(199\) 5119.28 1.82360 0.911798 0.410638i \(-0.134694\pi\)
0.911798 + 0.410638i \(0.134694\pi\)
\(200\) 1591.54 0.562695
\(201\) −1361.73 −0.477855
\(202\) −729.411 −0.254065
\(203\) 0 0
\(204\) 81.8587 0.0280944
\(205\) −6714.61 −2.28765
\(206\) 2271.83 0.768379
\(207\) −329.718 −0.110710
\(208\) 1087.03 0.362364
\(209\) 4408.77 1.45914
\(210\) 0 0
\(211\) 1904.78 0.621471 0.310735 0.950496i \(-0.399425\pi\)
0.310735 + 0.950496i \(0.399425\pi\)
\(212\) −26.1223 −0.00846269
\(213\) −2725.39 −0.876716
\(214\) 223.397 0.0713602
\(215\) −96.1428 −0.0304971
\(216\) −1176.81 −0.370703
\(217\) 0 0
\(218\) 2485.18 0.772100
\(219\) 245.705 0.0758138
\(220\) 3105.53 0.951703
\(221\) 390.691 0.118917
\(222\) 279.694 0.0845579
\(223\) 2576.01 0.773552 0.386776 0.922174i \(-0.373589\pi\)
0.386776 + 0.922174i \(0.373589\pi\)
\(224\) 0 0
\(225\) −2851.96 −0.845025
\(226\) −3545.62 −1.04359
\(227\) −388.747 −0.113665 −0.0568327 0.998384i \(-0.518100\pi\)
−0.0568327 + 0.998384i \(0.518100\pi\)
\(228\) −1454.88 −0.422597
\(229\) −3526.32 −1.01758 −0.508790 0.860891i \(-0.669907\pi\)
−0.508790 + 0.860891i \(0.669907\pi\)
\(230\) −827.927 −0.237356
\(231\) 0 0
\(232\) 184.602 0.0522401
\(233\) −1007.46 −0.283267 −0.141633 0.989919i \(-0.545235\pi\)
−0.141633 + 0.989919i \(0.545235\pi\)
\(234\) −1947.90 −0.544179
\(235\) −5394.69 −1.49749
\(236\) 2483.47 0.684999
\(237\) 2131.16 0.584108
\(238\) 0 0
\(239\) 1439.80 0.389676 0.194838 0.980835i \(-0.437582\pi\)
0.194838 + 0.980835i \(0.437582\pi\)
\(240\) −1024.82 −0.275632
\(241\) −2047.32 −0.547217 −0.273608 0.961841i \(-0.588217\pi\)
−0.273608 + 0.961841i \(0.588217\pi\)
\(242\) 1059.46 0.281423
\(243\) 3486.22 0.920334
\(244\) −424.065 −0.111262
\(245\) 0 0
\(246\) 2655.27 0.688187
\(247\) −6943.79 −1.78876
\(248\) −1777.37 −0.455094
\(249\) 3299.54 0.839759
\(250\) −2661.70 −0.673362
\(251\) 6266.17 1.57577 0.787883 0.615825i \(-0.211177\pi\)
0.787883 + 0.615825i \(0.211177\pi\)
\(252\) 0 0
\(253\) −992.132 −0.246541
\(254\) −816.798 −0.201773
\(255\) −368.332 −0.0904542
\(256\) 256.000 0.0625000
\(257\) 5012.78 1.21669 0.608344 0.793674i \(-0.291834\pi\)
0.608344 + 0.793674i \(0.291834\pi\)
\(258\) 38.0194 0.00917436
\(259\) 0 0
\(260\) −4891.19 −1.16669
\(261\) −330.797 −0.0784513
\(262\) 5799.99 1.36765
\(263\) −5343.47 −1.25282 −0.626411 0.779493i \(-0.715477\pi\)
−0.626411 + 0.779493i \(0.715477\pi\)
\(264\) −1228.07 −0.286298
\(265\) 117.540 0.0272469
\(266\) 0 0
\(267\) 5513.93 1.26385
\(268\) −1530.59 −0.348863
\(269\) 3353.50 0.760099 0.380049 0.924966i \(-0.375907\pi\)
0.380049 + 0.924966i \(0.375907\pi\)
\(270\) 5295.18 1.19353
\(271\) −5898.14 −1.32209 −0.661046 0.750346i \(-0.729887\pi\)
−0.661046 + 0.750346i \(0.729887\pi\)
\(272\) 92.0094 0.0205106
\(273\) 0 0
\(274\) 1058.56 0.233393
\(275\) −8581.62 −1.88179
\(276\) 327.401 0.0714031
\(277\) 375.574 0.0814659 0.0407329 0.999170i \(-0.487031\pi\)
0.0407329 + 0.999170i \(0.487031\pi\)
\(278\) 2779.78 0.599712
\(279\) 3184.96 0.683435
\(280\) 0 0
\(281\) 8138.46 1.72776 0.863879 0.503700i \(-0.168028\pi\)
0.863879 + 0.503700i \(0.168028\pi\)
\(282\) 2133.32 0.450486
\(283\) 5677.96 1.19265 0.596324 0.802744i \(-0.296627\pi\)
0.596324 + 0.802744i \(0.296627\pi\)
\(284\) −3063.34 −0.640056
\(285\) 6546.40 1.36062
\(286\) −5861.27 −1.21183
\(287\) 0 0
\(288\) −458.739 −0.0938591
\(289\) −4879.93 −0.993269
\(290\) −830.634 −0.168195
\(291\) −1118.28 −0.225273
\(292\) 276.174 0.0553487
\(293\) −6359.25 −1.26796 −0.633978 0.773351i \(-0.718579\pi\)
−0.633978 + 0.773351i \(0.718579\pi\)
\(294\) 0 0
\(295\) −11174.6 −2.20546
