Properties

Label 2254.4.a.y.1.11
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-8.28452\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +10.2845 q^{3} +4.00000 q^{4} -16.3087 q^{5} +20.5690 q^{6} +8.00000 q^{8} +78.7713 q^{9} -32.6174 q^{10} -27.6343 q^{11} +41.1381 q^{12} -18.8028 q^{13} -167.727 q^{15} +16.0000 q^{16} -32.0518 q^{17} +157.543 q^{18} +57.0546 q^{19} -65.2348 q^{20} -55.2687 q^{22} +23.0000 q^{23} +82.2761 q^{24} +140.974 q^{25} -37.6056 q^{26} +532.442 q^{27} +104.726 q^{29} -335.454 q^{30} +225.677 q^{31} +32.0000 q^{32} -284.206 q^{33} -64.1036 q^{34} +315.085 q^{36} -1.51721 q^{37} +114.109 q^{38} -193.377 q^{39} -130.470 q^{40} +418.186 q^{41} -488.129 q^{43} -110.537 q^{44} -1284.66 q^{45} +46.0000 q^{46} +548.023 q^{47} +164.552 q^{48} +281.947 q^{50} -329.637 q^{51} -75.2111 q^{52} +451.501 q^{53} +1064.88 q^{54} +450.680 q^{55} +586.779 q^{57} +209.452 q^{58} -396.484 q^{59} -670.908 q^{60} +851.200 q^{61} +451.353 q^{62} +64.0000 q^{64} +306.649 q^{65} -568.412 q^{66} +291.392 q^{67} -128.207 q^{68} +236.544 q^{69} +504.181 q^{71} +630.170 q^{72} -18.6661 q^{73} -3.03442 q^{74} +1449.85 q^{75} +228.218 q^{76} -386.755 q^{78} +438.759 q^{79} -260.939 q^{80} +3349.09 q^{81} +836.373 q^{82} +83.2225 q^{83} +522.723 q^{85} -976.257 q^{86} +1077.06 q^{87} -221.075 q^{88} -425.962 q^{89} -2569.31 q^{90} +92.0000 q^{92} +2320.98 q^{93} +1096.05 q^{94} -930.487 q^{95} +329.104 q^{96} +784.072 q^{97} -2176.79 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 10.2845 1.97926 0.989628 0.143654i \(-0.0458853\pi\)
0.989628 + 0.143654i \(0.0458853\pi\)
\(4\) 4.00000 0.500000
\(5\) −16.3087 −1.45869 −0.729347 0.684144i \(-0.760176\pi\)
−0.729347 + 0.684144i \(0.760176\pi\)
\(6\) 20.5690 1.39955
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 78.7713 2.91745
\(10\) −32.6174 −1.03145
\(11\) −27.6343 −0.757461 −0.378730 0.925507i \(-0.623639\pi\)
−0.378730 + 0.925507i \(0.623639\pi\)
\(12\) 41.1381 0.989628
\(13\) −18.8028 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(14\) 0 0
\(15\) −167.727 −2.88713
\(16\) 16.0000 0.250000
\(17\) −32.0518 −0.457277 −0.228638 0.973511i \(-0.573427\pi\)
−0.228638 + 0.973511i \(0.573427\pi\)
\(18\) 157.543 2.06295
\(19\) 57.0546 0.688907 0.344453 0.938803i \(-0.388064\pi\)
0.344453 + 0.938803i \(0.388064\pi\)
\(20\) −65.2348 −0.729347
\(21\) 0 0
\(22\) −55.2687 −0.535606
\(23\) 23.0000 0.208514
\(24\) 82.2761 0.699773
\(25\) 140.974 1.12779
\(26\) −37.6056 −0.283656
\(27\) 532.442 3.79513
\(28\) 0 0
\(29\) 104.726 0.670591 0.335296 0.942113i \(-0.391164\pi\)
0.335296 + 0.942113i \(0.391164\pi\)
\(30\) −335.454 −2.04151
\(31\) 225.677 1.30751 0.653754 0.756707i \(-0.273193\pi\)
0.653754 + 0.756707i \(0.273193\pi\)
\(32\) 32.0000 0.176777
\(33\) −284.206 −1.49921
\(34\) −64.1036 −0.323343
\(35\) 0 0
\(36\) 315.085 1.45873
\(37\) −1.51721 −0.00674130 −0.00337065 0.999994i \(-0.501073\pi\)
−0.00337065 + 0.999994i \(0.501073\pi\)
\(38\) 114.109 0.487131
\(39\) −193.377 −0.793979
\(40\) −130.470 −0.515726
\(41\) 418.186 1.59292 0.796460 0.604691i \(-0.206703\pi\)
0.796460 + 0.604691i \(0.206703\pi\)
\(42\) 0 0
\(43\) −488.129 −1.73114 −0.865569 0.500790i \(-0.833043\pi\)
−0.865569 + 0.500790i \(0.833043\pi\)
\(44\) −110.537 −0.378730
\(45\) −1284.66 −4.25567
\(46\) 46.0000 0.147442
\(47\) 548.023 1.70080 0.850398 0.526140i \(-0.176361\pi\)
0.850398 + 0.526140i \(0.176361\pi\)
\(48\) 164.552 0.494814
\(49\) 0 0
\(50\) 281.947 0.797468
\(51\) −329.637 −0.905068
\(52\) −75.2111 −0.200575
\(53\) 451.501 1.17016 0.585080 0.810976i \(-0.301063\pi\)
0.585080 + 0.810976i \(0.301063\pi\)
\(54\) 1064.88 2.68356
\(55\) 450.680 1.10490
\(56\) 0 0
\(57\) 586.779 1.36352
\(58\) 209.452 0.474180
\(59\) −396.484 −0.874878 −0.437439 0.899248i \(-0.644114\pi\)
−0.437439 + 0.899248i \(0.644114\pi\)
\(60\) −670.908 −1.44356
\(61\) 851.200 1.78664 0.893319 0.449422i \(-0.148370\pi\)
0.893319 + 0.449422i \(0.148370\pi\)
\(62\) 451.353 0.924547
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 306.649 0.585156
\(66\) −568.412 −1.06010
\(67\) 291.392 0.531331 0.265665 0.964065i \(-0.414408\pi\)
0.265665 + 0.964065i \(0.414408\pi\)
\(68\) −128.207 −0.228638
\(69\) 236.544 0.412703
\(70\) 0 0
\(71\) 504.181 0.842751 0.421375 0.906886i \(-0.361548\pi\)
0.421375 + 0.906886i \(0.361548\pi\)
\(72\) 630.170 1.03148
\(73\) −18.6661 −0.0299274 −0.0149637 0.999888i \(-0.504763\pi\)
−0.0149637 + 0.999888i \(0.504763\pi\)
\(74\) −3.03442 −0.00476682
\(75\) 1449.85 2.23218
\(76\) 228.218 0.344453
\(77\) 0 0
\(78\) −386.755 −0.561428
\(79\) 438.759 0.624864 0.312432 0.949940i \(-0.398856\pi\)
0.312432 + 0.949940i \(0.398856\pi\)
\(80\) −260.939 −0.364674
\(81\) 3349.09 4.59408
\(82\) 836.373 1.12636
