Properties

Label 2254.4.a.y.1.4
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.85313\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -1.85313 q^{3} +4.00000 q^{4} +2.81000 q^{5} -3.70626 q^{6} +8.00000 q^{8} -23.5659 q^{9} +5.62000 q^{10} +18.6231 q^{11} -7.41251 q^{12} +39.9118 q^{13} -5.20729 q^{15} +16.0000 q^{16} -34.3817 q^{17} -47.1318 q^{18} -60.1884 q^{19} +11.2400 q^{20} +37.2462 q^{22} +23.0000 q^{23} -14.8250 q^{24} -117.104 q^{25} +79.8236 q^{26} +93.7051 q^{27} +145.133 q^{29} -10.4146 q^{30} +94.1204 q^{31} +32.0000 q^{32} -34.5110 q^{33} -68.7634 q^{34} -94.2637 q^{36} +43.0744 q^{37} -120.377 q^{38} -73.9617 q^{39} +22.4800 q^{40} +206.230 q^{41} +153.983 q^{43} +74.4925 q^{44} -66.2202 q^{45} +46.0000 q^{46} -274.386 q^{47} -29.6500 q^{48} -234.208 q^{50} +63.7137 q^{51} +159.647 q^{52} -609.365 q^{53} +187.410 q^{54} +52.3309 q^{55} +111.537 q^{57} +290.267 q^{58} +495.942 q^{59} -20.8291 q^{60} +818.182 q^{61} +188.241 q^{62} +64.0000 q^{64} +112.152 q^{65} -69.0221 q^{66} -616.576 q^{67} -137.527 q^{68} -42.6219 q^{69} +975.636 q^{71} -188.527 q^{72} -149.117 q^{73} +86.1487 q^{74} +217.009 q^{75} -240.754 q^{76} -147.923 q^{78} -272.456 q^{79} +44.9600 q^{80} +462.632 q^{81} +412.461 q^{82} -1.18964 q^{83} -96.6125 q^{85} +307.967 q^{86} -268.951 q^{87} +148.985 q^{88} +150.473 q^{89} -132.440 q^{90} +92.0000 q^{92} -174.417 q^{93} -548.772 q^{94} -169.129 q^{95} -59.3001 q^{96} +1666.17 q^{97} -438.871 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −1.85313 −0.356635 −0.178317 0.983973i \(-0.557065\pi\)
−0.178317 + 0.983973i \(0.557065\pi\)
\(4\) 4.00000 0.500000
\(5\) 2.81000 0.251334 0.125667 0.992072i \(-0.459893\pi\)
0.125667 + 0.992072i \(0.459893\pi\)
\(6\) −3.70626 −0.252179
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −23.5659 −0.872812
\(10\) 5.62000 0.177720
\(11\) 18.6231 0.510462 0.255231 0.966880i \(-0.417848\pi\)
0.255231 + 0.966880i \(0.417848\pi\)
\(12\) −7.41251 −0.178317
\(13\) 39.9118 0.851504 0.425752 0.904840i \(-0.360010\pi\)
0.425752 + 0.904840i \(0.360010\pi\)
\(14\) 0 0
\(15\) −5.20729 −0.0896344
\(16\) 16.0000 0.250000
\(17\) −34.3817 −0.490517 −0.245258 0.969458i \(-0.578873\pi\)
−0.245258 + 0.969458i \(0.578873\pi\)
\(18\) −47.1318 −0.617171
\(19\) −60.1884 −0.726746 −0.363373 0.931644i \(-0.618375\pi\)
−0.363373 + 0.931644i \(0.618375\pi\)
\(20\) 11.2400 0.125667
\(21\) 0 0
\(22\) 37.2462 0.360951
\(23\) 23.0000 0.208514
\(24\) −14.8250 −0.126089
\(25\) −117.104 −0.936831
\(26\) 79.8236 0.602104
\(27\) 93.7051 0.667910
\(28\) 0 0
\(29\) 145.133 0.929331 0.464666 0.885486i \(-0.346175\pi\)
0.464666 + 0.885486i \(0.346175\pi\)
\(30\) −10.4146 −0.0633811
\(31\) 94.1204 0.545307 0.272654 0.962112i \(-0.412099\pi\)
0.272654 + 0.962112i \(0.412099\pi\)
\(32\) 32.0000 0.176777
\(33\) −34.5110 −0.182048
\(34\) −68.7634 −0.346848
\(35\) 0 0
\(36\) −94.2637 −0.436406
\(37\) 43.0744 0.191389 0.0956944 0.995411i \(-0.469493\pi\)
0.0956944 + 0.995411i \(0.469493\pi\)
\(38\) −120.377 −0.513887
\(39\) −73.9617 −0.303676
\(40\) 22.4800 0.0888600
\(41\) 206.230 0.785555 0.392777 0.919634i \(-0.371514\pi\)
0.392777 + 0.919634i \(0.371514\pi\)
\(42\) 0 0
\(43\) 153.983 0.546098 0.273049 0.962000i \(-0.411968\pi\)
0.273049 + 0.962000i \(0.411968\pi\)
\(44\) 74.4925 0.255231
\(45\) −66.2202 −0.219367
\(46\) 46.0000 0.147442
\(47\) −274.386 −0.851560 −0.425780 0.904827i \(-0.640000\pi\)
−0.425780 + 0.904827i \(0.640000\pi\)
\(48\) −29.6500 −0.0891587
\(49\) 0 0
\(50\) −234.208 −0.662440
\(51\) 63.7137 0.174935
\(52\) 159.647 0.425752
\(53\) −609.365 −1.57930 −0.789649 0.613559i \(-0.789737\pi\)
−0.789649 + 0.613559i \(0.789737\pi\)
\(54\) 187.410 0.472283
\(55\) 52.3309 0.128296
\(56\) 0 0
\(57\) 111.537 0.259183
\(58\) 290.267 0.657136
\(59\) 495.942 1.09434 0.547171 0.837021i \(-0.315705\pi\)
0.547171 + 0.837021i \(0.315705\pi\)
\(60\) −20.8291 −0.0448172
\(61\) 818.182 1.71733 0.858667 0.512533i \(-0.171293\pi\)
0.858667 + 0.512533i \(0.171293\pi\)
\(62\) 188.241 0.385591
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 112.152 0.214012
\(66\) −69.0221 −0.128728
\(67\) −616.576 −1.12428 −0.562140 0.827042i \(-0.690022\pi\)
−0.562140 + 0.827042i \(0.690022\pi\)
\(68\) −137.527 −0.245258
\(69\) −42.6219 −0.0743635
\(70\) 0 0
\(71\) 975.636 1.63080 0.815399 0.578900i \(-0.196518\pi\)
0.815399 + 0.578900i \(0.196518\pi\)
\(72\) −188.527 −0.308586
\(73\) −149.117 −0.239079 −0.119540 0.992829i \(-0.538142\pi\)
−0.119540 + 0.992829i \(0.538142\pi\)
\(74\) 86.1487 0.135332
\(75\) 217.009 0.334106
\(76\) −240.754 −0.363373
\(77\) 0 0
\(78\) −147.923 −0.214731
\(79\) −272.456 −0.388022 −0.194011 0.980999i \(-0.562150\pi\)
−0.194011 + 0.980999i \(0.562150\pi\)
\(80\) 44.9600 0.0628335
\(81\) 462.632 0.634612
