Properties

Label 2254.4.a.y.1.3
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(8.10595\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -6.10595 q^{3} +4.00000 q^{4} -5.20425 q^{5} -12.2119 q^{6} +8.00000 q^{8} +10.2826 q^{9} -10.4085 q^{10} -17.8837 q^{11} -24.4238 q^{12} +64.1389 q^{13} +31.7769 q^{15} +16.0000 q^{16} +30.2364 q^{17} +20.5652 q^{18} +89.2372 q^{19} -20.8170 q^{20} -35.7673 q^{22} +23.0000 q^{23} -48.8476 q^{24} -97.9157 q^{25} +128.278 q^{26} +102.076 q^{27} -61.4085 q^{29} +63.5538 q^{30} -158.069 q^{31} +32.0000 q^{32} +109.197 q^{33} +60.4728 q^{34} +41.1305 q^{36} -110.955 q^{37} +178.474 q^{38} -391.629 q^{39} -41.6340 q^{40} -93.3461 q^{41} -388.470 q^{43} -71.5347 q^{44} -53.5133 q^{45} +46.0000 q^{46} +134.149 q^{47} -97.6952 q^{48} -195.831 q^{50} -184.622 q^{51} +256.556 q^{52} +145.407 q^{53} +204.151 q^{54} +93.0712 q^{55} -544.877 q^{57} -122.817 q^{58} -46.8331 q^{59} +127.108 q^{60} -336.268 q^{61} -316.137 q^{62} +64.0000 q^{64} -333.795 q^{65} +218.394 q^{66} -385.500 q^{67} +120.946 q^{68} -140.437 q^{69} -94.5483 q^{71} +82.2609 q^{72} +1085.04 q^{73} -221.910 q^{74} +597.869 q^{75} +356.949 q^{76} -783.258 q^{78} +725.264 q^{79} -83.2681 q^{80} -900.898 q^{81} -186.692 q^{82} +169.422 q^{83} -157.358 q^{85} -776.941 q^{86} +374.957 q^{87} -143.069 q^{88} -151.991 q^{89} -107.027 q^{90} +92.0000 q^{92} +965.159 q^{93} +268.297 q^{94} -464.413 q^{95} -195.390 q^{96} +344.898 q^{97} -183.891 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −6.10595 −1.17509 −0.587545 0.809191i \(-0.699906\pi\)
−0.587545 + 0.809191i \(0.699906\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.20425 −0.465483 −0.232741 0.972539i \(-0.574770\pi\)
−0.232741 + 0.972539i \(0.574770\pi\)
\(6\) −12.2119 −0.830914
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 10.2826 0.380838
\(10\) −10.4085 −0.329146
\(11\) −17.8837 −0.490194 −0.245097 0.969499i \(-0.578820\pi\)
−0.245097 + 0.969499i \(0.578820\pi\)
\(12\) −24.4238 −0.587545
\(13\) 64.1389 1.36838 0.684190 0.729304i \(-0.260156\pi\)
0.684190 + 0.729304i \(0.260156\pi\)
\(14\) 0 0
\(15\) 31.7769 0.546984
\(16\) 16.0000 0.250000
\(17\) 30.2364 0.431377 0.215688 0.976462i \(-0.430800\pi\)
0.215688 + 0.976462i \(0.430800\pi\)
\(18\) 20.5652 0.269293
\(19\) 89.2372 1.07750 0.538748 0.842467i \(-0.318898\pi\)
0.538748 + 0.842467i \(0.318898\pi\)
\(20\) −20.8170 −0.232741
\(21\) 0 0
\(22\) −35.7673 −0.346619
\(23\) 23.0000 0.208514
\(24\) −48.8476 −0.415457
\(25\) −97.9157 −0.783326
\(26\) 128.278 0.967590
\(27\) 102.076 0.727572
\(28\) 0 0
\(29\) −61.4085 −0.393216 −0.196608 0.980482i \(-0.562993\pi\)
−0.196608 + 0.980482i \(0.562993\pi\)
\(30\) 63.5538 0.386776
\(31\) −158.069 −0.915806 −0.457903 0.889002i \(-0.651399\pi\)
−0.457903 + 0.889002i \(0.651399\pi\)
\(32\) 32.0000 0.176777
\(33\) 109.197 0.576022
\(34\) 60.4728 0.305029
\(35\) 0 0
\(36\) 41.1305 0.190419
\(37\) −110.955 −0.492998 −0.246499 0.969143i \(-0.579280\pi\)
−0.246499 + 0.969143i \(0.579280\pi\)
\(38\) 178.474 0.761904
\(39\) −391.629 −1.60797
\(40\) −41.6340 −0.164573
\(41\) −93.3461 −0.355566 −0.177783 0.984070i \(-0.556893\pi\)
−0.177783 + 0.984070i \(0.556893\pi\)
\(42\) 0 0
\(43\) −388.470 −1.37770 −0.688851 0.724903i \(-0.741885\pi\)
−0.688851 + 0.724903i \(0.741885\pi\)
\(44\) −71.5347 −0.245097
\(45\) −53.5133 −0.177273
\(46\) 46.0000 0.147442
\(47\) 134.149 0.416332 0.208166 0.978094i \(-0.433251\pi\)
0.208166 + 0.978094i \(0.433251\pi\)
\(48\) −97.6952 −0.293773
\(49\) 0 0
\(50\) −195.831 −0.553895
\(51\) −184.622 −0.506907
\(52\) 256.556 0.684190
\(53\) 145.407 0.376852 0.188426 0.982087i \(-0.439661\pi\)
0.188426 + 0.982087i \(0.439661\pi\)
\(54\) 204.151 0.514471
\(55\) 93.0712 0.228177
\(56\) 0 0
\(57\) −544.877 −1.26615
\(58\) −122.817 −0.278046
\(59\) −46.8331 −0.103341 −0.0516707 0.998664i \(-0.516455\pi\)
−0.0516707 + 0.998664i \(0.516455\pi\)
\(60\) 127.108 0.273492
\(61\) −336.268 −0.705815 −0.352907 0.935658i \(-0.614807\pi\)
−0.352907 + 0.935658i \(0.614807\pi\)
\(62\) −316.137 −0.647572
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −333.795 −0.636957
\(66\) 218.394 0.407309
\(67\) −385.500 −0.702931 −0.351465 0.936201i \(-0.614317\pi\)
−0.351465 + 0.936201i \(0.614317\pi\)
\(68\) 120.946 0.215688
\(69\) −140.437 −0.245023
\(70\) 0 0
\(71\) −94.5483 −0.158040 −0.0790199 0.996873i \(-0.525179\pi\)
−0.0790199 + 0.996873i \(0.525179\pi\)
\(72\) 82.2609 0.134646
\(73\) 1085.04 1.73965 0.869825 0.493360i \(-0.164231\pi\)
0.869825 + 0.493360i \(0.164231\pi\)
\(74\) −221.910 −0.348602
\(75\) 597.869 0.920479
\(76\) 356.949 0.538748
\(77\) 0 0
\(78\) −783.258 −1.13701
\(79\) 725.264 1.03289 0.516447 0.856319i \(-0.327254\pi\)
0.516447 + 0.856319i \(0.327254\pi\)
\(80\) −83.2681 −0.116371