\(83\) 83.2225 0.110059 0.0550293 0.998485i \(-0.482475\pi\)
0.0550293 + 0.998485i \(0.482475\pi\)
\(84\) 0 0
\(85\) 522.723 0.667027
\(86\) −976.257 −1.22410
\(87\) 1077.06 1.32727
\(88\) −221.075 −0.267803
\(89\) −425.962 −0.507325 −0.253662 0.967293i \(-0.581635\pi\)
−0.253662 + 0.967293i \(0.581635\pi\)
\(90\) −2569.31 −3.00922
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 2320.98 2.58789
\(94\) 1096.05 1.20264
\(95\) −930.487 −1.00490
\(96\) 329.104 0.349886
\(97\) 784.072 0.820727 0.410363 0.911922i \(-0.365402\pi\)
0.410363 + 0.911922i \(0.365402\pi\)
\(98\) 0 0
\(99\) −2176.79 −2.20986
\(100\) 563.895 0.563895
\(101\) −1266.56 −1.24779 −0.623897 0.781506i \(-0.714452\pi\)
−0.623897 + 0.781506i \(0.714452\pi\)
\(102\) −659.275 −0.639979
\(103\) −484.177 −0.463179 −0.231589 0.972814i \(-0.574393\pi\)
−0.231589 + 0.972814i \(0.574393\pi\)
\(104\) −150.422 −0.141828
\(105\) 0 0
\(106\) 903.002 0.827427
\(107\) −425.648 −0.384570 −0.192285 0.981339i \(-0.561590\pi\)
−0.192285 + 0.981339i \(0.561590\pi\)
\(108\) 2129.77 1.89757
\(109\) −2088.02 −1.83482 −0.917412 0.397938i \(-0.869726\pi\)
−0.917412 + 0.397938i \(0.869726\pi\)
\(110\) 901.360 0.781285
\(111\) −15.6038 −0.0133428
\(112\) 0 0
\(113\) −580.792 −0.483508 −0.241754 0.970338i \(-0.577723\pi\)
−0.241754 + 0.970338i \(0.577723\pi\)
\(114\) 1173.56 0.964156
\(115\) −375.100 −0.304159
\(116\) 418.904 0.335296
\(117\) −1481.12 −1.17034
\(118\) −792.968 −0.618632
\(119\) 0 0
\(120\) −1341.82 −1.02075
\(121\) −567.343 −0.426253
\(122\) 1702.40 1.26334
\(123\) 4300.84 3.15280
\(124\) 902.707 0.653754
\(125\) −260.511 −0.186406
\(126\) 0 0
\(127\) 257.544 0.179948 0.0899738 0.995944i \(-0.471322\pi\)
0.0899738 + 0.995944i \(0.471322\pi\)
\(128\) 128.000 0.0883883
\(129\) −5020.17 −3.42637
\(130\) 613.298 0.413767
\(131\) 881.324 0.587799 0.293900 0.955836i \(-0.405047\pi\)
0.293900 + 0.955836i \(0.405047\pi\)
\(132\) −1136.82 −0.749604
\(133\) 0 0
\(134\) 582.783 0.375707
\(135\) −8683.44 −5.53594
\(136\) −256.414 −0.161672
\(137\) −643.403 −0.401238 −0.200619 0.979669i \(-0.564295\pi\)
−0.200619 + 0.979669i \(0.564295\pi\)
\(138\) 473.088 0.291825
\(139\) −1723.42 −1.05164 −0.525822 0.850595i \(-0.676242\pi\)
−0.525822 + 0.850595i \(0.676242\pi\)
\(140\) 0 0
\(141\) 5636.15 3.36631
\(142\) 1008.36 0.595915
\(143\) 519.602 0.303855
\(144\) 1260.34 0.729363
\(145\) −1707.95 −0.978188
\(146\) −37.3322 −0.0211619
\(147\) 0 0
\(148\) −6.06885 −0.00337065
\(149\) 2402.05 1.32069 0.660347 0.750960i \(-0.270409\pi\)
0.660347 + 0.750960i \(0.270409\pi\)
\(150\) 2899.69 1.57839
\(151\) −1059.86 −0.571195 −0.285597 0.958350i \(-0.592192\pi\)
−0.285597 + 0.958350i \(0.592192\pi\)
\(152\) 456.437 0.243565
\(153\) −2524.76 −1.33408
\(154\) 0 0
\(155\) −3680.49 −1.90725
\(156\) −773.510 −0.396989
\(157\) 702.454 0.357082 0.178541 0.983932i \(-0.442862\pi\)
0.178541 + 0.983932i \(0.442862\pi\)
\(158\) 877.518 0.441845
\(159\) 4643.47 2.31604
\(160\) −521.878 −0.257863
\(161\) 0 0
\(162\) 6698.17 3.24851
\(163\) 2947.52 1.41637 0.708184 0.706028i \(-0.249515\pi\)
0.708184 + 0.706028i \(0.249515\pi\)
\(164\) 1672.75 0.796460
\(165\) 4635.03 2.18689
\(166\) 166.445 0.0778231
\(167\) −566.737 −0.262608 −0.131304 0.991342i \(-0.541916\pi\)
−0.131304 + 0.991342i \(0.541916\pi\)
\(168\) 0 0
\(169\) −1843.46 −0.839079
\(170\) 1045.45 0.471659
\(171\) 4494.26 2.00985
\(172\) −1952.51 −0.865569
\(173\) −1057.60 −0.464787 −0.232394 0.972622i \(-0.574656\pi\)
−0.232394 + 0.972622i \(0.574656\pi\)
\(174\) 2154.11 0.938523
\(175\) 0 0
\(176\) −442.149 −0.189365
\(177\) −4077.65 −1.73161
\(178\) −851.925 −0.358733
\(179\) 951.374 0.397257 0.198629 0.980075i \(-0.436351\pi\)
0.198629 + 0.980075i \(0.436351\pi\)
\(180\) −5138.63 −2.12784
\(181\) 1978.85 0.812636 0.406318 0.913732i \(-0.366813\pi\)
0.406318 + 0.913732i \(0.366813\pi\)
\(182\) 0 0
\(183\) 8754.18 3.53622
\(184\) 184.000 0.0737210
\(185\) 24.7438 0.00983350
\(186\) 4641.95 1.82992
\(187\) 885.730 0.346369
\(188\) 2192.09 0.850398
\(189\) 0 0
\(190\) −1860.97 −0.710575
\(191\) 3164.81 1.19894 0.599471 0.800396i \(-0.295378\pi\)
0.599471 + 0.800396i \(0.295378\pi\)
\(192\) 658.209 0.247407
\(193\) −5119.57 −1.90940 −0.954701 0.297568i \(-0.903825\pi\)
−0.954701 + 0.297568i \(0.903825\pi\)
\(194\) 1568.14 0.580341
\(195\) 3153.73 1.15817
\(196\) 0 0
\(197\) −3056.05 −1.10525 −0.552626 0.833429i \(-0.686374\pi\)
−0.552626 + 0.833429i \(0.686374\pi\)
\(198\) −4353.58 −1.56260
\(199\) −2448.58 −0.872237 −0.436118 0.899889i \(-0.643647\pi\)
−0.436118 + 0.899889i \(0.643647\pi\)
\(200\) 1127.79 0.398734
\(201\) 2996.82 1.05164
\(202\) −2533.12 −0.882324
\(203\) 0 0
\(204\) −1318.55 −0.452534
\(205\) −6820.08 −2.32358