\(82\) 412.461 0.555471
\(83\) −1.18964 −0.00157326 −0.000786629 1.00000i \(-0.500250\pi\)
−0.000786629 1.00000i \(0.500250\pi\)
\(84\) 0 0
\(85\) −96.6125 −0.123283
\(86\) 307.967 0.386150
\(87\) −268.951 −0.331432
\(88\) 148.985 0.180476
\(89\) 150.473 0.179214 0.0896072 0.995977i \(-0.471439\pi\)
0.0896072 + 0.995977i \(0.471439\pi\)
\(90\) −132.440 −0.155116
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −174.417 −0.194475
\(94\) −548.772 −0.602144
\(95\) −169.129 −0.182656
\(96\) −59.3001 −0.0630447
\(97\) 1666.17 1.74406 0.872032 0.489448i \(-0.162802\pi\)
0.872032 + 0.489448i \(0.162802\pi\)
\(98\) 0 0
\(99\) −438.871 −0.445537
\(100\) −468.416 −0.468416
\(101\) 1499.65 1.47743 0.738716 0.674017i \(-0.235433\pi\)
0.738716 + 0.674017i \(0.235433\pi\)
\(102\) 127.427 0.123698
\(103\) −305.699 −0.292440 −0.146220 0.989252i \(-0.546711\pi\)
−0.146220 + 0.989252i \(0.546711\pi\)
\(104\) 319.295 0.301052
\(105\) 0 0
\(106\) −1218.73 −1.11673
\(107\) −1733.16 −1.56589 −0.782946 0.622089i \(-0.786284\pi\)
−0.782946 + 0.622089i \(0.786284\pi\)
\(108\) 374.820 0.333955
\(109\) 61.3913 0.0539470 0.0269735 0.999636i \(-0.491413\pi\)
0.0269735 + 0.999636i \(0.491413\pi\)
\(110\) 104.662 0.0907193
\(111\) −79.8223 −0.0682559
\(112\) 0 0
\(113\) −934.132 −0.777661 −0.388831 0.921309i \(-0.627121\pi\)
−0.388831 + 0.921309i \(0.627121\pi\)
\(114\) 223.074 0.183270
\(115\) 64.6300 0.0524067
\(116\) 580.534 0.464666
\(117\) −940.559 −0.743202
\(118\) 991.885 0.773817
\(119\) 0 0
\(120\) −41.6583 −0.0316905
\(121\) −984.179 −0.739428
\(122\) 1636.36 1.21434
\(123\) −382.171 −0.280156
\(124\) 376.482 0.272654
\(125\) −680.312 −0.486791
\(126\) 0 0
\(127\) 410.664 0.286933 0.143467 0.989655i \(-0.454175\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(128\) 128.000 0.0883883
\(129\) −285.351 −0.194758
\(130\) 224.304 0.151329
\(131\) 1089.02 0.726323 0.363161 0.931726i \(-0.381697\pi\)
0.363161 + 0.931726i \(0.381697\pi\)
\(132\) −138.044 −0.0910242
\(133\) 0 0
\(134\) −1233.15 −0.794985
\(135\) 263.311 0.167868
\(136\) −275.053 −0.173424
\(137\) 1995.05 1.24415 0.622077 0.782956i \(-0.286289\pi\)
0.622077 + 0.782956i \(0.286289\pi\)
\(138\) −85.2439 −0.0525829
\(139\) 2746.68 1.67604 0.838022 0.545636i \(-0.183712\pi\)
0.838022 + 0.545636i \(0.183712\pi\)
\(140\) 0 0
\(141\) 508.472 0.303696
\(142\) 1951.27 1.15315
\(143\) 743.283 0.434660
\(144\) −377.055 −0.218203
\(145\) 407.825 0.233572
\(146\) −298.234 −0.169055
\(147\) 0 0
\(148\) 172.297 0.0956944
\(149\) −644.638 −0.354435 −0.177217 0.984172i \(-0.556710\pi\)
−0.177217 + 0.984172i \(0.556710\pi\)
\(150\) 434.017 0.236249
\(151\) 2491.93 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(152\) −481.507 −0.256943
\(153\) 810.236 0.428129
\(154\) 0 0
\(155\) 264.478 0.137054
\(156\) −295.847 −0.151838
\(157\) 1652.38 0.839963 0.419981 0.907533i \(-0.362037\pi\)
0.419981 + 0.907533i \(0.362037\pi\)
\(158\) −544.912 −0.274373
\(159\) 1129.23 0.563232
\(160\) 89.9200 0.0444300
\(161\) 0 0
\(162\) 925.264 0.448738
\(163\) −819.167 −0.393632 −0.196816 0.980440i \(-0.563060\pi\)
−0.196816 + 0.980440i \(0.563060\pi\)
\(164\) 824.921 0.392777
\(165\) −96.9759 −0.0457550
\(166\) −2.37929 −0.00111246
\(167\) −2687.31 −1.24521 −0.622606 0.782536i \(-0.713926\pi\)
−0.622606 + 0.782536i \(0.713926\pi\)
\(168\) 0 0
\(169\) −604.046 −0.274941
\(170\) −193.225 −0.0871746
\(171\) 1418.39 0.634312
\(172\) 615.933 0.273049
\(173\) 1701.03 0.747554 0.373777 0.927519i \(-0.378063\pi\)
0.373777 + 0.927519i \(0.378063\pi\)
\(174\) −537.902 −0.234358
\(175\) 0 0
\(176\) 297.970 0.127616
\(177\) −919.045 −0.390280
\(178\) 300.946 0.126724
\(179\) 2498.24 1.04317 0.521584 0.853200i \(-0.325341\pi\)
0.521584 + 0.853200i \(0.325341\pi\)
\(180\) −264.881 −0.109684
\(181\) 2201.82 0.904199 0.452100 0.891968i \(-0.350675\pi\)
0.452100 + 0.891968i \(0.350675\pi\)
\(182\) 0 0
\(183\) −1516.20 −0.612461
\(184\) 184.000 0.0737210
\(185\) 121.039 0.0481025
\(186\) −348.834 −0.137515
\(187\) −640.294 −0.250390
\(188\) −1097.54 −0.425780
\(189\) 0 0
\(190\) −338.259 −0.129157
\(191\) 2647.73 1.00305 0.501527 0.865142i \(-0.332772\pi\)
0.501527 + 0.865142i \(0.332772\pi\)
\(192\) −118.600 −0.0445793
\(193\) −1203.35 −0.448803 −0.224402 0.974497i \(-0.572043\pi\)
−0.224402 + 0.974497i \(0.572043\pi\)
\(194\) 3332.35 1.23324
\(195\) −207.832 −0.0763240
\(196\) 0 0
\(197\) 675.018 0.244127 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(198\) −877.742 −0.315042
\(199\) 811.923 0.289225 0.144612 0.989488i \(-0.453807\pi\)
0.144612 + 0.989488i \(0.453807\pi\)
\(200\) −936.831 −0.331220
\(201\) 1142.59 0.400957
\(202\) 2999.30 1.04470
\(203\) 0 0
\(204\) 254.855 0.0874676
\(205\) 579.507 0.197437
\(206\) −611.397 −0.206787
\(207\) −542.016 −0.181994