\(296\) 314.377 0.0617325
\(297\) 6345.39 1.23972
\(298\) −4761.41 −0.925574
\(299\) 1562.60 0.302233
\(300\) 2831.92 0.545003
\(301\) 0 0
\(302\) 841.691 0.160377
\(303\) −1297.88 −0.246077
\(304\) −1635.29 −0.308522
\(305\) 1908.12 0.358225
\(306\) −164.876 −0.0308017
\(307\) −5457.19 −1.01452 −0.507261 0.861793i \(-0.669342\pi\)
−0.507261 + 0.861793i \(0.669342\pi\)
\(308\) 0 0
\(309\) 4042.40 0.744220
\(310\) 7997.47 1.46524
\(311\) −10561.6 −1.92571 −0.962854 0.270022i \(-0.912969\pi\)
−0.962854 + 0.270022i \(0.912969\pi\)
\(312\) 1934.21 0.350971
\(313\) −9944.05 −1.79575 −0.897877 0.440246i \(-0.854891\pi\)
−0.897877 + 0.440246i \(0.854891\pi\)
\(314\) 378.926 0.0681019
\(315\) 0 0
\(316\) 2395.43 0.426434
\(317\) 10308.7 1.82647 0.913237 0.407428i \(-0.133574\pi\)
0.913237 + 0.407428i \(0.133574\pi\)
\(318\) −46.4809 −0.00819661
\(319\) −995.376 −0.174703
\(320\) −1151.90 −0.201228
\(321\) 397.502 0.0691165
\(322\) 0 0
\(323\) −587.744 −0.101248
\(324\) −545.722 −0.0935737
\(325\) 13516.0 2.30687
\(326\) 6923.38 1.17623
\(327\) 4422.02 0.747824
\(328\) 2984.53 0.502419
\(329\) 0 0
\(330\) 5525.84 0.921780
\(331\) 2570.62 0.426870 0.213435 0.976957i \(-0.431535\pi\)
0.213435 + 0.976957i \(0.431535\pi\)
\(332\) 3708.70 0.613076
\(333\) −563.348 −0.0927065
\(334\) 2961.51 0.485169
\(335\) 6887.02 1.12322
\(336\) 0 0
\(337\) 74.1859 0.0119916 0.00599580 0.999982i \(-0.498091\pi\)
0.00599580 + 0.999982i \(0.498091\pi\)
\(338\) 4837.48 0.778474
\(339\) −6308.91 −1.01078
\(340\) −414.006 −0.0660371
\(341\) 9583.62 1.52194
\(342\) 2930.36 0.463321
\(343\) 0 0
\(344\) 42.7339 0.00669785
\(345\) −1473.18 −0.229893
\(346\) 5932.68 0.921800
\(347\) 6288.18 0.972816 0.486408 0.873732i \(-0.338307\pi\)
0.486408 + 0.873732i \(0.338307\pi\)
\(348\) 328.472 0.0505975
\(349\) 1527.11 0.234224 0.117112 0.993119i \(-0.462636\pi\)
0.117112 + 0.993119i \(0.462636\pi\)
\(350\) 0 0
\(351\) −9993.95 −1.51977
\(352\) −1380.36 −0.209015
\(353\) −1304.25 −0.196652 −0.0983260 0.995154i \(-0.531349\pi\)
−0.0983260 + 0.995154i \(0.531349\pi\)
\(354\) 4418.97 0.663462
\(355\) 13783.8 2.06076
\(356\) 6197.67 0.922685
\(357\) 0 0
\(358\) −9547.34 −1.40948
\(359\) 2620.95 0.385316 0.192658 0.981266i \(-0.438289\pi\)
0.192658 + 0.981266i \(0.438289\pi\)
\(360\) 2064.14 0.302194
\(361\) 3587.04 0.522969
\(362\) −6570.31 −0.953945
\(363\) 1885.15 0.272575
\(364\) 0 0
\(365\) −1242.67 −0.178204
\(366\) −754.562 −0.107764
\(367\) −1416.43 −0.201464 −0.100732 0.994914i \(-0.532118\pi\)
−0.100732 + 0.994914i \(0.532118\pi\)
\(368\) 368.000 0.0521286
\(369\) −5348.13 −0.754505
\(370\) −1414.57 −0.198757
\(371\) 0 0
\(372\) −3162.58 −0.440785
\(373\) −6774.40 −0.940389 −0.470194 0.882563i \(-0.655816\pi\)
−0.470194 + 0.882563i \(0.655816\pi\)
\(374\) −496.117 −0.0685924
\(375\) −4736.11 −0.652191
\(376\) 2397.85 0.328882
\(377\) 1567.71 0.214168
\(378\) 0 0
\(379\) 4197.46 0.568889 0.284445 0.958692i \(-0.408191\pi\)
0.284445 + 0.958692i \(0.408191\pi\)
\(380\) 7358.17 0.993332
\(381\) −1453.37 −0.195429
\(382\) 1650.57 0.221075
\(383\) 1455.35 0.194164 0.0970819 0.995276i \(-0.469049\pi\)
0.0970819 + 0.995276i \(0.469049\pi\)
\(384\) 455.515 0.0605349
\(385\) 0 0
\(386\) −252.333 −0.0332731
\(387\) −76.5770 −0.0100585
\(388\) −1256.94 −0.164463
\(389\) −10330.7 −1.34649 −0.673246 0.739419i \(-0.735100\pi\)
−0.673246 + 0.739419i \(0.735100\pi\)
\(390\) −8703.17 −1.13001
\(391\) 132.264 0.0171070
\(392\) 0 0
\(393\) 10320.2 1.32465
\(394\) 6168.36 0.788724
\(395\) −10778.5 −1.37297
\(396\) 2473.53 0.313887
\(397\) −3534.07 −0.446775 −0.223388 0.974730i \(-0.571712\pi\)