\(81\) −900.898 −1.23580
\(82\) −186.692 −0.251423
\(83\) 169.422 0.224054 0.112027 0.993705i \(-0.464266\pi\)
0.112027 + 0.993705i \(0.464266\pi\)
\(84\) 0 0
\(85\) −157.358 −0.200798
\(86\) −776.941 −0.974182
\(87\) 374.957 0.462064
\(88\) −143.069 −0.173310
\(89\) −151.991 −0.181023 −0.0905113 0.995895i \(-0.528850\pi\)
−0.0905113 + 0.995895i \(0.528850\pi\)
\(90\) −107.027 −0.125351
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 965.159 1.07615
\(94\) 268.297 0.294391
\(95\) −464.413 −0.501555
\(96\) −195.390 −0.207729
\(97\) 344.898 0.361022 0.180511 0.983573i \(-0.442225\pi\)
0.180511 + 0.983573i \(0.442225\pi\)
\(98\) 0 0
\(99\) −183.891 −0.186684
\(100\) −391.663 −0.391663
\(101\) −514.137 −0.506521 −0.253260 0.967398i \(-0.581503\pi\)
−0.253260 + 0.967398i \(0.581503\pi\)
\(102\) −369.244 −0.358437
\(103\) 360.320 0.344693 0.172347 0.985036i \(-0.444865\pi\)
0.172347 + 0.985036i \(0.444865\pi\)
\(104\) 513.111 0.483795
\(105\) 0 0
\(106\) 290.814 0.266475
\(107\) 426.885 0.385687 0.192844 0.981229i \(-0.438229\pi\)
0.192844 + 0.981229i \(0.438229\pi\)
\(108\) 408.302 0.363786
\(109\) 238.729 0.209781 0.104890 0.994484i \(-0.466551\pi\)
0.104890 + 0.994484i \(0.466551\pi\)
\(110\) 186.142 0.161345
\(111\) 677.486 0.579317
\(112\) 0 0
\(113\) 793.212 0.660346 0.330173 0.943920i \(-0.392893\pi\)
0.330173 + 0.943920i \(0.392893\pi\)
\(114\) −1089.75 −0.895306
\(115\) −119.698 −0.0970598
\(116\) −245.634 −0.196608
\(117\) 659.516 0.521130
\(118\) −93.6662 −0.0730735
\(119\) 0 0
\(120\) 254.215 0.193388
\(121\) −1011.17 −0.759710
\(122\) −672.536 −0.499086
\(123\) 569.966 0.417822
\(124\) −632.275 −0.457903
\(125\) 1160.11 0.830107
\(126\) 0 0
\(127\) 2122.13 1.48274 0.741372 0.671095i \(-0.234176\pi\)
0.741372 + 0.671095i \(0.234176\pi\)
\(128\) 128.000 0.0883883
\(129\) 2371.98 1.61892
\(130\) −667.590 −0.450396
\(131\) −1194.11 −0.796412 −0.398206 0.917296i \(-0.630367\pi\)
−0.398206 + 0.917296i \(0.630367\pi\)
\(132\) 436.787 0.288011
\(133\) 0 0
\(134\) −771.001 −0.497047
\(135\) −531.227 −0.338672
\(136\) 241.891 0.152515
\(137\) 569.745 0.355303 0.177652 0.984093i \(-0.443150\pi\)
0.177652 + 0.984093i \(0.443150\pi\)
\(138\) −280.874 −0.173258
\(139\) 2162.93 1.31984 0.659919 0.751337i \(-0.270591\pi\)
0.659919 + 0.751337i \(0.270591\pi\)
\(140\) 0 0
\(141\) −819.105 −0.489227
\(142\) −189.097 −0.111751
\(143\) −1147.04 −0.670771
\(144\) 164.522 0.0952094
\(145\) 319.585 0.183035
\(146\) 2170.08 1.23012
\(147\) 0 0
\(148\) −443.820 −0.246499
\(149\) −241.738 −0.132912 −0.0664562 0.997789i \(-0.521169\pi\)
−0.0664562 + 0.997789i \(0.521169\pi\)
\(150\) 1195.74 0.650877
\(151\) −135.991 −0.0732900 −0.0366450 0.999328i \(-0.511667\pi\)
−0.0366450 + 0.999328i \(0.511667\pi\)
\(152\) 713.897 0.380952
\(153\) 310.909 0.164284
\(154\) 0 0
\(155\) 822.630 0.426292
\(156\) −1566.52 −0.803985
\(157\) 745.044 0.378733 0.189366 0.981907i \(-0.439357\pi\)
0.189366 + 0.981907i \(0.439357\pi\)
\(158\) 1450.53 0.730366
\(159\) −887.847 −0.442836
\(160\) −166.536 −0.0822865
\(161\) 0 0
\(162\) −1801.80 −0.873843
\(163\) 2319.40 1.11453 0.557267 0.830333i \(-0.311850\pi\)
0.557267 + 0.830333i \(0.311850\pi\)
\(164\) −373.384 −0.177783
\(165\) −568.288 −0.268128
\(166\) 338.844 0.158430
\(167\) 3260.16 1.51065 0.755326 0.655350i \(-0.227479\pi\)
0.755326 + 0.655350i \(0.227479\pi\)
\(168\) 0 0
\(169\) 1916.80 0.872462
\(170\) −314.716 −0.141986
\(171\) 917.591 0.410351
\(172\) −1553.88 −0.688851
\(173\) −2889.71 −1.26995 −0.634973 0.772534i \(-0.718989\pi\)
−0.634973 + 0.772534i \(0.718989\pi\)
\(174\) 749.914 0.326729
\(175\) 0 0
\(176\) −286.139 −0.122548
\(177\) 285.960 0.121436
\(178\) −303.982 −0.128002
\(179\) 3767.12 1.57300 0.786501 0.617589i \(-0.211890\pi\)
0.786501 + 0.617589i \(0.211890\pi\)
\(180\) −214.053 −0.0886366
\(181\) 778.254 0.319598 0.159799 0.987150i \(-0.448915\pi\)
0.159799 + 0.987150i \(0.448915\pi\)
\(182\) 0 0
\(183\) 2053.23 0.829396
\(184\) 184.000 0.0737210
\(185\) 577.439 0.229482
\(186\) 1930.32 0.760956
\(187\) −540.738 −0.211458
\(188\) 536.595 0.208166
\(189\) 0 0
\(190\) −928.826 −0.354653
\(191\) −3723.02 −1.41041 −0.705206 0.709003i \(-0.749145\pi\)
−0.705206 + 0.709003i \(0.749145\pi\)
\(192\) −390.781 −0.146886
\(193\) −3478.30 −1.29727 −0.648636 0.761099i \(-0.724660\pi\)
−0.648636 + 0.761099i \(0.724660\pi\)
\(194\) 689.797 0.255281
\(195\) 2038.14 0.748482
\(196\) 0 0
\(197\) 4939.36 1.78637 0.893185 0.449690i \(-0.148466\pi\)
0.893185 + 0.449690i \(0.148466\pi\)
\(198\) −367.782 −0.132006
\(199\) −4132.56 −1.47211 −0.736054 0.676923i \(-0.763313\pi\)
−0.736054 + 0.676923i \(0.763313\pi\)
\(200\) −783.326 −0.276948
\(201\) 2353.85 0.826007
\(202\) −1028.27 −0.358164
\(203\) 0 0
\(204\) −738.488 −0.253453