\(208\) 638.589 0.212876
\(209\) −1120.90 −0.370976
\(210\) 0 0
\(211\) 5321.80 1.73634 0.868170 0.496267i \(-0.165296\pi\)
0.868170 + 0.496267i \(0.165296\pi\)
\(212\) −2437.46 −0.789649
\(213\) −1807.98 −0.581599
\(214\) −3466.31 −1.10725
\(215\) 432.693 0.137253
\(216\) 749.641 0.236142
\(217\) 0 0
\(218\) 122.783 0.0381463
\(219\) 276.333 0.0852640
\(220\) 209.324 0.0641482
\(221\) −1372.24 −0.417677
\(222\) −159.645 −0.0482642
\(223\) 1449.97 0.435413 0.217707 0.976014i \(-0.430142\pi\)
0.217707 + 0.976014i \(0.430142\pi\)
\(224\) 0 0
\(225\) 2759.66 0.817677
\(226\) −1868.26 −0.549890
\(227\) −864.947 −0.252901 −0.126451 0.991973i \(-0.540358\pi\)
−0.126451 + 0.991973i \(0.540358\pi\)
\(228\) 446.147 0.129591
\(229\) 4625.19 1.33468 0.667338 0.744755i \(-0.267433\pi\)
0.667338 + 0.744755i \(0.267433\pi\)
\(230\) 129.260 0.0370572
\(231\) 0 0
\(232\) 1161.07 0.328568
\(233\) −117.582 −0.0330602 −0.0165301 0.999863i \(-0.505262\pi\)
−0.0165301 + 0.999863i \(0.505262\pi\)
\(234\) −1881.12 −0.525523
\(235\) −771.024 −0.214026
\(236\) 1983.77 0.547171
\(237\) 504.896 0.138382
\(238\) 0 0
\(239\) 23.2085 0.00628131 0.00314065 0.999995i \(-0.499000\pi\)
0.00314065 + 0.999995i \(0.499000\pi\)
\(240\) −83.3166 −0.0224086
\(241\) −309.852 −0.0828187 −0.0414094 0.999142i \(-0.513185\pi\)
−0.0414094 + 0.999142i \(0.513185\pi\)
\(242\) −1968.36 −0.522855
\(243\) −3387.35 −0.894234
\(244\) 3272.73 0.858667
\(245\) 0 0
\(246\) −764.342 −0.198100
\(247\) −2402.23 −0.618827
\(248\) 752.963 0.192795
\(249\) 2.20456 0.000561078 0
\(250\) −1360.62 −0.344213
\(251\) −4709.05 −1.18419 −0.592097 0.805867i \(-0.701700\pi\)
−0.592097 + 0.805867i \(0.701700\pi\)
\(252\) 0 0
\(253\) 428.332 0.106439
\(254\) 821.328 0.202893
\(255\) 179.035 0.0439672
\(256\) 256.000 0.0625000
\(257\) 5064.23 1.22918 0.614588 0.788848i \(-0.289322\pi\)
0.614588 + 0.788848i \(0.289322\pi\)
\(258\) −570.701 −0.137714
\(259\) 0 0
\(260\) 448.609 0.107006
\(261\) −3420.20 −0.811131
\(262\) 2178.04 0.513588
\(263\) −1624.06 −0.380775 −0.190388 0.981709i \(-0.560974\pi\)
−0.190388 + 0.981709i \(0.560974\pi\)
\(264\) −276.088 −0.0643639
\(265\) −1712.32 −0.396931
\(266\) 0 0
\(267\) −278.845 −0.0639141
\(268\) −2466.30 −0.562140
\(269\) −5316.00 −1.20492 −0.602458 0.798151i \(-0.705812\pi\)
−0.602458 + 0.798151i \(0.705812\pi\)
\(270\) 526.622 0.118701
\(271\) 3948.73 0.885124 0.442562 0.896738i \(-0.354070\pi\)
0.442562 + 0.896738i \(0.354070\pi\)
\(272\) −550.107 −0.122629
\(273\) 0 0
\(274\) 3990.11 0.879749
\(275\) −2180.84 −0.478217
\(276\) −170.488 −0.0371817
\(277\) −7074.24 −1.53448 −0.767238 0.641362i \(-0.778370\pi\)
−0.767238 + 0.641362i \(0.778370\pi\)
\(278\) 5493.36 1.18514
\(279\) −2218.03 −0.475951
\(280\) 0 0
\(281\) 1608.61 0.341501 0.170751 0.985314i \(-0.445381\pi\)
0.170751 + 0.985314i \(0.445381\pi\)
\(282\) 1016.94 0.214745
\(283\) −1822.79 −0.382876 −0.191438 0.981505i \(-0.561315\pi\)
−0.191438 + 0.981505i \(0.561315\pi\)
\(284\) 3902.54 0.815399
\(285\) 313.418 0.0651414
\(286\) 1486.57 0.307351
\(287\) 0 0
\(288\) −754.109 −0.154293
\(289\) −3730.90 −0.759393
\(290\) 815.649 0.165161
\(291\) −3087.63 −0.621994
\(292\) −596.467 −0.119540
\(293\) 6920.73 1.37991 0.689954 0.723853i \(-0.257631\pi\)
0.689954 + 0.723853i \(0.257631\pi\)
\(294\) 0 0
\(295\) 1393.60 0.275045
\(296\) 344.595 0.0676661
\(297\) 1745.08 0.340943
\(298\) −1289.28 −0.250623
\(299\) 917.972 0.177551
\(300\) 868.034 0.167053
\(301\) 0 0
\(302\) 4983.87 0.949633
\(303\) −2779.04 −0.526903
\(304\) −963.014 −0.181686
\(305\) 2299.09 0.431624
\(306\) 1620.47 0.302733
\(307\) −4389.48 −0.816029 −0.408014 0.912976i \(-0.633779\pi\)
−0.408014 + 0.912976i \(0.633779\pi\)
\(308\) 0 0
\(309\) 566.498 0.104294
\(310\) 528.956 0.0969120
\(311\) 6619.28 1.20690 0.603448 0.797402i \(-0.293793\pi\)
0.603448 + 0.797402i \(0.293793\pi\)
\(312\) −591.694 −0.107366
\(313\) 6438.82 1.16276 0.581380 0.813632i \(-0.302513\pi\)
0.581380 + 0.813632i \(0.302513\pi\)
\(314\) 3304.76 0.593943
\(315\) 0 0
\(316\) −1089.82 −0.194011
\(317\) 4933.73 0.874152 0.437076 0.899425i \(-0.356014\pi\)
0.437076 + 0.899425i \(0.356014\pi\)
\(318\) 2258.46 0.398265
\(319\) 2702.84 0.474388
\(320\) 179.840 0.0314167
\(321\) 3211.76 0.558452
\(322\) 0 0
\(323\) 2069.38 0.356481
\(324\) 1850.53 0.317306
\(325\) −4673.83 −0.797715
\(326\) −1638.33 −0.278340
\(327\) −113.766 −0.0192394
\(328\) 1649.84 0.277736
\(329\) 0 0
\(330\) −193.952 −0.0323536
\(331\) 4067.36 0.675415 0.337708 0.941251i \(-0.390348\pi\)
0.337708 + 0.941251i \(0.390348\pi\)
\(332\) −4.75858 −0.000786629 0
\(333\) −1015.09 −0.167046
\(334\) −5374.62 −0.880497
\(335\) −1732.58 −0.282569
\(336\) 0 0
\(337\) 9944.83 1.60751 0.803753 0.594963i \(-0.202833\pi\)
0.803753 + 0.594963i \(0.202833\pi\)