\(206\) −968.355 −0.327517
\(207\) 1811.74 0.608331
\(208\) −300.844 −0.100288
\(209\) −1576.67 −0.521820
\(210\) 0 0
\(211\) −2369.26 −0.773017 −0.386509 0.922286i \(-0.626319\pi\)
−0.386509 + 0.922286i \(0.626319\pi\)
\(212\) 1806.00 0.585080
\(213\) 5185.26 1.66802
\(214\) −851.297 −0.271932
\(215\) 7960.75 2.52520
\(216\) 4259.54 1.34178
\(217\) 0 0
\(218\) −4176.04 −1.29742
\(219\) −191.972 −0.0592341
\(220\) 1802.72 0.552452
\(221\) 602.663 0.183437
\(222\) −31.2076 −0.00943475
\(223\) 435.066 0.130647 0.0653233 0.997864i \(-0.479192\pi\)
0.0653233 + 0.997864i \(0.479192\pi\)
\(224\) 0 0
\(225\) 11104.7 3.29027
\(226\) −1161.58 −0.341891
\(227\) 2979.41 0.871146 0.435573 0.900153i \(-0.356546\pi\)
0.435573 + 0.900153i \(0.356546\pi\)
\(228\) 2347.12 0.681761
\(229\) 4647.35 1.34107 0.670537 0.741877i \(-0.266064\pi\)
0.670537 + 0.741877i \(0.266064\pi\)
\(230\) −750.200 −0.215073
\(231\) 0 0
\(232\) 837.809 0.237090
\(233\) −1651.85 −0.464449 −0.232224 0.972662i \(-0.574600\pi\)
−0.232224 + 0.972662i \(0.574600\pi\)
\(234\) −2962.24 −0.827553
\(235\) −8937.55 −2.48094
\(236\) −1585.94 −0.437439
\(237\) 4512.42 1.23677
\(238\) 0 0
\(239\) −4737.07 −1.28207 −0.641036 0.767511i \(-0.721495\pi\)
−0.641036 + 0.767511i \(0.721495\pi\)
\(240\) −2683.63 −0.721782
\(241\) 1374.90 0.367491 0.183746 0.982974i \(-0.441178\pi\)
0.183746 + 0.982974i \(0.441178\pi\)
\(242\) −1134.69 −0.301407
\(243\) 20067.8 5.29773
\(244\) 3404.80 0.893319
\(245\) 0 0
\(246\) 8601.69 2.22936
\(247\) −1072.79 −0.276355
\(248\) 1805.41 0.462274
\(249\) 855.903 0.217834
\(250\) −521.022 −0.131809
\(251\) 3368.32 0.847037 0.423518 0.905888i \(-0.360795\pi\)
0.423518 + 0.905888i \(0.360795\pi\)
\(252\) 0 0
\(253\) −635.590 −0.157941
\(254\) 515.088 0.127242
\(255\) 5375.96 1.32022
\(256\) 256.000 0.0625000
\(257\) 2705.83 0.656752 0.328376 0.944547i \(-0.393499\pi\)
0.328376 + 0.944547i \(0.393499\pi\)
\(258\) −10040.3 −2.42281
\(259\) 0 0
\(260\) 1226.60 0.292578
\(261\) 8249.40 1.95642
\(262\) 1762.65 0.415637
\(263\) 4051.59 0.949930 0.474965 0.880005i \(-0.342461\pi\)
0.474965 + 0.880005i \(0.342461\pi\)
\(264\) −2273.65 −0.530050
\(265\) −7363.39 −1.70690
\(266\) 0 0
\(267\) −4380.82 −1.00413
\(268\) 1165.57 0.265665
\(269\) 3373.56 0.764645 0.382323 0.924029i \(-0.375124\pi\)
0.382323 + 0.924029i \(0.375124\pi\)
\(270\) −17366.9 −3.91450
\(271\) −2094.48 −0.469485 −0.234742 0.972058i \(-0.575425\pi\)
−0.234742 + 0.972058i \(0.575425\pi\)
\(272\) −512.829 −0.114319
\(273\) 0 0
\(274\) −1286.81 −0.283718
\(275\) −3895.72 −0.854256
\(276\) 946.175 0.206352
\(277\) −8241.37 −1.78764 −0.893819 0.448428i \(-0.851984\pi\)
−0.893819 + 0.448428i \(0.851984\pi\)
\(278\) −3446.84 −0.743625
\(279\) 17776.8 3.81459
\(280\) 0 0
\(281\) −5436.99 −1.15425 −0.577124 0.816656i \(-0.695825\pi\)
−0.577124 + 0.816656i \(0.695825\pi\)
\(282\) 11272.3 2.38034
\(283\) 1020.20 0.214291 0.107146 0.994243i \(-0.465829\pi\)
0.107146 + 0.994243i \(0.465829\pi\)
\(284\) 2016.72 0.421375
\(285\) −9569.60 −1.98896
\(286\) 1039.20 0.214858
\(287\) 0 0
\(288\) 2520.68 0.515738
\(289\) −3885.68 −0.790898
\(290\) −3415.89 −0.691683
\(291\) 8063.80 1.62443
\(292\) −74.6645 −0.0149637
\(293\) 4610.02 0.919181 0.459590 0.888131i \(-0.347996\pi\)
0.459590 + 0.888131i \(0.347996\pi\)
\(294\) 0 0
\(295\) 6466.14 1.27618
\(296\) −12.1377 −0.00238341
\(297\) −14713.7 −2.87466
\(298\) 4804.10 0.933872
\(299\) −432.464 −0.0836456
\(300\) 5799.39 1.11609
\(301\) 0 0
\(302\) −2119.73 −0.403896
\(303\) −13025.9 −2.46970
\(304\) 912.874 0.172227
\(305\) −13882.0 −2.60616
\(306\) −5049.52 −0.943340
\(307\) 6959.27 1.29377 0.646883 0.762589i \(-0.276072\pi\)
0.646883 + 0.762589i \(0.276072\pi\)
\(308\) 0 0
\(309\) −4979.53 −0.916749
\(310\) −7360.99 −1.34863
\(311\) −7781.70 −1.41884 −0.709421 0.704785i \(-0.751044\pi\)
−0.709421 + 0.704785i \(0.751044\pi\)
\(312\) −1547.02 −0.280714
\(313\) −7958.66 −1.43722 −0.718610 0.695413i \(-0.755221\pi\)
−0.718610 + 0.695413i \(0.755221\pi\)
\(314\) 1404.91 0.252495
\(315\) 0 0
\(316\) 1755.04 0.312432
\(317\) 5277.43 0.935048 0.467524 0.883980i \(-0.345146\pi\)
0.467524 + 0.883980i \(0.345146\pi\)
\(318\) 9286.94 1.63769
\(319\) −2894.04 −0.507946
\(320\) −1043.76 −0.182337
\(321\) −4377.59 −0.761162
\(322\) 0 0
\(323\) −1828.70 −0.315021
\(324\) 13396.3 2.29704
\(325\) −2650.70 −0.452413
\(326\) 5895.05 1.00152
\(327\) −21474.3 −3.63159
\(328\) 3345.49 0.563182
\(329\) 0 0
\(330\) 9270.05 1.54636
\(331\) 9512.16 1.57956 0.789782 0.613387i \(-0.210194\pi\)
0.789782 + 0.613387i \(0.210194\pi\)
\(332\) 332.890 0.0550293
\(333\) −119.513 −0.0196674
\(334\) −1133.47 −0.185692
\(335\) −4752.22 −0.775049
\(336\) 0 0
\(337\) 11801.0 1.90754 0.953770 0.300539i \(-0.0971665\pi\)