\(205\) 485.797 0.165510
\(206\) 720.640 0.243735
\(207\) 236.500 0.0794101
\(208\) 1026.22 0.342095
\(209\) −1595.89 −0.528181
\(210\) 0 0
\(211\) −2124.78 −0.693250 −0.346625 0.938004i \(-0.612672\pi\)
−0.346625 + 0.938004i \(0.612672\pi\)
\(212\) 581.628 0.188426
\(213\) 577.307 0.185711
\(214\) 853.771 0.272722
\(215\) 2021.70 0.641296
\(216\) 816.604 0.257236
\(217\) 0 0
\(218\) 477.458 0.148337
\(219\) −6625.21 −2.04425
\(220\) 372.285 0.114088
\(221\) 1939.33 0.590287
\(222\) 1354.97 0.409639
\(223\) −5085.59 −1.52716 −0.763579 0.645715i \(-0.776559\pi\)
−0.763579 + 0.645715i \(0.776559\pi\)
\(224\) 0 0
\(225\) −1006.83 −0.298320
\(226\) 1586.42 0.466935
\(227\) 2114.86 0.618363 0.309182 0.951003i \(-0.399945\pi\)
0.309182 + 0.951003i \(0.399945\pi\)
\(228\) −2179.51 −0.633077
\(229\) 4315.54 1.24532 0.622662 0.782491i \(-0.286051\pi\)
0.622662 + 0.782491i \(0.286051\pi\)
\(230\) −239.396 −0.0686317
\(231\) 0 0
\(232\) −491.268 −0.139023
\(233\) −952.586 −0.267837 −0.133918 0.990992i \(-0.542756\pi\)
−0.133918 + 0.990992i \(0.542756\pi\)
\(234\) 1319.03 0.368495
\(235\) −698.144 −0.193795
\(236\) −187.332 −0.0516707
\(237\) −4428.43 −1.21374
\(238\) 0 0
\(239\) 4070.42 1.10165 0.550824 0.834622i \(-0.314314\pi\)
0.550824 + 0.834622i \(0.314314\pi\)
\(240\) 508.430 0.136746
\(241\) 2869.06 0.766856 0.383428 0.923571i \(-0.374743\pi\)
0.383428 + 0.923571i \(0.374743\pi\)
\(242\) −2022.35 −0.537196
\(243\) 2744.80 0.724605
\(244\) −1345.07 −0.352907
\(245\) 0 0
\(246\) 1139.93 0.295445
\(247\) 5723.57 1.47442
\(248\) −1264.55 −0.323786
\(249\) −1034.48 −0.263284
\(250\) 2320.22 0.586974
\(251\) −490.005 −0.123223 −0.0616113 0.998100i \(-0.519624\pi\)
−0.0616113 + 0.998100i \(0.519624\pi\)
\(252\) 0 0
\(253\) −411.324 −0.102212
\(254\) 4244.26 1.04846
\(255\) 960.819 0.235956
\(256\) 256.000 0.0625000
\(257\) 6181.91 1.50046 0.750228 0.661179i \(-0.229944\pi\)
0.750228 + 0.661179i \(0.229944\pi\)
\(258\) 4743.96 1.14475
\(259\) 0 0
\(260\) −1335.18 −0.318478
\(261\) −631.440 −0.149751
\(262\) −2388.22 −0.563148
\(263\) 7467.05 1.75072 0.875358 0.483476i \(-0.160626\pi\)
0.875358 + 0.483476i \(0.160626\pi\)
\(264\) 873.574 0.203654
\(265\) −756.734 −0.175418
\(266\) 0 0
\(267\) 928.049 0.212718
\(268\) −1542.00 −0.351465
\(269\) 7812.67 1.77081 0.885403 0.464824i \(-0.153882\pi\)
0.885403 + 0.464824i \(0.153882\pi\)
\(270\) −1062.45 −0.239477
\(271\) 3472.68 0.778415 0.389207 0.921150i \(-0.372749\pi\)
0.389207 + 0.921150i \(0.372749\pi\)
\(272\) 483.782 0.107844
\(273\) 0 0
\(274\) 1139.49 0.251237
\(275\) 1751.09 0.383981
\(276\) −561.747 −0.122512
\(277\) −1968.94 −0.427084 −0.213542 0.976934i \(-0.568500\pi\)
−0.213542 + 0.976934i \(0.568500\pi\)
\(278\) 4325.86 0.933266
\(279\) −1625.36 −0.348773
\(280\) 0 0
\(281\) 8301.12 1.76229 0.881144 0.472847i \(-0.156774\pi\)
0.881144 + 0.472847i \(0.156774\pi\)
\(282\) −1638.21 −0.345936
\(283\) 6468.15 1.35863 0.679314 0.733848i \(-0.262278\pi\)
0.679314 + 0.733848i \(0.262278\pi\)
\(284\) −378.193 −0.0790199
\(285\) 2835.68 0.589373
\(286\) −2294.08 −0.474307
\(287\) 0 0
\(288\) 329.044 0.0673232
\(289\) −3998.76 −0.813914
\(290\) 639.171 0.129425
\(291\) −2105.93 −0.424234
\(292\) 4340.17 0.869825
\(293\) −7281.48 −1.45184 −0.725919 0.687780i \(-0.758585\pi\)
−0.725919 + 0.687780i \(0.758585\pi\)
\(294\) 0 0
\(295\) 243.731 0.0481037
\(296\) −887.641 −0.174301
\(297\) −1825.49 −0.356651
\(298\) −483.476 −0.0939833
\(299\) 1475.19 0.285327
\(300\) 2391.47 0.460239
\(301\) 0 0
\(302\) −271.982 −0.0518239
\(303\) 3139.30 0.595208
\(304\) 1427.79 0.269374
\(305\) 1750.02 0.328544
\(306\) 621.818 0.116167
\(307\) 4371.49 0.812684 0.406342 0.913721i \(-0.366804\pi\)
0.406342 + 0.913721i \(0.366804\pi\)
\(308\) 0 0
\(309\) −2200.10 −0.405046
\(310\) 1645.26 0.301434
\(311\) 4794.62 0.874206 0.437103 0.899412i \(-0.356005\pi\)
0.437103 + 0.899412i \(0.356005\pi\)
\(312\) −3133.03 −0.568503
\(313\) −4250.11 −0.767509 −0.383755 0.923435i \(-0.625369\pi\)
−0.383755 + 0.923435i \(0.625369\pi\)
\(314\) 1490.09 0.267804
\(315\) 0 0
\(316\) 2901.06 0.516447
\(317\) −4167.97 −0.738475 −0.369237 0.929335i \(-0.620381\pi\)
−0.369237 + 0.929335i \(0.620381\pi\)
\(318\) −1775.69 −0.313132
\(319\) 1098.21 0.192752
\(320\) −333.072 −0.0581853
\(321\) −2606.54 −0.453218
\(322\) 0 0
\(323\) 2698.21 0.464806
\(324\) −3603.59 −0.617900
\(325\) −6280.21 −1.07189
\(326\) 4638.79 0.788095
\(327\) −1457.67 −0.246511
\(328\) −746.769 −0.125712
\(329\) 0 0
\(330\) −1136.58 −0.189595
\(331\) −9969.28 −1.65547 −0.827736 0.561118i \(-0.810371\pi\)
−0.827736 + 0.561118i \(0.810371\pi\)
\(332\) 677.689 0.112027
\(333\) −1140.91 −0.187752
\(334\) 6520.32 1.06819
\(335\) 2006.24 0.327202
\(336\) 0 0
\(337\) 2931.11 0.473792 0.236896 0.971535i \(-0.423870\pi\)