−0.223388 + 0.974730i \(0.571712\pi\)
\(398\) 10238.6 1.28948
\(399\) 0 0
\(400\) 3183.08 0.397885
\(401\) −9140.78 −1.13833 −0.569163 0.822225i \(-0.692733\pi\)
−0.569163 + 0.822225i \(0.692733\pi\)
\(402\) −2723.45 −0.337894
\(403\) −15094.2 −1.86574
\(404\) −1458.82 −0.179651
\(405\) 2455.53 0.301275
\(406\) 0 0
\(407\) −1695.13 −0.206448
\(408\) 163.717 0.0198657
\(409\) −7171.03 −0.866955 −0.433477 0.901164i \(-0.642714\pi\)
−0.433477 + 0.901164i \(0.642714\pi\)
\(410\) −13429.2 −1.61761
\(411\) 1883.55 0.226055
\(412\) 4543.67 0.543326
\(413\) 0 0
\(414\) −659.437 −0.0782839
\(415\) −16687.6 −1.97389
\(416\) 2174.06 0.256230
\(417\) 4946.21 0.580856
\(418\) 8817.54 1.03177
\(419\) −6995.48 −0.815636 −0.407818 0.913063i \(-0.633710\pi\)
−0.407818 + 0.913063i \(0.633710\pi\)
\(420\) 0 0
\(421\) 6600.97 0.764161 0.382080 0.924129i \(-0.375208\pi\)
0.382080 + 0.924129i \(0.375208\pi\)
\(422\) 3809.56 0.439446
\(423\) −4296.82 −0.493898
\(424\) −52.2447 −0.00598402
\(425\) 1144.04 0.130574
\(426\) −5450.78 −0.619932
\(427\) 0 0
\(428\) 446.793 0.0504593
\(429\) −10429.3 −1.17373
\(430\) −192.286 −0.0215647
\(431\) −6733.50 −0.752532 −0.376266 0.926512i \(-0.622792\pi\)
−0.376266 + 0.926512i \(0.622792\pi\)
\(432\) −2353.62 −0.262127
\(433\) −16434.7 −1.82402 −0.912009 0.410170i \(-0.865469\pi\)
−0.912009 + 0.410170i \(0.865469\pi\)
\(434\) 0 0
\(435\) −1477.99 −0.162907
\(436\) 4970.37 0.545957
\(437\) −2350.74 −0.257325
\(438\) 491.411 0.0536085
\(439\) 15748.8 1.71219 0.856093 0.516822i \(-0.172885\pi\)
0.856093 + 0.516822i \(0.172885\pi\)
\(440\) 6211.06 0.672956
\(441\) 0 0
\(442\) 781.381 0.0840871
\(443\) −3594.34 −0.385490 −0.192745 0.981249i \(-0.561739\pi\)
−0.192745 + 0.981249i \(0.561739\pi\)
\(444\) 559.389 0.0597915
\(445\) −27887.1 −2.97073
\(446\) 5152.01 0.546984
\(447\) −8472.24 −0.896473
\(448\) 0 0
\(449\) 4998.01 0.525324 0.262662 0.964888i \(-0.415400\pi\)
0.262662 + 0.964888i \(0.415400\pi\)
\(450\) −5703.92 −0.597523
\(451\) −16092.7 −1.68021
\(452\) −7091.24 −0.737929
\(453\) 1497.67 0.155334
\(454\) −777.494 −0.0803736
\(455\) 0 0
\(456\) −2909.77 −0.298821
\(457\) −7277.12 −0.744878 −0.372439 0.928057i \(-0.621478\pi\)
−0.372439 + 0.928057i \(0.621478\pi\)
\(458\) −7052.64 −0.719538
\(459\) −845.919 −0.0860221
\(460\) −1655.85 −0.167836
\(461\) 12878.9 1.30115 0.650575 0.759442i \(-0.274528\pi\)
0.650575 + 0.759442i \(0.274528\pi\)
\(462\) 0 0
\(463\) −6951.02 −0.697713 −0.348857 0.937176i \(-0.613430\pi\)
−0.348857 + 0.937176i \(0.613430\pi\)
\(464\) 369.203 0.0369393
\(465\) 14230.3 1.41917
\(466\) −2014.93 −0.200300
\(467\) 2405.13 0.238321 0.119161 0.992875i \(-0.461980\pi\)
0.119161 + 0.992875i \(0.461980\pi\)
\(468\) −3895.79 −0.384793
\(469\) 0 0
\(470\) −10789.4 −1.05889
\(471\) 674.243 0.0659607
\(472\) 4966.93 0.484368
\(473\) −230.422 −0.0223992
\(474\) 4262.31 0.413027
\(475\) −20333.1 −1.96410
\(476\) 0 0
\(477\) 93.6197 0.00898649
\(478\) 2879.59 0.275543
\(479\) −806.577 −0.0769383 −0.0384692 0.999260i \(-0.512248\pi\)
−0.0384692 + 0.999260i \(0.512248\pi\)
\(480\) −2049.64 −0.194901
\(481\) 2669.82 0.253084
\(482\) −4094.63 −0.386941
\(483\) 0 0
\(484\) 2118.91 0.198996
\(485\) 5655.75 0.529514
\(486\) 6972.44 0.650774
\(487\) 18680.6 1.73819 0.869094 0.494647i \(-0.164703\pi\)
0.869094 + 0.494647i \(0.164703\pi\)
\(488\) −848.129 −0.0786742
\(489\) 12319.2 1.13925
\(490\) 0 0
\(491\) −17605.1 −1.61814 −0.809070 0.587712i \(-0.800029\pi\)
−0.809070 + 0.587712i \(0.800029\pi\)
\(492\) 5310.55 0.486622
\(493\) 132.696 0.0121224
\(494\) −13887.6 −1.26484