0.953770 + 0.300539i \(0.0971665\pi\)
\(338\) −3686.91 −0.593318
\(339\) −5973.17 −0.956985
\(340\) 2090.89 0.333514
\(341\) −6236.43 −0.990385
\(342\) 8988.53 1.42118
\(343\) 0 0
\(344\) −3905.03 −0.612050
\(345\) −3857.72 −0.602008
\(346\) −2115.21 −0.328654
\(347\) −1896.21 −0.293354 −0.146677 0.989184i \(-0.546858\pi\)
−0.146677 + 0.989184i \(0.546858\pi\)
\(348\) 4308.23 0.663636
\(349\) 1645.13 0.252326 0.126163 0.992010i \(-0.459734\pi\)
0.126163 + 0.992010i \(0.459734\pi\)
\(350\) 0 0
\(351\) −10011.4 −1.52242
\(352\) −884.299 −0.133901
\(353\) 436.545 0.0658214 0.0329107 0.999458i \(-0.489522\pi\)
0.0329107 + 0.999458i \(0.489522\pi\)
\(354\) −8155.29 −1.22443
\(355\) −8222.54 −1.22932
\(356\) −1703.85 −0.253662
\(357\) 0 0
\(358\) 1902.75 0.280903
\(359\) 1760.32 0.258792 0.129396 0.991593i \(-0.458696\pi\)
0.129396 + 0.991593i \(0.458696\pi\)
\(360\) −10277.3 −1.50461
\(361\) −3603.77 −0.525408
\(362\) 3957.71 0.574620
\(363\) −5834.85 −0.843665
\(364\) 0 0
\(365\) 304.420 0.0436550
\(366\) 17508.4 2.50048
\(367\) 1332.61 0.189541 0.0947706 0.995499i \(-0.469788\pi\)
0.0947706 + 0.995499i \(0.469788\pi\)
\(368\) 368.000 0.0521286
\(369\) 32941.1 4.64727
\(370\) 49.4875 0.00695333
\(371\) 0 0
\(372\) 9283.90 1.29395
\(373\) 8386.95 1.16424 0.582118 0.813104i \(-0.302224\pi\)
0.582118 + 0.813104i \(0.302224\pi\)
\(374\) 1771.46 0.244920
\(375\) −2679.23 −0.368946
\(376\) 4384.19 0.601322
\(377\) −1969.14 −0.269008
\(378\) 0 0
\(379\) −7783.45 −1.05490 −0.527452 0.849585i \(-0.676853\pi\)
−0.527452 + 0.849585i \(0.676853\pi\)
\(380\) −3721.95 −0.502452
\(381\) 2648.72 0.356162
\(382\) 6329.63 0.847780
\(383\) −1362.28 −0.181748 −0.0908739 0.995862i \(-0.528966\pi\)
−0.0908739 + 0.995862i \(0.528966\pi\)
\(384\) 1316.42 0.174943
\(385\) 0 0
\(386\) −10239.1 −1.35015
\(387\) −38450.5 −5.05052
\(388\) 3136.29 0.410363
\(389\) 340.973 0.0444421 0.0222211 0.999753i \(-0.492926\pi\)
0.0222211 + 0.999753i \(0.492926\pi\)
\(390\) 6307.47 0.818952
\(391\) −737.191 −0.0953488
\(392\) 0 0
\(393\) 9063.99 1.16340
\(394\) −6112.10 −0.781531
\(395\) −7155.59 −0.911486
\(396\) −8707.17 −1.10493
\(397\) 9217.51 1.16527 0.582637 0.812733i \(-0.302021\pi\)
0.582637 + 0.812733i \(0.302021\pi\)
\(398\) −4897.16 −0.616764
\(399\) 0 0
\(400\) 2255.58 0.281947
\(401\) −4101.87 −0.510817 −0.255408 0.966833i \(-0.582210\pi\)
−0.255408 + 0.966833i \(0.582210\pi\)
\(402\) 5993.64 0.743621
\(403\) −4243.35 −0.524507
\(404\) −5066.23 −0.623897
\(405\) −54619.3 −6.70136
\(406\) 0 0
\(407\) 41.9271 0.00510627
\(408\) −2637.10 −0.319990
\(409\) 3555.48 0.429846 0.214923 0.976631i \(-0.431050\pi\)
0.214923 + 0.976631i \(0.431050\pi\)
\(410\) −13640.2 −1.64302
\(411\) −6617.09 −0.794153
\(412\) −1936.71 −0.231589
\(413\) 0 0
\(414\) 3623.48 0.430155
\(415\) −1357.25 −0.160542
\(416\) −601.689 −0.0709140
\(417\) −17724.5 −2.08147
\(418\) −3153.33 −0.368982
\(419\) 5901.09 0.688036 0.344018 0.938963i \(-0.388212\pi\)
0.344018 + 0.938963i \(0.388212\pi\)
\(420\) 0 0
\(421\) −13920.0 −1.61145 −0.805726 0.592288i \(-0.798225\pi\)
−0.805726 + 0.592288i \(0.798225\pi\)
\(422\) −4738.52 −0.546606
\(423\) 43168.5 4.96199
\(424\) 3612.01 0.413714
\(425\) −4518.46 −0.515712
\(426\) 10370.5 1.17947
\(427\) 0 0
\(428\) −1702.59 −0.192285
\(429\) 5343.86 0.601408
\(430\) 15921.5 1.78559
\(431\) −5217.18 −0.583068 −0.291534 0.956560i \(-0.594166\pi\)
−0.291534 + 0.956560i \(0.594166\pi\)
\(432\) 8519.08 0.948783
\(433\) −16199.5 −1.79792 −0.898959 0.438034i \(-0.855675\pi\)
−0.898959 + 0.438034i \(0.855675\pi\)
\(434\) 0 0
\(435\) −17565.4 −1.93608
\(436\) −8352.07 −0.917412
\(437\) 1312.26 0.143647
\(438\) −383.944 −0.0418848
\(439\) −11622.1 −1.26354 −0.631770 0.775156i \(-0.717671\pi\)
−0.631770 + 0.775156i \(0.717671\pi\)
\(440\) 3605.44 0.390642
\(441\) 0 0
\(442\) 1205.33 0.129709
\(443\) 907.320 0.0973094 0.0486547 0.998816i \(-0.484507\pi\)
0.0486547 + 0.998816i \(0.484507\pi\)
\(444\) −62.4151 −0.00667138
\(445\) 6946.89 0.740032
\(446\) 870.133 0.0923811
\(447\) 24703.9 2.61399
\(448\) 0 0
\(449\) 1283.93 0.134950 0.0674750 0.997721i \(-0.478506\pi\)
0.0674750 + 0.997721i \(0.478506\pi\)
\(450\) 22209.4 2.32658
\(451\) −11556.3 −1.20657
\(452\) −2323.17 −0.241754
\(453\) −10900.2 −1.13054
\(454\) 5958.81 0.615993
\(455\) 0 0
\(456\) 4694.23 0.482078
\(457\) −712.015 −0.0728811 −0.0364406 0.999336i \(-0.511602\pi\)
−0.0364406 + 0.999336i \(0.511602\pi\)
\(458\) 9294.71 0.948282
\(459\) −17065.7 −1.73543
\(460\) −1500.40 −0.152079
\(461\) −9315.85 −0.941177 −0.470588 0.882353i \(-0.655958\pi\)
−0.470588 + 0.882353i \(0.655958\pi\)
\(462\) 0 0
\(463\) −12792.9 −1.28409 −0.642046 0.766666i \(-0.721914\pi\)
−0.642046 + 0.766666i \(0.721914\pi\)