0.236896 + 0.971535i \(0.423870\pi\)
\(338\) 3833.60 0.616924
\(339\) −4843.31 −0.775966
\(340\) −629.431 −0.100399
\(341\) 2826.85 0.448922
\(342\) 1835.18 0.290162
\(343\) 0 0
\(344\) −3107.76 −0.487091
\(345\) 730.869 0.114054
\(346\) −5779.43 −0.897988
\(347\) 9969.80 1.54238 0.771191 0.636603i \(-0.219661\pi\)
0.771191 + 0.636603i \(0.219661\pi\)
\(348\) 1499.83 0.231032
\(349\) −10062.2 −1.54332 −0.771659 0.636037i \(-0.780573\pi\)
−0.771659 + 0.636037i \(0.780573\pi\)
\(350\) 0 0
\(351\) 6547.01 0.995594
\(352\) −572.278 −0.0866548
\(353\) −2932.91 −0.442218 −0.221109 0.975249i \(-0.570968\pi\)
−0.221109 + 0.975249i \(0.570968\pi\)
\(354\) 571.921 0.0858679
\(355\) 492.053 0.0735648
\(356\) −607.964 −0.0905113
\(357\) 0 0
\(358\) 7534.23 1.11228
\(359\) −4482.82 −0.659036 −0.329518 0.944149i \(-0.606886\pi\)
−0.329518 + 0.944149i \(0.606886\pi\)
\(360\) −428.107 −0.0626756
\(361\) 1104.27 0.160996
\(362\) 1556.51 0.225990
\(363\) 6174.18 0.892728
\(364\) 0 0
\(365\) −5646.83 −0.809777
\(366\) 4106.47 0.586472
\(367\) 9116.95 1.29673 0.648367 0.761328i \(-0.275452\pi\)
0.648367 + 0.761328i \(0.275452\pi\)
\(368\) 368.000 0.0521286
\(369\) −959.842 −0.135413
\(370\) 1154.88 0.162268
\(371\) 0 0
\(372\) 3860.64 0.538077
\(373\) 7015.28 0.973827 0.486914 0.873450i \(-0.338123\pi\)
0.486914 + 0.873450i \(0.338123\pi\)
\(374\) −1081.48 −0.149523
\(375\) −7083.57 −0.975451
\(376\) 1073.19 0.147196
\(377\) −3938.67 −0.538069
\(378\) 0 0
\(379\) 10704.4 1.45079 0.725394 0.688334i \(-0.241658\pi\)
0.725394 + 0.688334i \(0.241658\pi\)
\(380\) −1857.65 −0.250778
\(381\) −12957.6 −1.74236
\(382\) −7446.05 −0.997312
\(383\) 8442.79 1.12639 0.563194 0.826325i \(-0.309572\pi\)
0.563194 + 0.826325i \(0.309572\pi\)
\(384\) −781.561 −0.103864
\(385\) 0 0
\(386\) −6956.60 −0.917310
\(387\) −3994.49 −0.524681
\(388\) 1379.59 0.180511
\(389\) 4443.70 0.579189 0.289595 0.957149i \(-0.406480\pi\)
0.289595 + 0.957149i \(0.406480\pi\)
\(390\) 4076.27 0.529257
\(391\) 695.437 0.0899483
\(392\) 0 0
\(393\) 7291.18 0.935856
\(394\) 9878.72 1.26315
\(395\) −3774.46 −0.480794
\(396\) −735.564 −0.0933421
\(397\) 11776.5 1.48878 0.744390 0.667745i \(-0.232740\pi\)
0.744390 + 0.667745i \(0.232740\pi\)
\(398\) −8265.12 −1.04094
\(399\) 0 0
\(400\) −1566.65 −0.195831
\(401\) −190.858 −0.0237681 −0.0118840 0.999929i \(-0.503783\pi\)
−0.0118840 + 0.999929i \(0.503783\pi\)
\(402\) 4707.69 0.584075
\(403\) −10138.4 −1.25317
\(404\) −2056.55 −0.253260
\(405\) 4688.50 0.575244
\(406\) 0 0
\(407\) 1984.28 0.241664
\(408\) −1476.98 −0.179219
\(409\) −2722.13 −0.329097 −0.164549 0.986369i \(-0.552617\pi\)
−0.164549 + 0.986369i \(0.552617\pi\)
\(410\) 971.593 0.117033
\(411\) −3478.83 −0.417514
\(412\) 1441.28 0.172347
\(413\) 0 0
\(414\) 473.000 0.0561514
\(415\) −881.716 −0.104293
\(416\) 2052.44 0.241898
\(417\) −13206.8 −1.55093
\(418\) −3191.78 −0.373481
\(419\) 873.607 0.101858 0.0509290 0.998702i \(-0.483782\pi\)
0.0509290 + 0.998702i \(0.483782\pi\)
\(420\) 0 0
\(421\) −7984.18 −0.924287 −0.462144 0.886805i \(-0.652920\pi\)
−0.462144 + 0.886805i \(0.652920\pi\)
\(422\) −4249.55 −0.490202
\(423\) 1379.40 0.158555
\(424\) 1163.26 0.133237
\(425\) −2960.62 −0.337909
\(426\) 1154.61 0.131318
\(427\) 0 0
\(428\) 1707.54 0.192844
\(429\) 7003.76 0.788216
\(430\) 4043.40 0.453465
\(431\) 6074.49 0.678882 0.339441 0.940627i \(-0.389762\pi\)
0.339441 + 0.940627i \(0.389762\pi\)
\(432\) 1633.21 0.181893
\(433\) −332.495 −0.0369023 −0.0184511 0.999830i \(-0.505874\pi\)
−0.0184511 + 0.999830i \(0.505874\pi\)
\(434\) 0 0
\(435\) −1951.37 −0.215083
\(436\) 954.915 0.104890
\(437\) 2052.45 0.224673
\(438\) −13250.4 −1.44550
\(439\) −1005.04 −0.109267 −0.0546333 0.998506i \(-0.517399\pi\)
−0.0546333 + 0.998506i \(0.517399\pi\)
\(440\) 744.569 0.0806726
\(441\) 0 0
\(442\) 3878.66 0.417396
\(443\) −10495.2 −1.12560 −0.562800 0.826593i \(-0.690276\pi\)
−0.562800 + 0.826593i \(0.690276\pi\)
\(444\) 2709.95 0.289658
\(445\) 790.999 0.0842628
\(446\) −10171.2 −1.07986
\(447\) 1476.04 0.156184
\(448\) 0 0
\(449\) −3788.61 −0.398208 −0.199104 0.979978i \(-0.563803\pi\)
−0.199104 + 0.979978i \(0.563803\pi\)
\(450\) −2013.66 −0.210944
\(451\) 1669.37 0.174296
\(452\) 3172.85 0.330173
\(453\) 830.354 0.0861224
\(454\) 4229.73 0.437249
\(455\) 0 0
\(456\) −4359.02 −0.447653
\(457\) −5627.87 −0.576062 −0.288031 0.957621i \(-0.593001\pi\)
−0.288031 + 0.957621i \(0.593001\pi\)
\(458\) 8631.09 0.880577
\(459\) 3086.40 0.313858
\(460\) −478.791 −0.0485299
\(461\) 12436.8 1.25649 0.628243 0.778017i \(-0.283774\pi\)
0.628243 + 0.778017i \(0.283774\pi\)
\(462\) 0 0
\(463\) 7017.24 0.704360 0.352180 0.935932i \(-0.385440\pi\)
0.352180 + 0.935932i \(0.385440\pi\)
\(464\) −982.536 −0.0983040