\(495\) −11129.9 −1.01061
\(496\) −3554.74 −0.321800
\(497\) 0 0
\(498\) 6599.09 0.593799
\(499\) 10.8592 0.000974201 0 0.000487101 1.00000i \(-0.499845\pi\)
0.000487101 1.00000i \(0.499845\pi\)
\(500\) −5323.40 −0.476139
\(501\) 5269.58 0.469915
\(502\) 12532.3 1.11423
\(503\) 5870.47 0.520380 0.260190 0.965557i \(-0.416215\pi\)
0.260190 + 0.965557i \(0.416215\pi\)
\(504\) 0 0
\(505\) 6564.12 0.578414
\(506\) −1984.26 −0.174331
\(507\) 8607.59 0.753997
\(508\) −1633.60 −0.142675
\(509\) −19054.4 −1.65928 −0.829640 0.558299i \(-0.811454\pi\)
−0.829640 + 0.558299i \(0.811454\pi\)
\(510\) −736.663 −0.0639608
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 15034.6 1.29395
\(514\) 10025.6 0.860328
\(515\) −20444.7 −1.74932
\(516\) 76.0389 0.00648726
\(517\) −12929.3 −1.09986
\(518\) 0 0
\(519\) 10556.3 0.892818
\(520\) −9782.38 −0.824973
\(521\) 13849.9 1.16463 0.582317 0.812962i \(-0.302146\pi\)
0.582317 + 0.812962i \(0.302146\pi\)
\(522\) −661.593 −0.0554734
\(523\) 22916.8 1.91602 0.958012 0.286726i \(-0.0925671\pi\)
0.958012 + 0.286726i \(0.0925671\pi\)
\(524\) 11600.0 0.967076
\(525\) 0 0
\(526\) −10686.9 −0.885879
\(527\) −1277.62 −0.105605
\(528\) −2456.15 −0.202443
\(529\) 529.000 0.0434783
\(530\) 235.080 0.0192665
\(531\) −8900.48 −0.727397
\(532\) 0 0
\(533\) 25345.9 2.05976
\(534\) 11027.9 0.893674
\(535\) −2010.39 −0.162461
\(536\) −3061.17 −0.246684
\(537\) −16988.1 −1.36516
\(538\) 6707.00 0.537471
\(539\) 0 0
\(540\) 10590.4 0.843957
\(541\) −10238.4 −0.813648 −0.406824 0.913507i \(-0.633364\pi\)
−0.406824 + 0.913507i \(0.633364\pi\)
\(542\) −11796.3 −0.934860
\(543\) −11690.9 −0.923951
\(544\) 184.019 0.0145032
\(545\) −22364.7 −1.75779
\(546\) 0 0
\(547\) −1093.08 −0.0854420 −0.0427210 0.999087i \(-0.513603\pi\)
−0.0427210 + 0.999087i \(0.513603\pi\)
\(548\) 2117.11 0.165034
\(549\) 1519.80 0.118149
\(550\) −17163.2 −1.33062
\(551\) −2358.42 −0.182345
\(552\) 654.803 0.0504896
\(553\) 0 0
\(554\) 751.148 0.0576051
\(555\) −2517.03 −0.192508
\(556\) 5559.56 0.424061
\(557\) 21834.7 1.66098 0.830490 0.557033i \(-0.188060\pi\)
0.830490 + 0.557033i \(0.188060\pi\)
\(558\) 6369.91 0.483262
\(559\) 362.914 0.0274591
\(560\) 0 0
\(561\) −882.768 −0.0664358
\(562\) 16276.9 1.22171
\(563\) 23343.3 1.74743 0.873713 0.486442i \(-0.161705\pi\)
0.873713 + 0.486442i \(0.161705\pi\)
\(564\) 4266.63 0.318542
\(565\) 31907.7 2.37587
\(566\) 11355.9 0.843330
\(567\) 0 0
\(568\) −6126.69 −0.452588
\(569\) 7918.28 0.583394 0.291697 0.956511i \(-0.405780\pi\)
0.291697 + 0.956511i \(0.405780\pi\)
\(570\) 13092.8 0.962100
\(571\) −5129.71 −0.375957 −0.187979 0.982173i \(-0.560194\pi\)
−0.187979 + 0.982173i \(0.560194\pi\)
\(572\) −11722.5 −0.856896
\(573\) 2936.95 0.214124
\(574\) 0 0
\(575\) 4575.68 0.331859
\(576\) −917.477 −0.0663684
\(577\) 12030.7 0.868018 0.434009 0.900909i \(-0.357099\pi\)
0.434009 + 0.900909i \(0.357099\pi\)
\(578\) −9759.86 −0.702347
\(579\) −448.990 −0.0322269
\(580\) −1661.27 −0.118932
\(581\) 0 0
\(582\) −2236.55 −0.159292
\(583\) 281.704 0.0200120
\(584\) 552.347 0.0391375
\(585\) 17529.5 1.23890
\(586\) −12718.5 −0.896581
\(587\) 6880.38 0.483788 0.241894 0.970303i \(-0.422231\pi\)
0.241894 + 0.970303i \(0.422231\pi\)
\(588\) 0 0
\(589\) 22707.2 1.58851
\(590\) −22349.2 −1.55950
\(591\) 10975.7 0.763926
\(592\) 628.755 0.0436514
\(593\) −9730.88 −0.673860 −0.336930 0.941530i \(-0.609389\pi\)
−0.336930 + 0.941530i \(0.609389\pi\)
\(594\) 12690.8 0.876614
\(595\) 0 0
\(596\) −9522.82 −0.654480
\(597\) 18218.0 1.24893
\(598\) 3125.20 0.213711
\(599\) 21409.4 1.46037 0.730187 0.683247i \(-0.239433\pi\)