\(464\) 1675.62 0.167648
\(465\) −37852.1 −3.77494
\(466\) −3303.71 −0.328415
\(467\) 247.428 0.0245174 0.0122587 0.999925i \(-0.496098\pi\)
0.0122587 + 0.999925i \(0.496098\pi\)
\(468\) −5924.47 −0.585168
\(469\) 0 0
\(470\) −17875.1 −1.75429
\(471\) 7224.40 0.706757
\(472\) −3171.87 −0.309316
\(473\) 13489.1 1.31127
\(474\) 9024.85 0.874525
\(475\) 8043.20 0.776942
\(476\) 0 0
\(477\) 35565.3 3.41389
\(478\) −9474.13 −0.906562
\(479\) −1802.17 −0.171907 −0.0859533 0.996299i \(-0.527394\pi\)
−0.0859533 + 0.996299i \(0.527394\pi\)
\(480\) −5367.27 −0.510377
\(481\) 28.5278 0.00270427
\(482\) 2749.81 0.259855
\(483\) 0 0
\(484\) −2269.37 −0.213127
\(485\) −12787.2 −1.19719
\(486\) 40135.6 3.74606
\(487\) 8106.29 0.754274 0.377137 0.926158i \(-0.376909\pi\)
0.377137 + 0.926158i \(0.376909\pi\)
\(488\) 6809.60 0.631672
\(489\) 30313.9 2.80335
\(490\) 0 0
\(491\) 15619.0 1.43560 0.717798 0.696251i \(-0.245150\pi\)
0.717798 + 0.696251i \(0.245150\pi\)
\(492\) 17203.4 1.57640
\(493\) −3356.66 −0.306646
\(494\) −2145.57 −0.195412
\(495\) 35500.6 3.22351
\(496\) 3610.83 0.326877
\(497\) 0 0
\(498\) 1711.81 0.154032
\(499\) −21443.4 −1.92372 −0.961862 0.273536i \(-0.911807\pi\)
−0.961862 + 0.273536i \(0.911807\pi\)
\(500\) −1042.04 −0.0932032
\(501\) −5828.62 −0.519767
\(502\) 6736.63 0.598945
\(503\) 1097.74 0.0973073 0.0486537 0.998816i \(-0.484507\pi\)
0.0486537 + 0.998816i \(0.484507\pi\)
\(504\) 0 0
\(505\) 20655.9 1.82015
\(506\) −1271.18 −0.111681
\(507\) −18959.0 −1.66075
\(508\) 1030.18 0.0899738
\(509\) 17686.9 1.54019 0.770094 0.637930i \(-0.220209\pi\)
0.770094 + 0.637930i \(0.220209\pi\)
\(510\) 10751.9 0.933535
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 30378.3 2.61449
\(514\) 5411.67 0.464394
\(515\) 7896.30 0.675636
\(516\) −20080.7 −1.71318
\(517\) −15144.3 −1.28829
\(518\) 0 0
\(519\) −10876.9 −0.919933
\(520\) 2453.19 0.206884
\(521\) 8771.02 0.737554 0.368777 0.929518i \(-0.379777\pi\)
0.368777 + 0.929518i \(0.379777\pi\)
\(522\) 16498.8 1.38340
\(523\) −15519.9 −1.29759 −0.648795 0.760963i \(-0.724727\pi\)
−0.648795 + 0.760963i \(0.724727\pi\)
\(524\) 3525.30 0.293900
\(525\) 0 0
\(526\) 8103.17 0.671702
\(527\) −7233.35 −0.597893
\(528\) −4547.29 −0.374802
\(529\) 529.000 0.0434783
\(530\) −14726.8 −1.20696
\(531\) −31231.5 −2.55242
\(532\) 0 0
\(533\) −7863.06 −0.639000
\(534\) −8761.63 −0.710024
\(535\) 6941.77 0.560970
\(536\) 2331.13 0.187854
\(537\) 9784.42 0.786274
\(538\) 6747.12 0.540686
\(539\) 0 0
\(540\) −34733.8 −2.76797
\(541\) −5504.03 −0.437406 −0.218703 0.975791i \(-0.570183\pi\)
−0.218703 + 0.975791i \(0.570183\pi\)
\(542\) −4188.95 −0.331976
\(543\) 20351.6 1.60841
\(544\) −1025.66 −0.0808359
\(545\) 34052.9 2.67645
\(546\) 0 0
\(547\) −4995.13 −0.390450 −0.195225 0.980758i \(-0.562544\pi\)
−0.195225 + 0.980758i \(0.562544\pi\)
\(548\) −2573.61 −0.200619
\(549\) 67050.1 5.21244
\(550\) −7791.43 −0.604050
\(551\) 5975.11 0.461975
\(552\) 1892.35 0.145913
\(553\) 0 0
\(554\) −16482.7 −1.26405
\(555\) 254.478 0.0194630
\(556\) −6893.68 −0.525822
\(557\) 8868.66 0.674645 0.337322 0.941389i \(-0.390479\pi\)
0.337322 + 0.941389i \(0.390479\pi\)
\(558\) 35553.7 2.69732
\(559\) 9178.17 0.694446
\(560\) 0 0
\(561\) 9109.31 0.685553
\(562\) −10874.0 −0.816177
\(563\) −15661.6 −1.17240 −0.586199 0.810167i \(-0.699376\pi\)
−0.586199 + 0.810167i \(0.699376\pi\)
\(564\) 22544.6 1.68315
\(565\) 9471.97 0.705290
\(566\) 2040.40 0.151527
\(567\) 0 0
\(568\) 4033.45 0.297957
\(569\) 8385.22 0.617798 0.308899 0.951095i \(-0.400040\pi\)
0.308899 + 0.951095i \(0.400040\pi\)
\(570\) −19139.2 −1.40641
\(571\) −20243.9 −1.48368 −0.741840 0.670577i \(-0.766046\pi\)
−0.741840 + 0.670577i \(0.766046\pi\)
\(572\) 2078.41 0.151928
\(573\) 32548.6 2.37301
\(574\) 0 0
\(575\) 3242.40 0.235160
\(576\) 5041.36 0.364682
\(577\) 5780.04 0.417030 0.208515 0.978019i \(-0.433137\pi\)
0.208515 + 0.978019i \(0.433137\pi\)
\(578\) −7771.36 −0.559249
\(579\) −52652.3 −3.77919
\(580\) −6831.78 −0.489094
\(581\) 0 0
\(582\) 16127.6 1.14864
\(583\) −12476.9 −0.886349
\(584\) −149.329 −0.0105810
\(585\) 24155.1 1.70716
\(586\) 9220.03 0.649959
\(587\) −9242.05 −0.649847 −0.324924 0.945740i \(-0.605339\pi\)
−0.324924 + 0.945740i \(0.605339\pi\)
\(588\) 0 0
\(589\) 12875.9 0.900751
\(590\) 12932.3 0.902396
\(591\) −31430.0 −2.18758
\(592\) −24.2754 −0.00168532
\(593\) −21131.7 −1.46336 −0.731681 0.681647i \(-0.761264\pi\)
−0.731681 + 0.681647i \(0.761264\pi\)
\(594\) −29427.4 −2.03269
\(595\) 0 0
\(596\) 9608.20 0.660347
\(597\) −25182.4 −1.72638
\(598\) −864.928 −0.0591464
\(599\) 13238.3 0.903012 0.451506 0.892268i \(-0.350887\pi\)
0.451506 + 0.892268i \(0.350887\pi\)
\(600\) 11598.8 0.789196
\(601\) −23291.5 −1.58083 −0.790415 0.612571i \(-0.790135\pi\)