\(465\) −5022.93 −0.500931
\(466\) −1905.17 −0.189389
\(467\) −8428.61 −0.835181 −0.417591 0.908635i \(-0.637125\pi\)
−0.417591 + 0.908635i \(0.637125\pi\)
\(468\) 2638.06 0.260565
\(469\) 0 0
\(470\) −1396.29 −0.137034
\(471\) −4549.20 −0.445045
\(472\) −374.665 −0.0365367
\(473\) 6947.28 0.675341
\(474\) −8856.85 −0.858246
\(475\) −8737.72 −0.844030
\(476\) 0 0
\(477\) 1495.16 0.143519
\(478\) 8140.84 0.778982
\(479\) 13500.8 1.28782 0.643911 0.765101i \(-0.277311\pi\)
0.643911 + 0.765101i \(0.277311\pi\)
\(480\) 1016.86 0.0966940
\(481\) −7116.54 −0.674608
\(482\) 5738.11 0.542249
\(483\) 0 0
\(484\) −4044.70 −0.379855
\(485\) −1794.94 −0.168049
\(486\) 5489.60 0.512373
\(487\) 13315.2 1.23896 0.619478 0.785014i \(-0.287344\pi\)
0.619478 + 0.785014i \(0.287344\pi\)
\(488\) −2690.14 −0.249543
\(489\) −14162.1 −1.30968
\(490\) 0 0
\(491\) 10760.2 0.989006 0.494503 0.869176i \(-0.335350\pi\)
0.494503 + 0.869176i \(0.335350\pi\)
\(492\) 2279.87 0.208911
\(493\) −1856.77 −0.169624
\(494\) 11447.1 1.04257
\(495\) 957.015 0.0868982
\(496\) −2529.10 −0.228951
\(497\) 0 0
\(498\) −2068.97 −0.186170
\(499\) −3699.17 −0.331859 −0.165929 0.986138i \(-0.553062\pi\)
−0.165929 + 0.986138i \(0.553062\pi\)
\(500\) 4640.44 0.415054
\(501\) −19906.4 −1.77515
\(502\) −980.011 −0.0871315
\(503\) −9014.79 −0.799104 −0.399552 0.916710i \(-0.630834\pi\)
−0.399552 + 0.916710i \(0.630834\pi\)
\(504\) 0 0
\(505\) 2675.70 0.235777
\(506\) −822.649 −0.0722751
\(507\) −11703.9 −1.02522
\(508\) 8488.51 0.741372
\(509\) 16396.9 1.42786 0.713928 0.700219i \(-0.246915\pi\)
0.713928 + 0.700219i \(0.246915\pi\)
\(510\) 1921.64 0.166846
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 9108.93 0.783955
\(514\) 12363.8 1.06098
\(515\) −1875.20 −0.160449
\(516\) 9487.92 0.809462
\(517\) −2399.07 −0.204083
\(518\) 0 0
\(519\) 17644.4 1.49230
\(520\) −2670.36 −0.225198
\(521\) 4259.59 0.358188 0.179094 0.983832i \(-0.442683\pi\)
0.179094 + 0.983832i \(0.442683\pi\)
\(522\) −1262.88 −0.105890
\(523\) 15541.2 1.29937 0.649686 0.760203i \(-0.274901\pi\)
0.649686 + 0.760203i \(0.274901\pi\)
\(524\) −4776.44 −0.398206
\(525\) 0 0
\(526\) 14934.1 1.23794
\(527\) −4779.43 −0.395057
\(528\) 1747.15 0.144005
\(529\) 529.000 0.0434783
\(530\) −1513.47 −0.124039
\(531\) −481.566 −0.0393563
\(532\) 0 0
\(533\) −5987.12 −0.486549
\(534\) 1856.10 0.150414
\(535\) −2221.62 −0.179531
\(536\) −3084.00 −0.248524
\(537\) −23001.8 −1.84842
\(538\) 15625.3 1.25215
\(539\) 0 0
\(540\) −2124.91 −0.169336
\(541\) −15295.4 −1.21553 −0.607765 0.794117i \(-0.707934\pi\)
−0.607765 + 0.794117i \(0.707934\pi\)
\(542\) 6945.36 0.550422
\(543\) −4751.98 −0.375556
\(544\) 967.565 0.0762573
\(545\) −1242.41 −0.0976492
\(546\) 0 0
\(547\) 6475.62 0.506175 0.253087 0.967443i \(-0.418554\pi\)
0.253087 + 0.967443i \(0.418554\pi\)
\(548\) 2278.98 0.177652
\(549\) −3457.71 −0.268801
\(550\) 3502.19 0.271516
\(551\) −5479.92 −0.423688
\(552\) −1123.49 −0.0866288
\(553\) 0 0
\(554\) −3937.89 −0.301994
\(555\) −3525.81 −0.269662
\(556\) 8651.73 0.659919
\(557\) −9228.26 −0.702000 −0.351000 0.936375i \(-0.614158\pi\)
−0.351000 + 0.936375i \(0.614158\pi\)
\(558\) −3250.72 −0.246620
\(559\) −24916.1 −1.88522
\(560\) 0 0
\(561\) 3301.72 0.248482
\(562\) 16602.2 1.24613
\(563\) −3158.50 −0.236438 −0.118219 0.992988i \(-0.537719\pi\)
−0.118219 + 0.992988i \(0.537719\pi\)
\(564\) −3276.42 −0.244614
\(565\) −4128.08 −0.307380
\(566\) 12936.3 0.960694
\(567\) 0 0
\(568\) −756.387 −0.0558755
\(569\) 2719.58 0.200371 0.100185 0.994969i \(-0.468056\pi\)
0.100185 + 0.994969i \(0.468056\pi\)
\(570\) 5671.36 0.416749
\(571\) −14509.7 −1.06342 −0.531710 0.846926i \(-0.678450\pi\)
−0.531710 + 0.846926i \(0.678450\pi\)
\(572\) −4588.16 −0.335385
\(573\) 22732.6 1.65736
\(574\) 0 0
\(575\) −2252.06 −0.163335
\(576\) 658.087 0.0476047
\(577\) 4303.60 0.310505 0.155252 0.987875i \(-0.450381\pi\)
0.155252 + 0.987875i \(0.450381\pi\)
\(578\) −7997.52 −0.575524
\(579\) 21238.3 1.52441
\(580\) 1278.34 0.0915176
\(581\) 0 0
\(582\) −4211.87 −0.299978
\(583\) −2600.41 −0.184731
\(584\) 8680.33 0.615059
\(585\) −3432.29 −0.242577
\(586\) −14563.0 −1.02660
\(587\) 4929.62 0.346622 0.173311 0.984867i \(-0.444553\pi\)
0.173311 + 0.984867i \(0.444553\pi\)
\(588\) 0 0
\(589\) −14105.6 −0.986776
\(590\) 487.462 0.0340144
\(591\) −30159.5 −2.09915
\(592\) −1775.28 −0.123249
\(593\) 1348.82 0.0934056 0.0467028 0.998909i \(-0.485129\pi\)
0.0467028 + 0.998909i \(0.485129\pi\)
\(594\) −3650.97 −0.252190
\(595\) 0 0
\(596\) −966.952 −0.0664562
\(597\) 25233.2 1.72986
\(598\) 2950.39 0.201757
\(599\) −9007.72 −0.614433 −0.307217 0.951640i \(-0.599398\pi\)
−0.307217 + 0.951640i \(0.599398\pi\)
\(600\) 4782.95 0.325438
\(601\) 18277.2 1.24050 0.620251 0.784403i \(-0.287031\pi\)