\(338\) −1208.09 −0.194413
\(339\) 1731.07 0.277341
\(340\) −386.450 −0.0616417
\(341\) 1752.82 0.278359
\(342\) 2836.79 0.448526
\(343\) 0 0
\(344\) 1231.87 0.193075
\(345\) −119.768 −0.0186901
\(346\) 3402.06 0.528600
\(347\) 11240.3 1.73893 0.869466 0.493994i \(-0.164463\pi\)
0.869466 + 0.493994i \(0.164463\pi\)
\(348\) −1075.80 −0.165716
\(349\) −8047.97 −1.23438 −0.617189 0.786815i \(-0.711729\pi\)
−0.617189 + 0.786815i \(0.711729\pi\)
\(350\) 0 0
\(351\) 3739.94 0.568727
\(352\) 595.940 0.0902378
\(353\) 5144.71 0.775709 0.387855 0.921721i \(-0.373216\pi\)
0.387855 + 0.921721i \(0.373216\pi\)
\(354\) −1838.09 −0.275970
\(355\) 2741.53 0.409875
\(356\) 601.891 0.0896072
\(357\) 0 0
\(358\) 4996.48 0.737631
\(359\) 3894.54 0.572552 0.286276 0.958147i \(-0.407583\pi\)
0.286276 + 0.958147i \(0.407583\pi\)
\(360\) −529.762 −0.0775580
\(361\) −3236.36 −0.471841
\(362\) 4403.64 0.639365
\(363\) 1823.81 0.263706
\(364\) 0 0
\(365\) −419.018 −0.0600888
\(366\) −3032.39 −0.433075
\(367\) −4053.20 −0.576500 −0.288250 0.957555i \(-0.593073\pi\)
−0.288250 + 0.957555i \(0.593073\pi\)
\(368\) 368.000 0.0521286
\(369\) −4860.00 −0.685642
\(370\) 242.078 0.0340136
\(371\) 0 0
\(372\) −697.669 −0.0972377
\(373\) −8800.78 −1.22168 −0.610841 0.791754i \(-0.709168\pi\)
−0.610841 + 0.791754i \(0.709168\pi\)
\(374\) −1280.59 −0.177053
\(375\) 1260.70 0.173607
\(376\) −2195.09 −0.301072
\(377\) 5792.54 0.791329
\(378\) 0 0
\(379\) −1005.08 −0.136220 −0.0681098 0.997678i \(-0.521697\pi\)
−0.0681098 + 0.997678i \(0.521697\pi\)
\(380\) −676.517 −0.0913279
\(381\) −761.013 −0.102330
\(382\) 5295.46 0.709266
\(383\) 2379.44 0.317451 0.158726 0.987323i \(-0.449261\pi\)
0.158726 + 0.987323i \(0.449261\pi\)
\(384\) −237.200 −0.0315223
\(385\) 0 0
\(386\) −2406.70 −0.317352
\(387\) −3628.76 −0.476641
\(388\) 6664.69 0.872032
\(389\) −7189.06 −0.937017 −0.468508 0.883459i \(-0.655208\pi\)
−0.468508 + 0.883459i \(0.655208\pi\)
\(390\) −415.665 −0.0539692
\(391\) −790.779 −0.102280
\(392\) 0 0
\(393\) −2018.10 −0.259032
\(394\) 1350.04 0.172624
\(395\) −765.601 −0.0975230
\(396\) −1755.48 −0.222769
\(397\) −1530.43 −0.193476 −0.0967379 0.995310i \(-0.530841\pi\)
−0.0967379 + 0.995310i \(0.530841\pi\)
\(398\) 1623.85 0.204513
\(399\) 0 0
\(400\) −1873.66 −0.234208
\(401\) −7077.08 −0.881328 −0.440664 0.897672i \(-0.645257\pi\)
−0.440664 + 0.897672i \(0.645257\pi\)
\(402\) 2285.19 0.283519
\(403\) 3756.52 0.464331
\(404\) 5998.59 0.738716
\(405\) 1300.00 0.159500
\(406\) 0 0
\(407\) 802.179 0.0976967
\(408\) 509.709 0.0618489
\(409\) 5683.55 0.687123 0.343562 0.939130i \(-0.388367\pi\)
0.343562 + 0.939130i \(0.388367\pi\)
\(410\) 1159.01 0.139609
\(411\) −3697.09 −0.443708
\(412\) −1222.79 −0.146220
\(413\) 0 0
\(414\) −1084.03 −0.128689
\(415\) −3.34290 −0.000395413 0
\(416\) 1277.18 0.150526
\(417\) −5089.95 −0.597736
\(418\) −2241.79 −0.262320
\(419\) −9874.34 −1.15130 −0.575648 0.817698i \(-0.695250\pi\)
−0.575648 + 0.817698i \(0.695250\pi\)
\(420\) 0 0
\(421\) 1765.47 0.204379 0.102190 0.994765i \(-0.467415\pi\)
0.102190 + 0.994765i \(0.467415\pi\)
\(422\) 10643.6 1.22778
\(423\) 6466.16 0.743251
\(424\) −4874.92 −0.558366
\(425\) 4026.23 0.459531
\(426\) −3615.96 −0.411253
\(427\) 0 0
\(428\) −6932.62 −0.782946
\(429\) −1377.40 −0.155015
\(430\) 865.385 0.0970525
\(431\) 4207.66 0.470246 0.235123 0.971966i \(-0.424451\pi\)
0.235123 + 0.971966i \(0.424451\pi\)
\(432\) 1499.28 0.166977
\(433\) −474.563 −0.0526698 −0.0263349 0.999653i \(-0.508384\pi\)
−0.0263349 + 0.999653i \(0.508384\pi\)
\(434\) 0 0
\(435\) −755.751 −0.0833000
\(436\) 245.565 0.0269735
\(437\) −1384.33 −0.151537
\(438\) 552.665 0.0602908
\(439\) 16270.6 1.76891 0.884457 0.466622i \(-0.154529\pi\)
0.884457 + 0.466622i \(0.154529\pi\)
\(440\) 418.648 0.0453596
\(441\) 0 0
\(442\) −2744.47 −0.295342
\(443\) 4484.57 0.480967 0.240483 0.970653i \(-0.422694\pi\)
0.240483 + 0.970653i \(0.422694\pi\)
\(444\) −319.289 −0.0341279
\(445\) 422.828 0.0450427
\(446\) 2899.94 0.307884
\(447\) 1194.60 0.126404
\(448\) 0 0
\(449\) 1916.53 0.201441 0.100720 0.994915i \(-0.467885\pi\)
0.100720 + 0.994915i \(0.467885\pi\)
\(450\) 5519.32 0.578185
\(451\) 3840.65 0.400996
\(452\) −3736.53 −0.388831
\(453\) −4617.87 −0.478955
\(454\) −1729.89 −0.178828
\(455\) 0 0
\(456\) 892.295 0.0916349
\(457\) 10138.9 1.03780 0.518902 0.854834i \(-0.326341\pi\)
0.518902 + 0.854834i \(0.326341\pi\)
\(458\) 9250.38 0.943759
\(459\) −3221.74 −0.327621
\(460\) 258.520 0.0262034
\(461\) −5763.64 −0.582298 −0.291149 0.956678i \(-0.594038\pi\)
−0.291149 + 0.956678i \(0.594038\pi\)
\(462\) 0 0
\(463\) 12452.2 1.24990 0.624949 0.780666i \(-0.285120\pi\)
0.624949 + 0.780666i \(0.285120\pi\)
\(464\) 2322.13 0.232333
\(465\) −490.112 −0.0488783
\(466\) −235.163 −0.0233771