0.730187 + 0.683247i \(0.239433\pi\)
\(600\) 5663.83 0.385375
\(601\) −24045.1 −1.63198 −0.815991 0.578064i \(-0.803808\pi\)
−0.815991 + 0.578064i \(0.803808\pi\)
\(602\) 0 0
\(603\) 5485.46 0.370456
\(604\) 1683.38 0.113404
\(605\) −9534.26 −0.640699
\(606\) −2595.76 −0.174003
\(607\) −14233.3 −0.951751 −0.475875 0.879513i \(-0.657869\pi\)
−0.475875 + 0.879513i \(0.657869\pi\)
\(608\) −3270.59 −0.218158
\(609\) 0 0
\(610\) 3816.24 0.253304
\(611\) 20363.5 1.34831
\(612\) −329.752 −0.0217801
\(613\) 23636.2 1.55736 0.778678 0.627424i \(-0.215891\pi\)
0.778678 + 0.627424i \(0.215891\pi\)
\(614\) −10914.4 −0.717375
\(615\) −23895.3 −1.56675
\(616\) 0 0
\(617\) 11758.3 0.767212 0.383606 0.923497i \(-0.374682\pi\)
0.383606 + 0.923497i \(0.374682\pi\)
\(618\) 8084.80 0.526243
\(619\) −12821.0 −0.832501 −0.416251 0.909250i \(-0.636656\pi\)
−0.416251 + 0.909250i \(0.636656\pi\)
\(620\) 15994.9 1.03608
\(621\) −3383.33 −0.218629
\(622\) −21123.3 −1.36168
\(623\) 0 0
\(624\) 3868.42 0.248174
\(625\) −914.661 −0.0585383
\(626\) −19888.1 −1.26979
\(627\) 15689.5 0.999329
\(628\) 757.851 0.0481553
\(629\) 225.982 0.0143251
\(630\) 0 0
\(631\) −12742.3 −0.803904 −0.401952 0.915661i \(-0.631668\pi\)
−0.401952 + 0.915661i \(0.631668\pi\)
\(632\) 4790.85 0.301535
\(633\) 6778.55 0.425629
\(634\) 20617.3 1.29151
\(635\) 7350.53 0.459365
\(636\) −92.9619 −0.00579588
\(637\) 0 0
\(638\) −1990.75 −0.123534
\(639\) 10978.7 0.679672
\(640\) −2303.80 −0.142290
\(641\) 3519.47 0.216865 0.108433 0.994104i \(-0.465417\pi\)
0.108433 + 0.994104i \(0.465417\pi\)
\(642\) 795.004 0.0488728
\(643\) 3771.11 0.231288 0.115644 0.993291i \(-0.463107\pi\)
0.115644 + 0.993291i \(0.463107\pi\)
\(644\) 0 0
\(645\) −342.145 −0.0208867
\(646\) −1175.49 −0.0715928
\(647\) 9294.83 0.564787 0.282394 0.959299i \(-0.408872\pi\)
0.282394 + 0.959299i \(0.408872\pi\)
\(648\) −1091.44 −0.0661666
\(649\) −26781.8 −1.61984
\(650\) 27032.0 1.63120
\(651\) 0 0
\(652\) 13846.8 0.831720
\(653\) 24527.2 1.46987 0.734934 0.678138i \(-0.237213\pi\)
0.734934 + 0.678138i \(0.237213\pi\)
\(654\) 8844.05 0.528792
\(655\) −52195.3 −3.11365
\(656\) 5969.07 0.355264
\(657\) −989.777 −0.0587745
\(658\) 0 0
\(659\) −26513.2 −1.56724 −0.783618 0.621244i \(-0.786628\pi\)
−0.783618 + 0.621244i \(0.786628\pi\)
\(660\) 11051.7 0.651797
\(661\) −24583.9 −1.44660 −0.723301 0.690532i \(-0.757376\pi\)
−0.723301 + 0.690532i \(0.757376\pi\)
\(662\) 5141.24 0.301843
\(663\) 1390.35 0.0814433
\(664\) 7417.39 0.433510
\(665\) 0 0
\(666\) −1126.70 −0.0655534
\(667\) 530.730 0.0308095
\(668\) 5923.02 0.343067
\(669\) 9167.26 0.529786
\(670\) 13774.0 0.794236
\(671\) 4573.13 0.263105
\(672\) 0 0
\(673\) 6229.66 0.356814 0.178407 0.983957i \(-0.442906\pi\)
0.178407 + 0.983957i \(0.442906\pi\)
\(674\) 148.372 0.00847933
\(675\) −29264.7 −1.66874
\(676\) 9674.96 0.550464
\(677\) 19209.1 1.09050 0.545249 0.838274i \(-0.316435\pi\)
0.545249 + 0.838274i \(0.316435\pi\)
\(678\) −12617.8 −0.714727
\(679\) 0 0
\(680\) −828.011 −0.0466953
\(681\) −1383.44 −0.0778465
\(682\) 19167.2 1.07618
\(683\) 22247.1 1.24636 0.623178 0.782080i \(-0.285841\pi\)
0.623178 + 0.782080i \(0.285841\pi\)
\(684\) 5860.72 0.327617
\(685\) −9526.17 −0.531352
\(686\) 0 0
\(687\) −12549.2 −0.696914
\(688\) 85.4679 0.00473609
\(689\) −443.683 −0.0245326
\(690\) −2946.35 −0.162559
\(691\) −28905.7 −1.59135 −0.795675 0.605724i \(-0.792884\pi\)
−0.795675 + 0.605724i \(0.792884\pi\)
\(692\) 11865.4 0.651811
\(693\) 0 0
\(694\) 12576.4 0.687885
\(695\) −25015.8 −1.36533
\(696\) 656.944 0.0357779
\(697\) 2145.35 0.116587
\(698\) 3054.22 0.165622