−0.790415 + 0.612571i \(0.790135\pi\)
\(602\) 0 0
\(603\) 22953.3 1.55013
\(604\) −4239.45 −0.285597
\(605\) 9252.63 0.621774
\(606\) −26051.9 −1.74635
\(607\) 10032.1 0.670824 0.335412 0.942072i \(-0.391124\pi\)
0.335412 + 0.942072i \(0.391124\pi\)
\(608\) 1825.75 0.121783
\(609\) 0 0
\(610\) −27763.9 −1.84283
\(611\) −10304.4 −0.682274
\(612\) −10099.0 −0.667042
\(613\) 4707.08 0.310142 0.155071 0.987903i \(-0.450439\pi\)
0.155071 + 0.987903i \(0.450439\pi\)
\(614\) 13918.5 0.914831
\(615\) −70141.2 −4.59897
\(616\) 0 0
\(617\) −25595.4 −1.67007 −0.835033 0.550200i \(-0.814552\pi\)
−0.835033 + 0.550200i \(0.814552\pi\)
\(618\) −9959.06 −0.648240
\(619\) 11681.1 0.758489 0.379244 0.925297i \(-0.376184\pi\)
0.379244 + 0.925297i \(0.376184\pi\)
\(620\) −14722.0 −0.953627
\(621\) 12246.2 0.791340
\(622\) −15563.4 −1.00327
\(623\) 0 0
\(624\) −3094.04 −0.198495
\(625\) −13373.1 −0.855880
\(626\) −15917.3 −1.01627
\(627\) −16215.3 −1.03281
\(628\) 2809.81 0.178541
\(629\) 48.6294 0.00308264
\(630\) 0 0
\(631\) 6134.76 0.387038 0.193519 0.981097i \(-0.438010\pi\)
0.193519 + 0.981097i \(0.438010\pi\)
\(632\) 3510.07 0.220923
\(633\) −24366.7 −1.53000
\(634\) 10554.9 0.661178
\(635\) −4200.21 −0.262489
\(636\) 18573.9 1.15802
\(637\) 0 0
\(638\) −5788.07 −0.359172
\(639\) 39715.0 2.45869
\(640\) −2087.51 −0.128932
\(641\) 17461.6 1.07596 0.537981 0.842957i \(-0.319187\pi\)
0.537981 + 0.842957i \(0.319187\pi\)
\(642\) −8755.17 −0.538223
\(643\) −11315.5 −0.693997 −0.346998 0.937866i \(-0.612799\pi\)
−0.346998 + 0.937866i \(0.612799\pi\)
\(644\) 0 0
\(645\) 81872.4 4.99802
\(646\) −3657.41 −0.222753
\(647\) −10354.5 −0.629177 −0.314588 0.949228i \(-0.601866\pi\)
−0.314588 + 0.949228i \(0.601866\pi\)
\(648\) 26792.7 1.62425
\(649\) 10956.6 0.662686
\(650\) −5301.39 −0.319904
\(651\) 0 0
\(652\) 11790.1 0.708184
\(653\) 21004.8 1.25877 0.629387 0.777092i \(-0.283306\pi\)
0.629387 + 0.777092i \(0.283306\pi\)
\(654\) −42948.5 −2.56792
\(655\) −14373.3 −0.857419
\(656\) 6690.98 0.398230
\(657\) −1470.35 −0.0873120
\(658\) 0 0
\(659\) −11472.6 −0.678161 −0.339080 0.940757i \(-0.610116\pi\)
−0.339080 + 0.940757i \(0.610116\pi\)
\(660\) 18540.1 1.09344
\(661\) 19392.9 1.14114 0.570571 0.821248i \(-0.306722\pi\)
0.570571 + 0.821248i \(0.306722\pi\)
\(662\) 19024.3 1.11692
\(663\) 6198.10 0.363068
\(664\) 665.780 0.0389116
\(665\) 0 0
\(666\) −239.025 −0.0139070
\(667\) 2408.70 0.139828
\(668\) −2266.95 −0.131304
\(669\) 4474.45 0.258583
\(670\) −9504.44 −0.548042
\(671\) −23522.3 −1.35331
\(672\) 0 0
\(673\) 4238.83 0.242786 0.121393 0.992605i \(-0.461264\pi\)
0.121393 + 0.992605i \(0.461264\pi\)
\(674\) 23602.0 1.34883
\(675\) 75060.4 4.28011
\(676\) −7373.82 −0.419539
\(677\) 4205.95 0.238771 0.119385 0.992848i \(-0.461908\pi\)
0.119385 + 0.992848i \(0.461908\pi\)
\(678\) −11946.3 −0.676691
\(679\) 0 0
\(680\) 4181.79 0.235830
\(681\) 30641.8 1.72422
\(682\) −12472.9 −0.700308
\(683\) −12328.9 −0.690708 −0.345354 0.938472i \(-0.612241\pi\)
−0.345354 + 0.938472i \(0.612241\pi\)
\(684\) 17977.1 1.00493
\(685\) 10493.1 0.585284
\(686\) 0 0
\(687\) 47795.8 2.65433
\(688\) −7810.06 −0.432784
\(689\) −8489.47 −0.469409
\(690\) −7715.45 −0.425684
\(691\) 15725.1 0.865720 0.432860 0.901461i \(-0.357504\pi\)
0.432860 + 0.901461i \(0.357504\pi\)
\(692\) −4230.42 −0.232394
\(693\) 0 0
\(694\) −3792.41 −0.207432
\(695\) 28106.7 1.53403
\(696\) 8616.45 0.469261
\(697\) −13403.6 −0.728405
\(698\) 3290.26 0.178422
\(699\) −16988.5 −0.919263
\(700\) 0 0
\(701\) 35899.1 1.93422 0.967112 0.254349i \(-0.0818613\pi\)
0.967112 + 0.254349i \(0.0818613\pi\)
\(702\) −20022.8 −1.07651
\(703\) −86.5639 −0.00464413
\(704\) −1768.60 −0.0946826
\(705\) −91918.3 −4.91042
\(706\) 873.090 0.0465427
\(707\) 0 0
\(708\) −16310.6 −0.865804
\(709\) 12087.3 0.640264 0.320132 0.947373i \(-0.396273\pi\)
0.320132 + 0.947373i \(0.396273\pi\)
\(710\) −16445.1 −0.869257
\(711\) 34561.6 1.82301
\(712\) −3407.70 −0.179366
\(713\) 5190.56 0.272634
\(714\) 0 0
\(715\) −8474.04 −0.443232
\(716\) 3805.50 0.198629
\(717\) −48718.4 −2.53755
\(718\) 3520.64 0.182993
\(719\) 20736.2 1.07556 0.537780 0.843085i \(-0.319263\pi\)
0.537780 + 0.843085i \(0.319263\pi\)
\(720\) −20554.5 −1.06392
\(721\) 0 0
\(722\) −7207.54 −0.371519
\(723\) 14140.2 0.727359
\(724\) 7915.42 0.406318
\(725\) 14763.6 0.756286
\(726\) −11669.7 −0.596561
\(727\) −7267.27 −0.370740 −0.185370 0.982669i \(-0.559348\pi\)
−0.185370 + 0.982669i \(0.559348\pi\)
\(728\) 0 0
\(729\) 115962. 5.89149
\(730\) 608.840 0.0308688
\(731\) 15645.4 0.791609
\(732\) 35016.7 1.76811
\(733\) 33570.0 1.69159 0.845796 0.533506i \(-0.179126\pi\)
0.845796 + 0.533506i \(0.179126\pi\)
\(734\) 2665.22 0.134026