\(467\) 7305.83 0.723926 0.361963 0.932192i \(-0.382107\pi\)
0.361963 + 0.932192i \(0.382107\pi\)
\(468\) −3762.23 −0.371601
\(469\) 0 0
\(470\) −1542.05 −0.151339
\(471\) −3062.07 −0.299560
\(472\) 3967.54 0.386908
\(473\) 2867.65 0.278762
\(474\) 1009.79 0.0978508
\(475\) 7048.30 0.680838
\(476\) 0 0
\(477\) 14360.3 1.37843
\(478\) 46.4170 0.00444155
\(479\) 6078.18 0.579790 0.289895 0.957059i \(-0.406380\pi\)
0.289895 + 0.957059i \(0.406380\pi\)
\(480\) −166.633 −0.0158453
\(481\) 1719.18 0.162968
\(482\) −619.704 −0.0585617
\(483\) 0 0
\(484\) −3936.72 −0.369714
\(485\) 4681.95 0.438343
\(486\) −6774.71 −0.632319
\(487\) −15944.9 −1.48364 −0.741818 0.670601i \(-0.766036\pi\)
−0.741818 + 0.670601i \(0.766036\pi\)
\(488\) 6545.45 0.607169
\(489\) 1518.02 0.140383
\(490\) 0 0
\(491\) −13095.3 −1.20363 −0.601817 0.798634i \(-0.705556\pi\)
−0.601817 + 0.798634i \(0.705556\pi\)
\(492\) −1528.68 −0.140078
\(493\) −4989.93 −0.455852
\(494\) −4804.46 −0.437577
\(495\) −1233.23 −0.111979
\(496\) 1505.93 0.136327
\(497\) 0 0
\(498\) 4.40913 0.000396742 0
\(499\) −4230.74 −0.379547 −0.189774 0.981828i \(-0.560775\pi\)
−0.189774 + 0.981828i \(0.560775\pi\)
\(500\) −2721.25 −0.243396
\(501\) 4979.93 0.444085
\(502\) −9418.10 −0.837351
\(503\) −22512.5 −1.99559 −0.997797 0.0663437i \(-0.978867\pi\)
−0.997797 + 0.0663437i \(0.978867\pi\)
\(504\) 0 0
\(505\) 4214.01 0.371329
\(506\) 856.664 0.0752635
\(507\) 1119.38 0.0980536
\(508\) 1642.66 0.143467
\(509\) −7913.74 −0.689136 −0.344568 0.938761i \(-0.611975\pi\)
−0.344568 + 0.938761i \(0.611975\pi\)
\(510\) 358.071 0.0310895
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −5639.96 −0.485400
\(514\) 10128.5 0.869159
\(515\) −859.012 −0.0735002
\(516\) −1141.40 −0.0973788
\(517\) −5109.92 −0.434689
\(518\) 0 0
\(519\) −3152.22 −0.266604
\(520\) 897.217 0.0756646
\(521\) −290.126 −0.0243966 −0.0121983 0.999926i \(-0.503883\pi\)
−0.0121983 + 0.999926i \(0.503883\pi\)
\(522\) −6840.40 −0.573556
\(523\) −3625.32 −0.303105 −0.151553 0.988449i \(-0.548427\pi\)
−0.151553 + 0.988449i \(0.548427\pi\)
\(524\) 4356.09 0.363161
\(525\) 0 0
\(526\) −3248.12 −0.269249
\(527\) −3236.02 −0.267482
\(528\) −552.176 −0.0455121
\(529\) 529.000 0.0434783
\(530\) −3424.63 −0.280673
\(531\) −11687.3 −0.955155
\(532\) 0 0
\(533\) 8231.03 0.668903
\(534\) −557.691 −0.0451941
\(535\) −4870.17 −0.393562
\(536\) −4932.61 −0.397493
\(537\) −4629.55 −0.372030
\(538\) −10632.0 −0.852004
\(539\) 0 0
\(540\) 1053.24 0.0839342
\(541\) −4970.02 −0.394968 −0.197484 0.980306i \(-0.563277\pi\)
−0.197484 + 0.980306i \(0.563277\pi\)
\(542\) 7897.47 0.625877
\(543\) −4080.26 −0.322469
\(544\) −1100.21 −0.0867119
\(545\) 172.509 0.0135587
\(546\) 0 0
\(547\) 4837.90 0.378161 0.189080 0.981962i \(-0.439449\pi\)
0.189080 + 0.981962i \(0.439449\pi\)
\(548\) 7980.22 0.622077
\(549\) −19281.2 −1.49891
\(550\) −4361.68 −0.338150
\(551\) −8735.35 −0.675387
\(552\) −340.976 −0.0262915
\(553\) 0 0
\(554\) −14148.5 −1.08504
\(555\) −224.301 −0.0171550
\(556\) 10986.7 0.838022
\(557\) 15648.8 1.19042 0.595209 0.803571i \(-0.297069\pi\)
0.595209 + 0.803571i \(0.297069\pi\)
\(558\) −4436.07 −0.336548
\(559\) 6145.75 0.465005
\(560\) 0 0
\(561\) 1186.55 0.0892978
\(562\) 3217.23 0.241478
\(563\) 1268.45 0.0949532 0.0474766 0.998872i \(-0.484882\pi\)
0.0474766 + 0.998872i \(0.484882\pi\)
\(564\) 2033.89 0.151848
\(565\) −2624.91 −0.195453
\(566\) −3645.59 −0.270734
\(567\) 0 0
\(568\) 7805.08 0.576574
\(569\) 10490.1 0.772878 0.386439 0.922315i \(-0.373705\pi\)
0.386439 + 0.922315i \(0.373705\pi\)
\(570\) 626.837 0.0460619
\(571\) 9206.76 0.674765 0.337383 0.941368i \(-0.390458\pi\)
0.337383 + 0.941368i \(0.390458\pi\)
\(572\) 2973.13 0.217330
\(573\) −4906.59 −0.357724
\(574\) 0 0
\(575\) −2693.39 −0.195343
\(576\) −1508.22 −0.109101
\(577\) 8009.57 0.577890 0.288945 0.957346i \(-0.406695\pi\)
0.288945 + 0.957346i \(0.406695\pi\)
\(578\) −7461.80 −0.536972
\(579\) 2229.96 0.160059
\(580\) 1631.30 0.116786
\(581\) 0 0
\(582\) −6175.27 −0.439816
\(583\) −11348.3 −0.806172
\(584\) −1192.93 −0.0845274
\(585\) −2642.97 −0.186792
\(586\) 13841.5 0.975743
\(587\) 5277.47 0.371081 0.185540 0.982637i \(-0.440596\pi\)
0.185540 + 0.982637i \(0.440596\pi\)
\(588\) 0 0
\(589\) −5664.96 −0.396300
\(590\) 2787.19 0.194486
\(591\) −1250.90 −0.0870642
\(592\) 689.190 0.0478472
\(593\) −16290.5 −1.12811 −0.564057 0.825736i \(-0.690760\pi\)
−0.564057 + 0.825736i \(0.690760\pi\)
\(594\) 3490.16 0.241083
\(595\) 0 0
\(596\) −2578.55 −0.177217
\(597\) −1504.60 −0.103147
\(598\) 1835.94 0.125547
\(599\) −22889.1 −1.56131 −0.780654 0.624964i \(-0.785114\pi\)
−0.780654 + 0.624964i \(0.785114\pi\)
\(600\) 1736.07 0.118124
\(601\) 22607.8 1.53443 0.767213 0.641392i \(-0.221643\pi\)