0.620251 + 0.784403i \(0.287031\pi\)
\(602\) 0 0
\(603\) −3963.95 −0.267702
\(604\) −543.964 −0.0366450
\(605\) 5262.41 0.353632
\(606\) 6278.59 0.420875
\(607\) −2473.95 −0.165428 −0.0827139 0.996573i \(-0.526359\pi\)
−0.0827139 + 0.996573i \(0.526359\pi\)
\(608\) 2855.59 0.190476
\(609\) 0 0
\(610\) 3500.05 0.232316
\(611\) 8604.15 0.569700
\(612\) 1243.64 0.0821422
\(613\) −18525.0 −1.22058 −0.610292 0.792177i \(-0.708948\pi\)
−0.610292 + 0.792177i \(0.708948\pi\)
\(614\) 8742.97 0.574654
\(615\) −2966.25 −0.194489
\(616\) 0 0
\(617\) 2856.55 0.186386 0.0931930 0.995648i \(-0.470293\pi\)
0.0931930 + 0.995648i \(0.470293\pi\)
\(618\) −4400.19 −0.286411
\(619\) 10015.9 0.650362 0.325181 0.945652i \(-0.394575\pi\)
0.325181 + 0.945652i \(0.394575\pi\)
\(620\) 3290.52 0.213146
\(621\) 2347.74 0.151709
\(622\) 9589.24 0.618157
\(623\) 0 0
\(624\) −6266.06 −0.401992
\(625\) 6201.96 0.396926
\(626\) −8500.22 −0.542711
\(627\) 9744.41 0.620661
\(628\) 2980.18 0.189366
\(629\) −3354.88 −0.212668
\(630\) 0 0
\(631\) −9494.45 −0.598998 −0.299499 0.954097i \(-0.596820\pi\)
−0.299499 + 0.954097i \(0.596820\pi\)
\(632\) 5802.11 0.365183
\(633\) 12973.8 0.814631
\(634\) −8335.94 −0.522180
\(635\) −11044.1 −0.690191
\(636\) −3551.39 −0.221418
\(637\) 0 0
\(638\) 2196.42 0.136296
\(639\) −972.204 −0.0601875
\(640\) −666.144 −0.0411432
\(641\) −17412.6 −1.07294 −0.536471 0.843919i \(-0.680243\pi\)
−0.536471 + 0.843919i \(0.680243\pi\)
\(642\) −5213.08 −0.320473
\(643\) −7267.11 −0.445703 −0.222851 0.974852i \(-0.571536\pi\)
−0.222851 + 0.974852i \(0.571536\pi\)
\(644\) 0 0
\(645\) −12344.4 −0.753581
\(646\) 5396.42 0.328668
\(647\) −16217.0 −0.985405 −0.492702 0.870198i \(-0.663991\pi\)
−0.492702 + 0.870198i \(0.663991\pi\)
\(648\) −7207.19 −0.436921
\(649\) 837.547 0.0506573
\(650\) −12560.4 −0.757939
\(651\) 0 0
\(652\) 9277.58 0.557267
\(653\) 20809.4 1.24707 0.623533 0.781797i \(-0.285697\pi\)
0.623533 + 0.781797i \(0.285697\pi\)
\(654\) −2915.33 −0.174310
\(655\) 6214.46 0.370716
\(656\) −1493.54 −0.0888915
\(657\) 11157.1 0.662524
\(658\) 0 0
\(659\) −14682.0 −0.867876 −0.433938 0.900943i \(-0.642876\pi\)
−0.433938 + 0.900943i \(0.642876\pi\)
\(660\) −2273.15 −0.134064
\(661\) −30806.3 −1.81275 −0.906375 0.422474i \(-0.861162\pi\)
−0.906375 + 0.422474i \(0.861162\pi\)
\(662\) −19938.6 −1.17060
\(663\) −11841.4 −0.693641
\(664\) 1355.38 0.0792151
\(665\) 0 0
\(666\) −2281.82 −0.132761
\(667\) −1412.39 −0.0819912
\(668\) 13040.6 0.755326
\(669\) 31052.3 1.79455
\(670\) 4012.48 0.231367
\(671\) 6013.71 0.345986
\(672\) 0 0
\(673\) 12868.9 0.737085 0.368543 0.929611i \(-0.379857\pi\)
0.368543 + 0.929611i \(0.379857\pi\)
\(674\) 5862.23 0.335022
\(675\) −9994.80 −0.569926
\(676\) 7667.20 0.436231
\(677\) −34645.7 −1.96683 −0.983415 0.181372i \(-0.941946\pi\)
−0.983415 + 0.181372i \(0.941946\pi\)
\(678\) −9686.62 −0.548691
\(679\) 0 0
\(680\) −1258.86 −0.0709929
\(681\) −12913.2 −0.726633
\(682\) 5653.70 0.317436
\(683\) −33846.1 −1.89617 −0.948085 0.318017i \(-0.896983\pi\)
−0.948085 + 0.318017i \(0.896983\pi\)
\(684\) 3670.36 0.205175
\(685\) −2965.10 −0.165388
\(686\) 0 0
\(687\) −26350.5 −1.46337
\(688\) −6215.53 −0.344425
\(689\) 9326.24 0.515677
\(690\) 1461.74 0.0806484
\(691\) 3306.85 0.182053 0.0910265 0.995848i \(-0.470985\pi\)
0.0910265 + 0.995848i \(0.470985\pi\)
\(692\) −11558.9 −0.634973
\(693\) 0 0
\(694\) 19939.6 1.09063
\(695\) −11256.4 −0.614362
\(696\) 2999.66 0.163364
\(697\) −2822.45 −0.153383
\(698\) −20124.4 −1.09129
\(699\) 5816.44 0.314733
\(700\) 0 0
\(701\) −9580.87 −0.516212 −0.258106 0.966117i \(-0.583098\pi\)
−0.258106 + 0.966117i \(0.583098\pi\)
\(702\) 13094.0 0.703992
\(703\) −9901.32 −0.531202
\(704\) −1144.56 −0.0612742
\(705\) 4262.83 0.227727
\(706\) −5865.81 −0.312695
\(707\) 0 0
\(708\) 1143.84 0.0607178
\(709\) −932.829 −0.0494120 −0.0247060 0.999695i \(-0.507865\pi\)
−0.0247060 + 0.999695i \(0.507865\pi\)
\(710\) 984.107 0.0520181
\(711\) 7457.61 0.393365
\(712\) −1215.93 −0.0640011
\(713\) −3635.58 −0.190959
\(714\) 0 0
\(715\) 5969.48 0.312232
\(716\) 15068.5 0.786501
\(717\) −24853.8 −1.29454
\(718\) −8965.63 −0.466009
\(719\) 25295.4 1.31205 0.656023 0.754741i \(-0.272237\pi\)
0.656023 + 0.754741i \(0.272237\pi\)
\(720\) −856.213 −0.0443183
\(721\) 0 0
\(722\) 2208.54 0.113841
\(723\) −17518.3 −0.901125
\(724\) 3113.02 0.159799
\(725\) 6012.86 0.308016
\(726\) 12348.4 0.631254
\(727\) −12222.1 −0.623512 −0.311756 0.950162i \(-0.600917\pi\)
−0.311756 + 0.950162i \(0.600917\pi\)
\(728\) 0 0
\(729\) 7564.64 0.384324
\(730\) −11293.7 −0.572599
\(731\) −11745.9 −0.594308
\(732\) 8212.94 0.414698
\(733\) 21001.3 1.05825 0.529127 0.848543i \(-0.322520\pi\)
0.529127 + 0.848543i \(0.322520\pi\)
\(734\) 18233.9 0.916929