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −8052.41 −0.402462
\(738\) 65882.1 3.28612
\(739\) −19700.5 −0.980644 −0.490322 0.871541i \(-0.663121\pi\)
−0.490322 + 0.871541i \(0.663121\pi\)
\(740\) 98.9750 0.00491675
\(741\) −11033.1 −0.546977
\(742\) 0 0
\(743\) −68.4168 −0.00337816 −0.00168908 0.999999i \(-0.500538\pi\)
−0.00168908 + 0.999999i \(0.500538\pi\)
\(744\) 18567.8 0.914958
\(745\) −39174.3 −1.92649
\(746\) 16773.9 0.823239
\(747\) 6555.54 0.321091
\(748\) 3542.92 0.173185
\(749\) 0 0
\(750\) −5358.45 −0.260884
\(751\) −27894.6 −1.35538 −0.677688 0.735349i \(-0.737018\pi\)
−0.677688 + 0.735349i \(0.737018\pi\)
\(752\) 8768.37 0.425199
\(753\) 34641.5 1.67650
\(754\) −3938.28 −0.190217
\(755\) 17285.0 0.833199
\(756\) 0 0
\(757\) −37170.0 −1.78463 −0.892317 0.451409i \(-0.850922\pi\)
−0.892317 + 0.451409i \(0.850922\pi\)
\(758\) −15566.9 −0.745930
\(759\) −6536.73 −0.312607
\(760\) −7443.89 −0.355287
\(761\) 4006.34 0.190841 0.0954203 0.995437i \(-0.469580\pi\)
0.0954203 + 0.995437i \(0.469580\pi\)
\(762\) 5297.43 0.251845
\(763\) 0 0
\(764\) 12659.3 0.599471
\(765\) 41175.6 1.94602
\(766\) −2724.57 −0.128515
\(767\) 7455.00 0.350957
\(768\) 2632.84 0.123703
\(769\) 10828.0 0.507759 0.253879 0.967236i \(-0.418293\pi\)
0.253879 + 0.967236i \(0.418293\pi\)
\(770\) 0 0
\(771\) 27828.2 1.29988
\(772\) −20478.3 −0.954701
\(773\) 5766.47 0.268312 0.134156 0.990960i \(-0.457168\pi\)
0.134156 + 0.990960i \(0.457168\pi\)
\(774\) −76901.0 −3.57125
\(775\) 31814.5 1.47459
\(776\) 6272.58 0.290171
\(777\) 0 0
\(778\) 681.945 0.0314253
\(779\) 23859.5 1.09737
\(780\) 12614.9 0.579086
\(781\) −13932.7 −0.638350
\(782\) −1474.38 −0.0674218
\(783\) 55760.6 2.54498
\(784\) 0 0
\(785\) −11456.1 −0.520874
\(786\) 18128.0 0.822651
\(787\) −24553.5 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(788\) −12224.2 −0.552626
\(789\) 41668.6 1.88015
\(790\) −14311.2 −0.644518
\(791\) 0 0
\(792\) −17414.3 −0.781302
\(793\) −16004.9 −0.716710
\(794\) 18435.0 0.823973
\(795\) −75728.9 −3.37840
\(796\) −9794.31 −0.436118
\(797\) 7978.02 0.354575 0.177287 0.984159i \(-0.443268\pi\)
0.177287 + 0.984159i \(0.443268\pi\)
\(798\) 0 0
\(799\) −17565.1 −0.777734
\(800\) 4511.16 0.199367
\(801\) −33553.6 −1.48010
\(802\) −8203.74 −0.361202
\(803\) 515.826 0.0226689
\(804\) 11987.3 0.525820
\(805\) 0 0
\(806\) −8486.70 −0.370882
\(807\) 34695.4 1.51343
\(808\) −10132.5 −0.441162
\(809\) 21020.9 0.913543 0.456771 0.889584i \(-0.349006\pi\)
0.456771 + 0.889584i \(0.349006\pi\)
\(810\) −109239. −4.73858
\(811\) 17741.2 0.768158 0.384079 0.923300i \(-0.374519\pi\)
0.384079 + 0.923300i \(0.374519\pi\)
\(812\) 0 0
\(813\) −21540.7 −0.929230
\(814\) 83.8543 0.00361068
\(815\) −48070.3 −2.06605
\(816\) −5274.20 −0.226267
\(817\) −27850.0 −1.19259
\(818\) 7110.96 0.303947
\(819\) 0 0
\(820\) −27280.3 −1.16179
\(821\) −85.8127 −0.00364785 −0.00182392 0.999998i \(-0.500581\pi\)
−0.00182392 + 0.999998i \(0.500581\pi\)
\(822\) −13234.2 −0.561551
\(823\) −12447.6 −0.527212 −0.263606 0.964630i \(-0.584912\pi\)
−0.263606 + 0.964630i \(0.584912\pi\)
\(824\) −3873.42 −0.163758
\(825\) −40065.5 −1.69079
\(826\) 0 0
\(827\) 3949.72 0.166076 0.0830382 0.996546i \(-0.473538\pi\)
0.0830382 + 0.996546i \(0.473538\pi\)
\(828\) 7246.96 0.304166
\(829\) −1354.04 −0.0567282 −0.0283641 0.999598i \(-0.509030\pi\)
−0.0283641 + 0.999598i \(0.509030\pi\)
\(830\) −2714.50 −0.113520
\(831\) −84758.5 −3.53819
\(832\) −1203.38 −0.0501438
\(833\) 0 0
\(834\) −35449.1 −1.47182
\(835\) 9242.75 0.383064
\(836\) −6306.67 −0.260910
\(837\) 120160. 4.96216
\(838\) 11802.2 0.486515
\(839\) 31163.1 1.28233 0.641163 0.767405i \(-0.278452\pi\)
0.641163 + 0.767405i \(0.278452\pi\)
\(840\) 0 0
\(841\) −13421.5 −0.550308
\(842\) −27840.1 −1.13947
\(843\) −55916.8 −2.28455
\(844\) −9477.04 −0.386509
\(845\) 30064.4 1.22396
\(846\) 86336.9 3.50866
\(847\) 0 0
\(848\) 7224.02 0.292540
\(849\) 10492.2 0.424138
\(850\) −9036.92 −0.364663
\(851\) −34.8959 −0.00140566
\(852\) 20741.0 0.834010
\(853\) 13541.1 0.543538 0.271769 0.962363i \(-0.412391\pi\)
0.271769 + 0.962363i \(0.412391\pi\)
\(854\) 0 0
\(855\) −73295.6 −2.93176
\(856\) −3405.19 −0.135966
\(857\) −19892.0 −0.792880 −0.396440 0.918061i \(-0.629755\pi\)
−0.396440 + 0.918061i \(0.629755\pi\)
\(858\) 10687.7 0.425259
\(859\) 8754.07 0.347712 0.173856 0.984771i \(-0.444377\pi\)
0.173856 + 0.984771i \(0.444377\pi\)
\(860\) 31843.0 1.26260
\(861\) 0 0
\(862\) −10434.4 −0.412292
\(863\) 3090.34 0.121896 0.0609482 0.998141i \(-0.480588\pi\)
0.0609482 + 0.998141i \(0.480588\pi\)
\(864\) 17038.2 0.670891
\(865\) 17248.2 0.677983
\(866\) −32399.0 −1.27132
\(867\) −39962.4 −1.56539
\(868\) 0 0
\(869\) −12124.8 −0.473310
\(870\) −35130.8 −1.36902