0.767213 + 0.641392i \(0.221643\pi\)
\(602\) 0 0
\(603\) 14530.2 0.981284
\(604\) 9967.73 0.671492
\(605\) −2765.54 −0.185843
\(606\) −5558.08 −0.372577
\(607\) −2369.05 −0.158413 −0.0792067 0.996858i \(-0.525239\pi\)
−0.0792067 + 0.996858i \(0.525239\pi\)
\(608\) −1926.03 −0.128472
\(609\) 0 0
\(610\) 4598.18 0.305205
\(611\) −10951.2 −0.725106
\(612\) 3240.94 0.214064
\(613\) −13700.9 −0.902730 −0.451365 0.892339i \(-0.649063\pi\)
−0.451365 + 0.892339i \(0.649063\pi\)
\(614\) −8778.96 −0.577019
\(615\) −1073.90 −0.0704127
\(616\) 0 0
\(617\) 8426.94 0.549847 0.274924 0.961466i \(-0.411347\pi\)
0.274924 + 0.961466i \(0.411347\pi\)
\(618\) 1133.00 0.0737473
\(619\) 1602.35 0.104045 0.0520225 0.998646i \(-0.483433\pi\)
0.0520225 + 0.998646i \(0.483433\pi\)
\(620\) 1057.91 0.0685271
\(621\) 2155.22 0.139269
\(622\) 13238.6 0.853405
\(623\) 0 0
\(624\) −1183.39 −0.0759189
\(625\) 12726.3 0.814484
\(626\) 12877.6 0.822195
\(627\) 2077.16 0.132303
\(628\) 6609.51 0.419981
\(629\) −1480.97 −0.0938794
\(630\) 0 0
\(631\) 20975.3 1.32332 0.661660 0.749804i \(-0.269852\pi\)
0.661660 + 0.749804i \(0.269852\pi\)
\(632\) −2179.65 −0.137186
\(633\) −9861.97 −0.619239
\(634\) 9867.47 0.618119
\(635\) 1153.97 0.0721161
\(636\) 4516.93 0.281616
\(637\) 0 0
\(638\) 5405.68 0.335443
\(639\) −22991.7 −1.42338
\(640\) 359.680 0.0222150
\(641\) −17597.6 −1.08434 −0.542172 0.840267i \(-0.682398\pi\)
−0.542172 + 0.840267i \(0.682398\pi\)
\(642\) 6423.52 0.394885
\(643\) −379.731 −0.0232895 −0.0116447 0.999932i \(-0.503707\pi\)
−0.0116447 + 0.999932i \(0.503707\pi\)
\(644\) 0 0
\(645\) −801.835 −0.0489492
\(646\) 4138.76 0.252070
\(647\) −5644.50 −0.342980 −0.171490 0.985186i \(-0.554858\pi\)
−0.171490 + 0.985186i \(0.554858\pi\)
\(648\) 3701.06 0.224369
\(649\) 9235.99 0.558620
\(650\) −9347.66 −0.564070
\(651\) 0 0
\(652\) −3276.67 −0.196816
\(653\) −23152.5 −1.38748 −0.693742 0.720223i \(-0.744039\pi\)
−0.693742 + 0.720223i \(0.744039\pi\)
\(654\) −227.532 −0.0136043
\(655\) 3060.15 0.182550
\(656\) 3299.68 0.196389
\(657\) 3514.07 0.208671
\(658\) 0 0
\(659\) 18788.9 1.11064 0.555320 0.831637i \(-0.312596\pi\)
0.555320 + 0.831637i \(0.312596\pi\)
\(660\) −387.904 −0.0228775
\(661\) −19538.4 −1.14970 −0.574852 0.818257i \(-0.694940\pi\)
−0.574852 + 0.818257i \(0.694940\pi\)
\(662\) 8134.73 0.477591
\(663\) 2542.93 0.148958
\(664\) −9.51715 −0.000556231 0
\(665\) 0 0
\(666\) −2030.17 −0.118120
\(667\) 3338.07 0.193779
\(668\) −10749.2 −0.622606
\(669\) −2686.98 −0.155283
\(670\) −3465.15 −0.199807
\(671\) 15237.1 0.876634
\(672\) 0 0
\(673\) −19828.4 −1.13570 −0.567852 0.823130i \(-0.692226\pi\)
−0.567852 + 0.823130i \(0.692226\pi\)
\(674\) 19889.7 1.13668
\(675\) −10973.2 −0.625719
\(676\) −2416.18 −0.137471
\(677\) −5055.39 −0.286993 −0.143497 0.989651i \(-0.545835\pi\)
−0.143497 + 0.989651i \(0.545835\pi\)
\(678\) 3462.13 0.196110
\(679\) 0 0
\(680\) −772.900 −0.0435873
\(681\) 1602.86 0.0901933
\(682\) 3505.63 0.196829
\(683\) 14558.0 0.815585 0.407793 0.913075i \(-0.366299\pi\)
0.407793 + 0.913075i \(0.366299\pi\)
\(684\) 5673.58 0.317156
\(685\) 5606.10 0.312698
\(686\) 0 0
\(687\) −8571.06 −0.475992
\(688\) 2463.73 0.136525
\(689\) −24320.9 −1.34478
\(690\) −239.535 −0.0132159
\(691\) −11411.5 −0.628240 −0.314120 0.949383i \(-0.601709\pi\)
−0.314120 + 0.949383i \(0.601709\pi\)
\(692\) 6804.11 0.373777
\(693\) 0 0
\(694\) 22480.5 1.22961
\(695\) 7718.16 0.421247
\(696\) −2151.61 −0.117179
\(697\) −7090.54 −0.385328
\(698\) −16095.9 −0.872837
\(699\) 217.894 0.0117904
\(700\) 0 0
\(701\) −36915.1 −1.98896 −0.994482 0.104909i \(-0.966545\pi\)
−0.994482 + 0.104909i \(0.966545\pi\)
\(702\) 7479.88 0.402151
\(703\) −2592.58 −0.139091
\(704\) 1191.88 0.0638078
\(705\) 1428.81 0.0763290
\(706\) 10289.4 0.548509
\(707\) 0 0
\(708\) −3676.18 −0.195140
\(709\) 15981.0 0.846517 0.423259 0.906009i \(-0.360886\pi\)
0.423259 + 0.906009i \(0.360886\pi\)
\(710\) 5483.07 0.289825
\(711\) 6420.68 0.338670
\(712\) 1203.78 0.0633619
\(713\) 2164.77 0.113704
\(714\) 0 0
\(715\) 2088.62 0.109245
\(716\) 9992.95 0.521584
\(717\) −43.0083 −0.00224013
\(718\) 7789.08 0.404855
\(719\) 6526.68 0.338531 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(720\) −1059.52 −0.0548418
\(721\) 0 0
\(722\) −6472.71 −0.333642
\(723\) 574.195 0.0295360
\(724\) 8807.28 0.452100
\(725\) −16995.7 −0.870626
\(726\) 3647.62 0.186468
\(727\) −18670.9 −0.952500 −0.476250 0.879310i \(-0.658004\pi\)
−0.476250 + 0.879310i \(0.658004\pi\)
\(728\) 0 0
\(729\) −6213.87 −0.315697
\(730\) −838.036 −0.0424892
\(731\) −5294.20 −0.267870
\(732\) −6064.78 −0.306231
\(733\) −38561.0 −1.94309 −0.971544 0.236858i \(-0.923882\pi\)
−0.971544 + 0.236858i \(0.923882\pi\)
\(734\) −8106.40 −0.407647
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −11482.6 −0.573902