\(699\) −3585.27 −0.194002
\(700\) 0 0
\(701\) 6015.44 0.324108 0.162054 0.986782i \(-0.448188\pi\)
0.162054 + 0.986782i \(0.448188\pi\)
\(702\) −19987.9 −1.07464
\(703\) −4016.40 −0.215479
\(704\) −2760.71 −0.147796
\(705\) −19198.1 −1.02559
\(706\) −2608.50 −0.139054
\(707\) 0 0
\(708\) 8837.94 0.469138
\(709\) −12028.4 −0.637147 −0.318574 0.947898i \(-0.603204\pi\)
−0.318574 + 0.947898i \(0.603204\pi\)
\(710\) 27567.6 1.45718
\(711\) −8584.96 −0.452828
\(712\) 12395.3 0.652437
\(713\) −5109.94 −0.268400
\(714\) 0 0
\(715\) 52746.8 2.75891
\(716\) −19094.7 −0.996650
\(717\) 5123.82 0.266879
\(718\) 5241.90 0.272459
\(719\) −8712.38 −0.451901 −0.225950 0.974139i \(-0.572549\pi\)
−0.225950 + 0.974139i \(0.572549\pi\)
\(720\) 4128.28 0.213683
\(721\) 0 0
\(722\) 7174.09 0.369795
\(723\) −7285.81 −0.374775
\(724\) −13140.6 −0.674541
\(725\) 4590.64 0.235162
\(726\) 3770.30 0.192739
\(727\) 6603.87 0.336897 0.168448 0.985710i \(-0.446124\pi\)
0.168448 + 0.985710i \(0.446124\pi\)
\(728\) 0 0
\(729\) 16090.1 0.817460
\(730\) −2485.34 −0.126009
\(731\) 30.7182 0.00155424
\(732\) −1509.12 −0.0762005
\(733\) 27608.7 1.39120 0.695601 0.718428i \(-0.255138\pi\)
0.695601 + 0.718428i \(0.255138\pi\)
\(734\) −2832.87 −0.142456
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 16505.9 0.824969
\(738\) −10696.3 −0.533516
\(739\) −19825.8 −0.986880 −0.493440 0.869780i \(-0.664261\pi\)
−0.493440 + 0.869780i \(0.664261\pi\)
\(740\) −2829.15 −0.140542
\(741\) −24710.9 −1.22507
\(742\) 0 0
\(743\) 36526.2 1.80352 0.901760 0.432237i \(-0.142276\pi\)
0.901760 + 0.432237i \(0.142276\pi\)
\(744\) −6325.15 −0.311682
\(745\) 42848.9 2.10720
\(746\) −13548.8 −0.664955
\(747\) −13291.6 −0.651022
\(748\) −992.233 −0.0485022
\(749\) 0 0
\(750\) −9472.21 −0.461169
\(751\) −20082.8 −0.975809 −0.487905 0.872897i \(-0.662239\pi\)
−0.487905 + 0.872897i \(0.662239\pi\)
\(752\) 4795.70 0.232555
\(753\) 22299.5 1.07920
\(754\) 3135.42 0.151440
\(755\) −7574.54 −0.365120
\(756\) 0 0
\(757\) −33844.9 −1.62498 −0.812492 0.582973i \(-0.801889\pi\)
−0.812492 + 0.582973i \(0.801889\pi\)
\(758\) 8394.92 0.402266
\(759\) −3530.71 −0.168849
\(760\) 14716.3 0.702392
\(761\) 782.869 0.0372917 0.0186458 0.999826i \(-0.494065\pi\)
0.0186458 + 0.999826i \(0.494065\pi\)
\(762\) −2906.75 −0.138189
\(763\) 0 0
\(764\) 3301.14 0.156324
\(765\) 1483.75 0.0701244
\(766\) 2910.69 0.137295
\(767\) 42181.2 1.98576
\(768\) 911.030 0.0428046
\(769\) 34731.4 1.62867 0.814334 0.580396i \(-0.197102\pi\)
0.814334 + 0.580396i \(0.197102\pi\)
\(770\) 0 0
\(771\) 17839.0 0.833278
\(772\) −504.666 −0.0235276
\(773\) −28891.2 −1.34430 −0.672151 0.740414i \(-0.734629\pi\)
−0.672151 + 0.740414i \(0.734629\pi\)
\(774\) −153.154 −0.00711241
\(775\) −44199.4 −2.04863
\(776\) −2513.89 −0.116293
\(777\) 0 0
\(778\) −20661.3 −0.952113
\(779\) −38129.6 −1.75370
\(780\) −17406.3 −0.799034
\(781\) 33035.2 1.51356
\(782\) 264.527 0.0120965
\(783\) −3394.39 −0.154924
\(784\) 0 0
\(785\) −3410.03 −0.155043
\(786\) 20640.5 0.936669
\(787\) 6235.78 0.282442 0.141221 0.989978i \(-0.454897\pi\)
0.141221 + 0.989978i \(0.454897\pi\)
\(788\) 12336.7 0.557712
\(789\) −19015.9 −0.858026
\(790\) −21556.9 −0.970837
\(791\) 0 0
\(792\) 4947.05 0.221952
\(793\) −7202.66 −0.322539
\(794\) −7068.14 −0.315918
\(795\) 418.291 0.0186607
\(796\) 20477.1 0.911798
\(797\) 33498.5 1.48881 0.744404 0.667730i \(-0.232734\pi\)
0.744404 + 0.667730i \(0.232734\pi\)
\(798\) 0 0
\(799\) 1723.63 0.0763176
\(800\) 6366.16 0.281347
\(801\) −22211.8 −0.979795
\(802\) −18281.6 −0.804918
\(803\) −2978.27 −0.130885
\(804\) −5446.91 −0.238927