\(871\) −5478.97 −0.213143
\(872\) −16704.1 −0.648708
\(873\) 61762.4 2.39443
\(874\) 2624.51 0.101574
\(875\) 0 0
\(876\) −767.888 −0.0296170
\(877\) −15764.8 −0.606999 −0.303500 0.952832i \(-0.598155\pi\)
−0.303500 + 0.952832i \(0.598155\pi\)
\(878\) −23244.3 −0.893457
\(879\) 47411.8 1.81929
\(880\) 7210.88 0.276226
\(881\) −44203.5 −1.69041 −0.845207 0.534440i \(-0.820523\pi\)
−0.845207 + 0.534440i \(0.820523\pi\)
\(882\) 0 0
\(883\) −1534.78 −0.0584932 −0.0292466 0.999572i \(-0.509311\pi\)
−0.0292466 + 0.999572i \(0.509311\pi\)
\(884\) 2410.65 0.0917183
\(885\) 66501.1 2.52589
\(886\) 1814.64 0.0688081
\(887\) −33510.6 −1.26852 −0.634260 0.773120i \(-0.718695\pi\)
−0.634260 + 0.773120i \(0.718695\pi\)
\(888\) −124.830 −0.00471738
\(889\) 0 0
\(890\) 13893.8 0.523282
\(891\) −92549.8 −3.47984
\(892\) 1740.27 0.0653233
\(893\) 31267.2 1.17169
\(894\) 49407.8 1.84837
\(895\) −15515.7 −0.579477
\(896\) 0 0
\(897\) −4447.68 −0.165556
\(898\) 2567.86 0.0954240
\(899\) 23634.2 0.876803
\(900\) 44418.7 1.64514
\(901\) −14471.4 −0.535086
\(902\) −23112.6 −0.853177
\(903\) 0 0
\(904\) −4646.34 −0.170946
\(905\) −32272.5 −1.18539
\(906\) −21800.4 −0.799413
\(907\) 28338.0 1.03743 0.518715 0.854947i \(-0.326411\pi\)
0.518715 + 0.854947i \(0.326411\pi\)
\(908\) 11917.6 0.435573
\(909\) −99768.4 −3.64038
\(910\) 0 0
\(911\) −47263.6 −1.71889 −0.859447 0.511224i \(-0.829192\pi\)
−0.859447 + 0.511224i \(0.829192\pi\)
\(912\) 9388.46 0.340881
\(913\) −2299.80 −0.0833650
\(914\) −1424.03 −0.0515347
\(915\) −142769. −5.15826
\(916\) 18589.4 0.670537
\(917\) 0 0
\(918\) −34131.5 −1.22713
\(919\) 12273.4 0.440547 0.220273 0.975438i \(-0.429305\pi\)
0.220273 + 0.975438i \(0.429305\pi\)
\(920\) −3000.80 −0.107536
\(921\) 71572.7 2.56069
\(922\) −18631.7 −0.665513
\(923\) −9480.00 −0.338070
\(924\) 0 0
\(925\) −213.887 −0.00760277
\(926\) −25585.7 −0.907990
\(927\) −38139.3 −1.35130
\(928\) 3351.23 0.118545
\(929\) −7433.58 −0.262527 −0.131264 0.991348i \(-0.541903\pi\)
−0.131264 + 0.991348i \(0.541903\pi\)
\(930\) −75704.2 −2.66929
\(931\) 0 0
\(932\) −6607.42 −0.232224
\(933\) −80031.1 −2.80825
\(934\) 494.856 0.0173364
\(935\) −14445.1 −0.505247
\(936\) −11848.9 −0.413777
\(937\) 4558.85 0.158945 0.0794724 0.996837i \(-0.474676\pi\)
0.0794724 + 0.996837i \(0.474676\pi\)
\(938\) 0 0
\(939\) −81851.0 −2.84463
\(940\) −35750.2 −1.24047
\(941\) −29098.7 −1.00806 −0.504032 0.863685i \(-0.668151\pi\)
−0.504032 + 0.863685i \(0.668151\pi\)
\(942\) 14448.8 0.499753
\(943\) 9618.29 0.332147
\(944\) −6343.74 −0.218720
\(945\) 0 0
\(946\) 26978.2 0.927207
\(947\) 23915.7 0.820649 0.410325 0.911940i \(-0.365415\pi\)
0.410325 + 0.911940i \(0.365415\pi\)
\(948\) 18049.7 0.618383
\(949\) 350.975 0.0120054
\(950\) 16086.4 0.549381
\(951\) 54275.8 1.85070
\(952\) 0 0
\(953\) −41112.8 −1.39745 −0.698727 0.715388i \(-0.746250\pi\)
−0.698727 + 0.715388i \(0.746250\pi\)
\(954\) 71130.6 2.41398
\(955\) −51614.0 −1.74889
\(956\) −18948.3 −0.641036
\(957\) −29763.8 −1.00536
\(958\) −3604.34 −0.121556
\(959\) 0 0
\(960\) −10734.5 −0.360891
\(961\) 21139.0 0.709576
\(962\) 57.0556 0.00191221
\(963\) −33528.9 −1.12197
\(964\) 5499.62 0.183746
\(965\) 83493.5 2.78523
\(966\) 0 0
\(967\) 5731.82 0.190613 0.0953065 0.995448i \(-0.469617\pi\)
0.0953065 + 0.995448i \(0.469617\pi\)
\(968\) −4538.75 −0.150703
\(969\) −18807.3 −0.623507
\(970\) −25574.4 −0.846541
\(971\) 23001.0 0.760182 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(972\) 80271.2 2.64887
\(973\) 0 0
\(974\) 16212.6 0.533352
\(975\) −27261.1 −0.895441
\(976\) 13619.2 0.446660
\(977\) 19142.1 0.626826 0.313413 0.949617i \(-0.398528\pi\)
0.313413 + 0.949617i \(0.398528\pi\)
\(978\) 60627.7 1.98227
\(979\) 11771.2 0.384279
\(980\) 0 0
\(981\) −164476. −5.35302
\(982\) 31238.1 1.01512
\(983\) −10104.1 −0.327843 −0.163922 0.986473i \(-0.552414\pi\)
−0.163922 + 0.986473i \(0.552414\pi\)
\(984\) 34406.8 1.11468
\(985\) 49840.2 1.61223
\(986\) −6713.32 −0.216831
\(987\) 0 0
\(988\) −4291.14 −0.138177
\(989\) −11227.0 −0.360967
\(990\) 71001.3 2.27936
\(991\) −43901.2 −1.40723 −0.703617 0.710579i \(-0.748433\pi\)
−0.703617 + 0.710579i \(0.748433\pi\)
\(992\) 7221.65 0.231137
\(993\) 97828.0 3.12636
\(994\) 0 0
\(995\) 39933.1 1.27233
\(996\) 3423.61 0.108917
\(997\) 49131.6 1.56070 0.780348 0.625345i \(-0.215042\pi\)
0.780348 + 0.625345i \(0.215042\pi\)
\(998\) −42886.8 −1.36028
\(999\) −807.828 −0.0255841
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.11 11
7.2 even 3 322.4.e.a.277.1 yes 22
7.4 even 3 322.4.e.a.93.1 22
7.6 odd 2 2254.4.a.v.1.1 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.1 22 7.4 even 3
322.4.e.a.277.1 yes 22 7.2 even 3
2254.4.a.v.1.1 11 7.6 odd 2
2254.4.a.y.1.11 11 1.1 even 1 trivial