\(738\) −9720.01 −0.484822
\(739\) −4948.98 −0.246348 −0.123174 0.992385i \(-0.539307\pi\)
−0.123174 + 0.992385i \(0.539307\pi\)
\(740\) 484.156 0.0240512
\(741\) 4451.64 0.220695
\(742\) 0 0
\(743\) −11730.7 −0.579217 −0.289608 0.957145i \(-0.593525\pi\)
−0.289608 + 0.957145i \(0.593525\pi\)
\(744\) −1395.34 −0.0687575
\(745\) −1811.43 −0.0890815
\(746\) −17601.6 −0.863859
\(747\) 28.0351 0.00137316
\(748\) −2561.18 −0.125195
\(749\) 0 0
\(750\) 2521.41 0.122758
\(751\) −30622.3 −1.48791 −0.743956 0.668229i \(-0.767053\pi\)
−0.743956 + 0.668229i \(0.767053\pi\)
\(752\) −4390.18 −0.212890
\(753\) 8726.47 0.422324
\(754\) 11585.1 0.559554
\(755\) 7002.33 0.337537
\(756\) 0 0
\(757\) −15308.6 −0.735010 −0.367505 0.930022i \(-0.619788\pi\)
−0.367505 + 0.930022i \(0.619788\pi\)
\(758\) −2010.15 −0.0963218
\(759\) −793.754 −0.0379597
\(760\) −1353.03 −0.0645786
\(761\) 18956.7 0.902994 0.451497 0.892273i \(-0.350890\pi\)
0.451497 + 0.892273i \(0.350890\pi\)
\(762\) −1522.03 −0.0723585
\(763\) 0 0
\(764\) 10590.9 0.501527
\(765\) 2276.76 0.107603
\(766\) 4758.89 0.224472
\(767\) 19794.0 0.931836
\(768\) −474.401 −0.0222897
\(769\) −31576.8 −1.48074 −0.740370 0.672199i \(-0.765350\pi\)
−0.740370 + 0.672199i \(0.765350\pi\)
\(770\) 0 0
\(771\) −9384.67 −0.438367
\(772\) −4813.40 −0.224402
\(773\) −9127.49 −0.424700 −0.212350 0.977194i \(-0.568112\pi\)
−0.212350 + 0.977194i \(0.568112\pi\)
\(774\) −7257.51 −0.337036
\(775\) −11021.9 −0.510861
\(776\) 13329.4 0.616620
\(777\) 0 0
\(778\) −14378.1 −0.662571
\(779\) −12412.7 −0.570899
\(780\) −831.329 −0.0381620
\(781\) 18169.4 0.832460
\(782\) −1581.56 −0.0723227
\(783\) 13599.7 0.620709
\(784\) 0 0
\(785\) 4643.18 0.211111
\(786\) −4036.19 −0.183163
\(787\) −6066.87 −0.274791 −0.137395 0.990516i \(-0.543873\pi\)
−0.137395 + 0.990516i \(0.543873\pi\)
\(788\) 2700.07 0.122064
\(789\) 3009.59 0.135798
\(790\) −1531.20 −0.0689592
\(791\) 0 0
\(792\) −3510.97 −0.157521
\(793\) 32655.1 1.46232
\(794\) −3060.85 −0.136808
\(795\) 3173.14 0.141559
\(796\) 3247.69 0.144612
\(797\) 39942.9 1.77522 0.887611 0.460594i \(-0.152364\pi\)
0.887611 + 0.460594i \(0.152364\pi\)
\(798\) 0 0
\(799\) 9433.85 0.417704
\(800\) −3747.33 −0.165610
\(801\) −3546.03 −0.156420
\(802\) −14154.2 −0.623193
\(803\) −2777.02 −0.122041
\(804\) 4570.37 0.200478
\(805\) 0 0
\(806\) 7513.04 0.328332
\(807\) 9851.23 0.429715
\(808\) 11997.2 0.522351
\(809\) 17048.9 0.740924 0.370462 0.928848i \(-0.379199\pi\)
0.370462 + 0.928848i \(0.379199\pi\)
\(810\) 2599.99 0.112783
\(811\) −43025.5 −1.86292 −0.931462 0.363839i \(-0.881466\pi\)
−0.931462 + 0.363839i \(0.881466\pi\)
\(812\) 0 0
\(813\) −7317.51 −0.315666
\(814\) 1604.36 0.0690820
\(815\) −2301.86 −0.0989332
\(816\) 1019.42 0.0437338
\(817\) −9268.01 −0.396875
\(818\) 11367.1 0.485869
\(819\) 0 0
\(820\) 2318.03 0.0987183
\(821\) −30724.0 −1.30606 −0.653030 0.757332i \(-0.726503\pi\)
−0.653030 + 0.757332i \(0.726503\pi\)
\(822\) −7394.18 −0.313749
\(823\) −13338.2 −0.564936 −0.282468 0.959277i \(-0.591153\pi\)
−0.282468 + 0.959277i \(0.591153\pi\)
\(824\) −2445.59 −0.103393
\(825\) 4041.38 0.170549
\(826\) 0 0
\(827\) −29240.6 −1.22950 −0.614750 0.788722i \(-0.710743\pi\)
−0.614750 + 0.788722i \(0.710743\pi\)
\(828\) −2168.06 −0.0909969
\(829\) −35576.4 −1.49050 −0.745248 0.666788i \(-0.767669\pi\)
−0.745248 + 0.666788i \(0.767669\pi\)
\(830\) −6.68580 −0.000279599 0
\(831\) 13109.5 0.547248
\(832\) 2554.36 0.106438
\(833\) 0 0
\(834\) −10179.9 −0.422663
\(835\) −7551.34 −0.312964
\(836\) −4483.58 −0.185488
\(837\) 8819.57 0.364216
\(838\) −19748.7 −0.814089
\(839\) −24395.1 −1.00383 −0.501915 0.864917i \(-0.667371\pi\)
−0.501915 + 0.864917i \(0.667371\pi\)
\(840\) 0 0
\(841\) −3325.29 −0.136344
\(842\) 3530.93 0.144518
\(843\) −2980.97 −0.121791
\(844\) 21287.2 0.868170
\(845\) −1697.37 −0.0691021
\(846\) 12932.3 0.525558
\(847\) 0 0
\(848\) −9749.85 −0.394824
\(849\) 3377.87 0.136547
\(850\) 8052.46 0.324938
\(851\) 990.710 0.0399073
\(852\) −7231.91 −0.290799
\(853\) −44158.8 −1.77253 −0.886266 0.463177i \(-0.846709\pi\)
−0.886266 + 0.463177i \(0.846709\pi\)
\(854\) 0 0
\(855\) 3985.69 0.159424
\(856\) −13865.2 −0.553627
\(857\) 31335.3 1.24900 0.624500 0.781025i \(-0.285303\pi\)
0.624500 + 0.781025i \(0.285303\pi\)
\(858\) −2754.80 −0.109612
\(859\) 8363.71 0.332207 0.166104 0.986108i \(-0.446881\pi\)
0.166104 + 0.986108i \(0.446881\pi\)
\(860\) 1730.77 0.0686265
\(861\) 0 0
\(862\) 8415.32 0.332514
\(863\) 37339.2 1.47282 0.736408 0.676538i \(-0.236520\pi\)
0.736408 + 0.676538i \(0.236520\pi\)
\(864\) 2998.56 0.118071
\(865\) 4779.89 0.187886
\(866\) −949.126 −0.0372432
\(867\) 6913.84 0.270826
\(868\) 0 0
\(869\) −5073.98 −0.198070
\(870\) −1511.50 −0.0589020
\(871\) −24608.7 −0.957328