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 6894.16 0.344572
\(738\) −1919.68 −0.0957514
\(739\) 9387.70 0.467297 0.233648 0.972321i \(-0.424934\pi\)
0.233648 + 0.972321i \(0.424934\pi\)
\(740\) 2309.75 0.114741
\(741\) −34947.8 −1.73258
\(742\) 0 0
\(743\) 14386.9 0.710370 0.355185 0.934796i \(-0.384418\pi\)
0.355185 + 0.934796i \(0.384418\pi\)
\(744\) 7721.27 0.380478
\(745\) 1258.07 0.0618684
\(746\) 14030.6 0.688600
\(747\) 1742.10 0.0853282
\(748\) −2162.95 −0.105729
\(749\) 0 0
\(750\) −14167.1 −0.689748
\(751\) 23158.3 1.12525 0.562623 0.826714i \(-0.309792\pi\)
0.562623 + 0.826714i \(0.309792\pi\)
\(752\) 2146.38 0.104083
\(753\) 2991.95 0.144798
\(754\) −7877.34 −0.380472
\(755\) 707.732 0.0341152
\(756\) 0 0
\(757\) −16683.3 −0.801011 −0.400505 0.916294i \(-0.631165\pi\)
−0.400505 + 0.916294i \(0.631165\pi\)
\(758\) 21408.8 1.02586
\(759\) 2511.53 0.120109
\(760\) −3715.30 −0.177327
\(761\) −33544.5 −1.59788 −0.798939 0.601411i \(-0.794605\pi\)
−0.798939 + 0.601411i \(0.794605\pi\)
\(762\) −25915.2 −1.23203
\(763\) 0 0
\(764\) −14892.1 −0.705206
\(765\) −1618.05 −0.0764715
\(766\) 16885.6 0.796476
\(767\) −3003.82 −0.141410
\(768\) −1563.12 −0.0734432
\(769\) −8595.19 −0.403056 −0.201528 0.979483i \(-0.564591\pi\)
−0.201528 + 0.979483i \(0.564591\pi\)
\(770\) 0 0
\(771\) −37746.4 −1.76317
\(772\) −13913.2 −0.648636
\(773\) 21270.6 0.989718 0.494859 0.868973i \(-0.335220\pi\)
0.494859 + 0.868973i \(0.335220\pi\)
\(774\) −7988.98 −0.371005
\(775\) 15477.4 0.717374
\(776\) 2759.19 0.127641
\(777\) 0 0
\(778\) 8887.40 0.409549
\(779\) −8329.94 −0.383121
\(780\) 8152.54 0.374241
\(781\) 1690.87 0.0774701
\(782\) 1390.87 0.0636030
\(783\) −6268.30 −0.286093
\(784\) 0 0
\(785\) −3877.40 −0.176293
\(786\) 14582.4 0.661750
\(787\) −5126.37 −0.232192 −0.116096 0.993238i \(-0.537038\pi\)
−0.116096 + 0.993238i \(0.537038\pi\)
\(788\) 19757.4 0.893185
\(789\) −45593.4 −2.05725
\(790\) −7548.92 −0.339973
\(791\) 0 0
\(792\) −1471.13 −0.0660028
\(793\) −21567.9 −0.965822
\(794\) 23553.0 1.05273
\(795\) 4620.58 0.206132
\(796\) −16530.2 −0.736054
\(797\) −3947.55 −0.175445 −0.0877223 0.996145i \(-0.527959\pi\)
−0.0877223 + 0.996145i \(0.527959\pi\)
\(798\) 0 0
\(799\) 4056.17 0.179596
\(800\) −3133.30 −0.138474
\(801\) −1562.86 −0.0689402
\(802\) −381.716 −0.0168066
\(803\) −19404.5 −0.852766
\(804\) 9415.38 0.413004
\(805\) 0 0
\(806\) −20276.7 −0.886125
\(807\) −47703.8 −2.08086
\(808\) −4113.10 −0.179082
\(809\) 14952.8 0.649830 0.324915 0.945743i \(-0.394664\pi\)
0.324915 + 0.945743i \(0.394664\pi\)
\(810\) 9377.01 0.406759
\(811\) 6095.32 0.263916 0.131958 0.991255i \(-0.457874\pi\)
0.131958 + 0.991255i \(0.457874\pi\)
\(812\) 0 0
\(813\) −21204.0 −0.914707
\(814\) 3968.57 0.170882
\(815\) −12070.7 −0.518796
\(816\) −2953.95 −0.126727
\(817\) −34666.0 −1.48447
\(818\) −5444.27 −0.232707
\(819\) 0 0
\(820\) 1943.19 0.0827549
\(821\) −116.814 −0.00496571 −0.00248285 0.999997i \(-0.500790\pi\)
−0.00248285 + 0.999997i \(0.500790\pi\)
\(822\) −6957.66 −0.295227
\(823\) 10320.1 0.437104 0.218552 0.975825i \(-0.429867\pi\)
0.218552 + 0.975825i \(0.429867\pi\)
\(824\) 2882.56 0.121867
\(825\) −10692.1 −0.451213
\(826\) 0 0
\(827\) 45399.2 1.90893 0.954464 0.298325i \(-0.0964281\pi\)
0.954464 + 0.298325i \(0.0964281\pi\)
\(828\) 946.000 0.0397051
\(829\) 28762.4 1.20502 0.602509 0.798112i \(-0.294168\pi\)
0.602509 + 0.798112i \(0.294168\pi\)
\(830\) −1763.43 −0.0737465
\(831\) 12022.3 0.501863
\(832\) 4104.89 0.171047
\(833\) 0 0
\(834\) −26413.5 −1.09667
\(835\) −16966.7 −0.703182
\(836\) −6383.55 −0.264091
\(837\) −16134.9 −0.666314
\(838\) 1747.21 0.0720245
\(839\) −31285.0 −1.28734 −0.643671 0.765303i \(-0.722589\pi\)
−0.643671 + 0.765303i \(0.722589\pi\)
\(840\) 0 0
\(841\) −20618.0 −0.845381
\(842\) −15968.4 −0.653570
\(843\) −50686.2 −2.07085
\(844\) −8499.11 −0.346625
\(845\) −9975.51 −0.406116
\(846\) 2758.80 0.112115
\(847\) 0 0
\(848\) 2326.51 0.0942131
\(849\) −39494.2 −1.59651
\(850\) −5921.24 −0.238937
\(851\) −2551.97 −0.102797
\(852\) 2309.23 0.0928555
\(853\) 29226.1 1.17313 0.586566 0.809901i \(-0.300479\pi\)
0.586566 + 0.809901i \(0.300479\pi\)
\(854\) 0 0
\(855\) −4775.38 −0.191011
\(856\) 3415.08 0.136361
\(857\) 9051.41 0.360782 0.180391 0.983595i \(-0.442264\pi\)
0.180391 + 0.983595i \(0.442264\pi\)
\(858\) 14007.5 0.557353
\(859\) 10204.6 0.405326 0.202663 0.979249i \(-0.435040\pi\)
0.202663 + 0.979249i \(0.435040\pi\)
\(860\) 8086.79 0.320648
\(861\) 0 0
\(862\) 12149.0 0.480042
\(863\) −16529.1 −0.651978 −0.325989 0.945373i \(-0.605697\pi\)
−0.325989 + 0.945373i \(0.605697\pi\)
\(864\) 3266.42 0.128618
\(865\) 15038.8 0.591138
\(866\) −664.990 −0.0260938
\(867\) 24416.2 0.956423
\(868\) 0 0
\(869\) −12970.4 −0.506318
\(870\) −3902.74 −0.152087