\(805\) 0 0
\(806\) −30188.3 −1.31928
\(807\) 11934.1 0.520572
\(808\) −2917.64 −0.127033
\(809\) 22047.6 0.958161 0.479080 0.877771i \(-0.340970\pi\)
0.479080 + 0.877771i \(0.340970\pi\)
\(810\) 4911.06 0.213034
\(811\) 45996.9 1.99158 0.995790 0.0916673i \(-0.0292196\pi\)
0.995790 + 0.0916673i \(0.0292196\pi\)
\(812\) 0 0
\(813\) −20989.8 −0.905466
\(814\) −3390.26 −0.145981
\(815\) −62304.9 −2.67785
\(816\) 327.435 0.0140472
\(817\) −545.957 −0.0233790
\(818\) −14342.1 −0.613029
\(819\) 0 0
\(820\) −26858.4 −1.14383
\(821\) 21679.0 0.921561 0.460780 0.887514i \(-0.347570\pi\)
0.460780 + 0.887514i \(0.347570\pi\)
\(822\) 3767.10 0.159845
\(823\) 18192.0 0.770514 0.385257 0.922809i \(-0.374113\pi\)
0.385257 + 0.922809i \(0.374113\pi\)
\(824\) 9087.33 0.384190
\(825\) −30539.5 −1.28879
\(826\) 0 0
\(827\) 12583.1 0.529088 0.264544 0.964374i \(-0.414778\pi\)
0.264544 + 0.964374i \(0.414778\pi\)
\(828\) −1318.87 −0.0553551
\(829\) −1082.03 −0.0453321 −0.0226660 0.999743i \(-0.507215\pi\)
−0.0226660 + 0.999743i \(0.507215\pi\)
\(830\) −33375.3 −1.39575
\(831\) 1336.56 0.0557939
\(832\) 4348.11 0.181182
\(833\) 0 0
\(834\) 9892.43 0.410727
\(835\) −26651.2 −1.10456
\(836\) 17635.1 0.729572
\(837\) 32681.7 1.34964
\(838\) −13991.0 −0.576742
\(839\) 24091.4 0.991331 0.495666 0.868513i \(-0.334924\pi\)
0.495666 + 0.868513i \(0.334924\pi\)
\(840\) 0 0
\(841\) −23856.5 −0.978168
\(842\) 13201.9 0.540343
\(843\) 28962.4 1.18330
\(844\) 7619.11 0.310735
\(845\) −43533.4 −1.77230
\(846\) −8593.65 −0.349238
\(847\) 0 0
\(848\) −104.489 −0.00423134
\(849\) 20206.2 0.816814
\(850\) 2288.07 0.0923298
\(851\) 903.835 0.0364078
\(852\) −10901.6 −0.438358
\(853\) −6595.07 −0.264726 −0.132363 0.991201i \(-0.542256\pi\)
−0.132363 + 0.991201i \(0.542256\pi\)
\(854\) 0 0
\(855\) −26370.9 −1.05481
\(856\) 893.587 0.0356801
\(857\) −27321.0 −1.08900 −0.544498 0.838762i \(-0.683280\pi\)
−0.544498 + 0.838762i \(0.683280\pi\)
\(858\) −20858.6 −0.829954
\(859\) 15291.6 0.607384 0.303692 0.952770i \(-0.401781\pi\)
0.303692 + 0.952770i \(0.401781\pi\)
\(860\) −384.571 −0.0152486
\(861\) 0 0
\(862\) −13467.0 −0.532121
\(863\) −31878.5 −1.25742 −0.628712 0.777638i \(-0.716418\pi\)
−0.628712 + 0.777638i \(0.716418\pi\)
\(864\) −4707.24 −0.185351
\(865\) −53389.4 −2.09861
\(866\) −32869.3 −1.28978
\(867\) −17366.3 −0.680264
\(868\) 0 0
\(869\) −25832.4 −1.00840
\(870\) −2955.99 −0.115192
\(871\) −25996.7 −1.01133
\(872\) 9940.74 0.386050
\(873\) 4504.76 0.174642
\(874\) −4701.47 −0.181956
\(875\) 0 0
\(876\) 982.822 0.0379069
\(877\) −237.037 −0.00912675 −0.00456338 0.999990i \(-0.501453\pi\)
−0.00456338 + 0.999990i \(0.501453\pi\)
\(878\) 31497.6 1.21070
\(879\) −22630.7 −0.868391
\(880\) 12422.1 0.475851
\(881\) −6739.60 −0.257733 −0.128867 0.991662i \(-0.541134\pi\)
−0.128867 + 0.991662i \(0.541134\pi\)
\(882\) 0 0
\(883\) −19750.6 −0.752732 −0.376366 0.926471i \(-0.622826\pi\)
−0.376366 + 0.926471i \(0.622826\pi\)
\(884\) 1562.76 0.0594586
\(885\) −39767.2 −1.51046
\(886\) −7188.67 −0.272582
\(887\) 18982.8 0.718581 0.359290 0.933226i \(-0.383019\pi\)
0.359290 + 0.933226i \(0.383019\pi\)
\(888\) 1118.78 0.0422790
\(889\) 0 0
\(890\) −55774.1 −2.10062
\(891\) 5885.09 0.221277
\(892\) 10304.0 0.386776
\(893\) −30634.3 −1.14797
\(894\) −16944.5 −0.633902
\(895\) 85918.4 3.20887
\(896\) 0 0
\(897\) 5560.85 0.206991
\(898\) 9996.01 0.371460
\(899\) −5126.65 −0.190193
\(900\) −11407.8 −0.422512
\(901\) −37.5547 −0.00138860
\(902\) −32185.3 −1.18809
\(903\) 0 0
\(904\) −14182.5 −0.521794
\(905\) 59127.6 2.17179
\(906\) 2995.33 0.109838