\(872\) 491.130 0.0190731
\(873\) −39264.9 −1.52224
\(874\) −2768.67 −0.107153
\(875\) 0 0
\(876\) 1105.33 0.0426320
\(877\) −45581.4 −1.75504 −0.877522 0.479536i \(-0.840805\pi\)
−0.877522 + 0.479536i \(0.840805\pi\)
\(878\) 32541.2 1.25081
\(879\) −12825.0 −0.492123
\(880\) 837.295 0.0320741
\(881\) −39745.3 −1.51993 −0.759963 0.649967i \(-0.774783\pi\)
−0.759963 + 0.649967i \(0.774783\pi\)
\(882\) 0 0
\(883\) 15480.4 0.589984 0.294992 0.955500i \(-0.404683\pi\)
0.294992 + 0.955500i \(0.404683\pi\)
\(884\) −5488.94 −0.208838
\(885\) −2582.51 −0.0980907
\(886\) 8969.14 0.340095
\(887\) −10055.3 −0.380637 −0.190319 0.981722i \(-0.560952\pi\)
−0.190319 + 0.981722i \(0.560952\pi\)
\(888\) −638.579 −0.0241321
\(889\) 0 0
\(890\) 845.657 0.0318500
\(891\) 8615.66 0.323945
\(892\) 5799.88 0.217707
\(893\) 16514.9 0.618867
\(894\) 2389.19 0.0893810
\(895\) 7020.04 0.262183
\(896\) 0 0
\(897\) −1701.12 −0.0633208
\(898\) 3833.07 0.142440
\(899\) 13660.0 0.506771
\(900\) 11038.6 0.408839
\(901\) 20951.0 0.774672
\(902\) 7681.30 0.283547
\(903\) 0 0
\(904\) −7473.06 −0.274945
\(905\) 6187.11 0.227256
\(906\) −9235.74 −0.338672
\(907\) 41037.7 1.50235 0.751177 0.660101i \(-0.229487\pi\)
0.751177 + 0.660101i \(0.229487\pi\)
\(908\) −3459.79 −0.126451
\(909\) −35340.6 −1.28952
\(910\) 0 0
\(911\) −19336.8 −0.703247 −0.351624 0.936141i \(-0.614370\pi\)
−0.351624 + 0.936141i \(0.614370\pi\)
\(912\) 1784.59 0.0647957
\(913\) −22.1549 −0.000803089 0
\(914\) 20277.7 0.733838
\(915\) −4260.51 −0.153932
\(916\) 18500.8 0.667338
\(917\) 0 0
\(918\) −6443.48 −0.231663
\(919\) 49626.3 1.78131 0.890654 0.454683i \(-0.150247\pi\)
0.890654 + 0.454683i \(0.150247\pi\)
\(920\) 517.040 0.0185286
\(921\) 8134.27 0.291024
\(922\) −11527.3 −0.411747
\(923\) 38939.4 1.38863
\(924\) 0 0
\(925\) −5044.18 −0.179299
\(926\) 24904.4 0.883811
\(927\) 7204.07 0.255245
\(928\) 4644.27 0.164284
\(929\) −15209.7 −0.537152 −0.268576 0.963258i \(-0.586553\pi\)
−0.268576 + 0.963258i \(0.586553\pi\)
\(930\) −980.224 −0.0345622
\(931\) 0 0
\(932\) −470.327 −0.0165301
\(933\) −12266.4 −0.430421
\(934\) 14611.7 0.511893
\(935\) −1799.23 −0.0629315
\(936\) −7524.47 −0.262762
\(937\) −12658.4 −0.441337 −0.220669 0.975349i \(-0.570824\pi\)
−0.220669 + 0.975349i \(0.570824\pi\)
\(938\) 0 0
\(939\) −11932.0 −0.414680
\(940\) −3084.10 −0.107013
\(941\) 20893.6 0.723815 0.361908 0.932214i \(-0.382126\pi\)
0.361908 + 0.932214i \(0.382126\pi\)
\(942\) −6124.14 −0.211821
\(943\) 4743.30 0.163800
\(944\) 7935.08 0.273586
\(945\) 0 0
\(946\) 5735.30 0.197115
\(947\) −34190.9 −1.17324 −0.586618 0.809864i \(-0.699541\pi\)
−0.586618 + 0.809864i \(0.699541\pi\)
\(948\) 2019.58 0.0691910
\(949\) −5951.52 −0.203577
\(950\) 14096.6 0.481425
\(951\) −9142.84 −0.311753
\(952\) 0 0
\(953\) 2536.75 0.0862262 0.0431131 0.999070i \(-0.486272\pi\)
0.0431131 + 0.999070i \(0.486272\pi\)
\(954\) 28720.5 0.974697
\(955\) 7440.12 0.252101
\(956\) 92.8340 0.00314065
\(957\) −5008.70 −0.169183
\(958\) 12156.4 0.409973
\(959\) 0 0
\(960\) −333.266 −0.0112043
\(961\) −20932.3 −0.702640
\(962\) 3438.35 0.115236
\(963\) 40843.4 1.36673
\(964\) −1239.41 −0.0414094
\(965\) −3381.41 −0.112800
\(966\) 0 0
\(967\) −21632.0 −0.719378 −0.359689 0.933072i \(-0.617117\pi\)
−0.359689 + 0.933072i \(0.617117\pi\)
\(968\) −7873.43 −0.261427
\(969\) −3834.82 −0.127133
\(970\) 9363.89 0.309955
\(971\) −8754.33 −0.289331 −0.144665 0.989481i \(-0.546211\pi\)
−0.144665 + 0.989481i \(0.546211\pi\)
\(972\) −13549.4 −0.447117
\(973\) 0 0
\(974\) −31889.7 −1.04909
\(975\) 8661.21 0.284493
\(976\) 13090.9 0.429334
\(977\) 12419.8 0.406698 0.203349 0.979106i \(-0.434817\pi\)
0.203349 + 0.979106i \(0.434817\pi\)
\(978\) 3036.04 0.0992657
\(979\) 2802.27 0.0914822
\(980\) 0 0
\(981\) −1446.74 −0.0470856
\(982\) −26190.7 −0.851097
\(983\) −6967.80 −0.226082 −0.113041 0.993590i \(-0.536059\pi\)
−0.113041 + 0.993590i \(0.536059\pi\)
\(984\) −3057.37 −0.0990502
\(985\) 1896.80 0.0613574
\(986\) −9979.86 −0.322336
\(987\) 0 0
\(988\) −9608.92 −0.309413
\(989\) 3541.61 0.113869
\(990\) −2466.45 −0.0791808
\(991\) −1073.43 −0.0344083 −0.0172041 0.999852i \(-0.505477\pi\)
−0.0172041 + 0.999852i \(0.505477\pi\)
\(992\) 3011.85 0.0963976
\(993\) −7537.34 −0.240877
\(994\) 0 0
\(995\) 2281.50 0.0726919
\(996\) 8.81825 0.000280539 0
\(997\) 3416.02 0.108512 0.0542560 0.998527i \(-0.482721\pi\)
0.0542560 + 0.998527i \(0.482721\pi\)
\(998\) −8461.49 −0.268380
\(999\) 4036.29 0.127830
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.4 11
7.2 even 3 322.4.e.a.277.8 yes 22
7.4 even 3 322.4.e.a.93.8 22
7.6 odd 2 2254.4.a.v.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.8 22 7.4 even 3
322.4.e.a.277.8 yes 22 7.2 even 3
2254.4.a.v.1.8 11 7.6 odd 2
2254.4.a.y.1.4 11 1.1 even 1 trivial