\(871\) −24725.6 −0.961876
\(872\) 1909.83 0.0741686
\(873\) 3546.46 0.137491
\(874\) 4104.91 0.158868
\(875\) 0 0
\(876\) −26500.8 −1.02212
\(877\) −14080.8 −0.542159 −0.271079 0.962557i \(-0.587381\pi\)
−0.271079 + 0.962557i \(0.587381\pi\)
\(878\) −2010.08 −0.0772631
\(879\) 44460.3 1.70604
\(880\) 1489.14 0.0570442
\(881\) 49428.8 1.89024 0.945119 0.326727i \(-0.105946\pi\)
0.945119 + 0.326727i \(0.105946\pi\)
\(882\) 0 0
\(883\) 20305.2 0.773869 0.386934 0.922107i \(-0.373534\pi\)
0.386934 + 0.922107i \(0.373534\pi\)
\(884\) 7757.32 0.295143
\(885\) −1488.21 −0.0565261
\(886\) −20990.4 −0.795919
\(887\) 12794.6 0.484328 0.242164 0.970235i \(-0.422143\pi\)
0.242164 + 0.970235i \(0.422143\pi\)
\(888\) 5419.89 0.204819
\(889\) 0 0
\(890\) 1582.00 0.0595828
\(891\) 16111.4 0.605781
\(892\) −20342.3 −0.763579
\(893\) 11971.0 0.448595
\(894\) 2952.08 0.110439
\(895\) −19605.0 −0.732205
\(896\) 0 0
\(897\) −9007.46 −0.335285
\(898\) −7577.21 −0.281576
\(899\) 9706.76 0.360110
\(900\) −4027.32 −0.149160
\(901\) 4396.58 0.162565
\(902\) 3338.74 0.123246
\(903\) 0 0
\(904\) 6345.70 0.233468
\(905\) −4050.23 −0.148767
\(906\) 1660.71 0.0608977
\(907\) −40019.0 −1.46506 −0.732530 0.680734i \(-0.761661\pi\)
−0.732530 + 0.680734i \(0.761661\pi\)
\(908\) 8459.45 0.309182
\(909\) −5286.68 −0.192902
\(910\) 0 0
\(911\) −42922.5 −1.56102 −0.780508 0.625146i \(-0.785039\pi\)
−0.780508 + 0.625146i \(0.785039\pi\)
\(912\) −8718.04 −0.316539
\(913\) −3029.89 −0.109830
\(914\) −11255.7 −0.407338
\(915\) −10685.6 −0.386069
\(916\) 17262.2 0.622662
\(917\) 0 0
\(918\) 6172.79 0.221931
\(919\) −14773.7 −0.530294 −0.265147 0.964208i \(-0.585421\pi\)
−0.265147 + 0.964208i \(0.585421\pi\)
\(920\) −957.583 −0.0343158
\(921\) −26692.1 −0.954977
\(922\) 24873.6 0.888470
\(923\) −6064.23 −0.216258
\(924\) 0 0
\(925\) 10864.3 0.386178
\(926\) 14034.5 0.498058
\(927\) 3705.03 0.131272
\(928\) −1965.07 −0.0695114
\(929\) −28082.1 −0.991757 −0.495879 0.868392i \(-0.665154\pi\)
−0.495879 + 0.868392i \(0.665154\pi\)
\(930\) −10045.9 −0.354212
\(931\) 0 0
\(932\) −3810.34 −0.133918
\(933\) −29275.7 −1.02727
\(934\) −16857.2 −0.590562
\(935\) 2814.14 0.0984301
\(936\) 5276.12 0.184247
\(937\) −43990.5 −1.53373 −0.766866 0.641808i \(-0.778185\pi\)
−0.766866 + 0.641808i \(0.778185\pi\)
\(938\) 0 0
\(939\) 25951.0 0.901893
\(940\) −2792.57 −0.0968976
\(941\) −51810.9 −1.79489 −0.897443 0.441130i \(-0.854578\pi\)
−0.897443 + 0.441130i \(0.854578\pi\)
\(942\) −9098.41 −0.314694
\(943\) −2146.96 −0.0741407
\(944\) −749.329 −0.0258354
\(945\) 0 0
\(946\) 13894.6 0.477538
\(947\) 29776.6 1.02176 0.510881 0.859651i \(-0.329319\pi\)
0.510881 + 0.859651i \(0.329319\pi\)
\(948\) −17713.7 −0.606872
\(949\) 69593.4 2.38050
\(950\) −17475.4 −0.596819
\(951\) 25449.4 0.867774
\(952\) 0 0
\(953\) 23763.0 0.807722 0.403861 0.914820i \(-0.367668\pi\)
0.403861 + 0.914820i \(0.367668\pi\)
\(954\) 2990.33 0.101484
\(955\) 19375.6 0.656522
\(956\) 16281.7 0.550824
\(957\) −6705.61 −0.226501
\(958\) 27001.6 0.910627
\(959\) 0 0
\(960\) 2033.72 0.0683730
\(961\) −4805.29 −0.161300
\(962\) −14233.1 −0.477020
\(963\) 4389.50 0.146884
\(964\) 11476.2 0.383428
\(965\) 18102.0 0.603858
\(966\) 0 0
\(967\) −37060.0 −1.23244 −0.616219 0.787575i \(-0.711336\pi\)
−0.616219 + 0.787575i \(0.711336\pi\)
\(968\) −8089.39 −0.268598
\(969\) −16475.1 −0.546189
\(970\) −3589.88 −0.118829
\(971\) 38147.8 1.26078 0.630391 0.776278i \(-0.282894\pi\)
0.630391 + 0.776278i \(0.282894\pi\)
\(972\) 10979.2 0.362303
\(973\) 0 0
\(974\) 26630.5 0.876074
\(975\) 38346.6 1.25956
\(976\) −5380.29 −0.176454
\(977\) 52503.0 1.71926 0.859632 0.510914i \(-0.170693\pi\)
0.859632 + 0.510914i \(0.170693\pi\)
\(978\) −28324.2 −0.926083
\(979\) 2718.16 0.0887361
\(980\) 0 0
\(981\) 2454.76 0.0798923
\(982\) 21520.4 0.699333
\(983\) 15812.2 0.513054 0.256527 0.966537i \(-0.417422\pi\)
0.256527 + 0.966537i \(0.417422\pi\)
\(984\) 4559.73 0.147722
\(985\) −25705.7 −0.831524
\(986\) −3713.54 −0.119942
\(987\) 0 0
\(988\) 22894.3 0.737211
\(989\) −8934.82 −0.287271
\(990\) 1914.03 0.0614463
\(991\) 34918.9 1.11931 0.559655 0.828726i \(-0.310934\pi\)
0.559655 + 0.828726i \(0.310934\pi\)
\(992\) −5058.20 −0.161893
\(993\) 60871.9 1.94533
\(994\) 0 0
\(995\) 21506.9 0.685241
\(996\) −4137.93 −0.131642
\(997\) 16065.5 0.510331 0.255165 0.966897i \(-0.417870\pi\)
0.255165 + 0.966897i \(0.417870\pi\)
\(998\) −7398.34 −0.234660
\(999\) −11325.8 −0.358691
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.3 11
7.2 even 3 322.4.e.a.277.9 yes 22
7.4 even 3 322.4.e.a.93.9 22
7.6 odd 2 2254.4.a.v.1.9 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.9 22 7.4 even 3
322.4.e.a.277.9 yes 22 7.2 even 3
2254.4.a.v.1.9 11 7.6 odd 2
2254.4.a.y.1.3 11 1.1 even 1 trivial