\(907\) 40744.2 1.49161 0.745803 0.666166i \(-0.232066\pi\)
0.745803 + 0.666166i \(0.232066\pi\)
\(908\) −1554.99 −0.0568327
\(909\) 5228.26 0.190771
\(910\) 0 0
\(911\) 6430.56 0.233868 0.116934 0.993140i \(-0.462693\pi\)
0.116934 + 0.993140i \(0.462693\pi\)
\(912\) −5819.54 −0.211298
\(913\) −39994.7 −1.44976
\(914\) −14554.2 −0.526708
\(915\) 6790.45 0.245339
\(916\) −14105.3 −0.508790
\(917\) 0 0
\(918\) −1691.84 −0.0608268
\(919\) −33090.0 −1.18774 −0.593872 0.804559i \(-0.702402\pi\)
−0.593872 + 0.804559i \(0.702402\pi\)
\(920\) −3311.71 −0.118678
\(921\) −19420.5 −0.694819
\(922\) 25757.8 0.920053
\(923\) −52030.3 −1.85547
\(924\) 0 0
\(925\) 7817.88 0.277892
\(926\) −13902.0 −0.493358
\(927\) −16284.0 −0.576955
\(928\) 738.407 0.0261200
\(929\) 31170.1 1.10082 0.550408 0.834896i \(-0.314472\pi\)
0.550408 + 0.834896i \(0.314472\pi\)
\(930\) 28460.7 1.00351
\(931\) 0 0
\(932\) −4029.86 −0.141633
\(933\) −37585.8 −1.31887
\(934\) 4810.25 0.168518
\(935\) 4464.65 0.156160
\(936\) −7791.59 −0.272090
\(937\) 9257.07 0.322749 0.161374 0.986893i \(-0.448407\pi\)
0.161374 + 0.986893i \(0.448407\pi\)
\(938\) 0 0
\(939\) −35388.0 −1.22987
\(940\) −21578.8 −0.748746
\(941\) −54839.7 −1.89981 −0.949905 0.312538i \(-0.898821\pi\)
−0.949905 + 0.312538i \(0.898821\pi\)
\(942\) 1348.49 0.0466413
\(943\) 8580.54 0.296310
\(944\) 9933.86 0.342500
\(945\) 0 0
\(946\) −460.844 −0.0158386
\(947\) 49151.7 1.68661 0.843303 0.537438i \(-0.180608\pi\)
0.843303 + 0.537438i \(0.180608\pi\)
\(948\) 8524.63 0.292054
\(949\) 4690.75 0.160451
\(950\) −40666.2 −1.38883
\(951\) 36685.6 1.25091
\(952\) 0 0
\(953\) −39430.5 −1.34027 −0.670136 0.742238i \(-0.733764\pi\)
−0.670136 + 0.742238i \(0.733764\pi\)
\(954\) 187.239 0.00635440
\(955\) −14853.8 −0.503308
\(956\) 5759.18 0.194838
\(957\) −3542.25 −0.119650
\(958\) −1613.15 −0.0544036
\(959\) 0 0
\(960\) −4099.27 −0.137816
\(961\) 19569.2 0.656882
\(962\) 5339.64 0.178957
\(963\) −1601.26 −0.0535825
\(964\) −8189.27 −0.273608
\(965\) 2270.80 0.0757508
\(966\) 0 0
\(967\) −4299.88 −0.142993 −0.0714967 0.997441i \(-0.522778\pi\)
−0.0714967 + 0.997441i \(0.522778\pi\)
\(968\) 4237.82 0.140712
\(969\) −2091.61 −0.0693418
\(970\) 11311.5 0.374423
\(971\) −9069.64 −0.299751 −0.149876 0.988705i \(-0.547887\pi\)
−0.149876 + 0.988705i \(0.547887\pi\)
\(972\) 13944.9 0.460167
\(973\) 0 0
\(974\) 37361.1 1.22908
\(975\) 48099.6 1.57992
\(976\) −1696.26 −0.0556311
\(977\) −44846.3 −1.46854 −0.734268 0.678860i \(-0.762474\pi\)
−0.734268 + 0.678860i \(0.762474\pi\)
\(978\) 24638.3 0.805569
\(979\) −66835.9 −2.18191
\(980\) 0 0
\(981\) −17813.3 −0.579749
\(982\) −35210.2 −1.14420
\(983\) 3678.82 0.119365 0.0596827 0.998217i \(-0.480991\pi\)
0.0596827 + 0.998217i \(0.480991\pi\)
\(984\) 10621.1 0.344094
\(985\) −55510.3 −1.79564
\(986\) 265.392 0.00857181
\(987\) 0 0
\(988\) −27775.2 −0.894378
\(989\) 122.860 0.00395017
\(990\) −22259.8 −0.714608
\(991\) 5141.15 0.164797 0.0823986 0.996599i \(-0.473742\pi\)
0.0823986 + 0.996599i \(0.473742\pi\)
\(992\) −7109.49 −0.227547
\(993\) 9148.10 0.292353
\(994\) 0 0
\(995\) −92138.8 −2.93567
\(996\) 13198.2 0.419880
\(997\) −38278.3 −1.21594 −0.607968 0.793962i \(-0.708015\pi\)
−0.607968 + 0.793962i \(0.708015\pi\)
\(998\) 21.7185 0.000688864 0
\(999\) −5780.67 −0.183075
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.6 11
7.2 even 3 322.4.e.a.277.6 yes 22
7.4 even 3 322.4.e.a.93.6 22
7.6 odd 2 2254.4.a.v.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.6 22 7.4 even 3
322.4.e.a.277.6 yes 22 7.2 even 3
2254.4.a.v.1.6 11 7.6 odd 2
2254.4.a.y.1.6 11 1.1 even 1 trivial