Properties

Label 2254.4.a.y.1.10
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-7.59976\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +9.59976 q^{3} +4.00000 q^{4} +12.3184 q^{5} +19.1995 q^{6} +8.00000 q^{8} +65.1554 q^{9} +24.6368 q^{10} +3.20522 q^{11} +38.3990 q^{12} +90.5065 q^{13} +118.254 q^{15} +16.0000 q^{16} -39.3727 q^{17} +130.311 q^{18} -31.2763 q^{19} +49.2736 q^{20} +6.41044 q^{22} +23.0000 q^{23} +76.7981 q^{24} +26.7429 q^{25} +181.013 q^{26} +366.283 q^{27} -100.977 q^{29} +236.507 q^{30} +101.739 q^{31} +32.0000 q^{32} +30.7694 q^{33} -78.7453 q^{34} +260.622 q^{36} -276.916 q^{37} -62.5526 q^{38} +868.841 q^{39} +98.5472 q^{40} -428.691 q^{41} +189.291 q^{43} +12.8209 q^{44} +802.610 q^{45} +46.0000 q^{46} -461.455 q^{47} +153.596 q^{48} +53.4858 q^{50} -377.968 q^{51} +362.026 q^{52} +532.272 q^{53} +732.566 q^{54} +39.4832 q^{55} -300.245 q^{57} -201.953 q^{58} -535.315 q^{59} +473.015 q^{60} -61.3049 q^{61} +203.477 q^{62} +64.0000 q^{64} +1114.90 q^{65} +61.5387 q^{66} +324.862 q^{67} -157.491 q^{68} +220.794 q^{69} +339.474 q^{71} +521.243 q^{72} -493.299 q^{73} -553.833 q^{74} +256.726 q^{75} -125.105 q^{76} +1737.68 q^{78} -1027.27 q^{79} +197.094 q^{80} +1757.03 q^{81} -857.383 q^{82} -967.752 q^{83} -485.008 q^{85} +378.582 q^{86} -969.351 q^{87} +25.6418 q^{88} +141.069 q^{89} +1605.22 q^{90} +92.0000 q^{92} +976.665 q^{93} -922.909 q^{94} -385.274 q^{95} +307.192 q^{96} +533.840 q^{97} +208.837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 9.59976 1.84747 0.923737 0.383026i \(-0.125118\pi\)
0.923737 + 0.383026i \(0.125118\pi\)
\(4\) 4.00000 0.500000
\(5\) 12.3184 1.10179 0.550895 0.834574i \(-0.314286\pi\)
0.550895 + 0.834574i \(0.314286\pi\)
\(6\) 19.1995 1.30636
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 65.1554 2.41316
\(10\) 24.6368 0.779084
\(11\) 3.20522 0.0878555 0.0439277 0.999035i \(-0.486013\pi\)
0.0439277 + 0.999035i \(0.486013\pi\)
\(12\) 38.3990 0.923737
\(13\) 90.5065 1.93092 0.965461 0.260548i \(-0.0839031\pi\)
0.965461 + 0.260548i \(0.0839031\pi\)
\(14\) 0 0
\(15\) 118.254 2.03553
\(16\) 16.0000 0.250000
\(17\) −39.3727 −0.561722 −0.280861 0.959748i \(-0.590620\pi\)
−0.280861 + 0.959748i \(0.590620\pi\)
\(18\) 130.311 1.70636
\(19\) −31.2763 −0.377646 −0.188823 0.982011i \(-0.560467\pi\)
−0.188823 + 0.982011i \(0.560467\pi\)
\(20\) 49.2736 0.550895
\(21\) 0 0
\(22\) 6.41044 0.0621232
\(23\) 23.0000 0.208514
\(24\) 76.7981 0.653181
\(25\) 26.7429 0.213943
\(26\) 181.013 1.36537
\(27\) 366.283 2.61078
\(28\) 0 0
\(29\) −100.977 −0.646582 −0.323291 0.946300i \(-0.604789\pi\)
−0.323291 + 0.946300i \(0.604789\pi\)
\(30\) 236.507 1.43934
\(31\) 101.739 0.589444 0.294722 0.955583i \(-0.404773\pi\)
0.294722 + 0.955583i \(0.404773\pi\)
\(32\) 32.0000 0.176777
\(33\) 30.7694 0.162311
\(34\) −78.7453 −0.397197
\(35\) 0 0
\(36\) 260.622 1.20658
\(37\) −276.916 −1.23040 −0.615200 0.788371i \(-0.710925\pi\)
−0.615200 + 0.788371i \(0.710925\pi\)
\(38\) −62.5526 −0.267036
\(39\) 868.841 3.56733
\(40\) 98.5472 0.389542
\(41\) −428.691 −1.63294 −0.816468 0.577391i \(-0.804071\pi\)
−0.816468 + 0.577391i \(0.804071\pi\)
\(42\) 0 0
\(43\) 189.291 0.671316 0.335658 0.941984i \(-0.391041\pi\)
0.335658 + 0.941984i \(0.391041\pi\)
\(44\) 12.8209 0.0439277
\(45\) 802.610 2.65880
\(46\) 46.0000 0.147442
\(47\) −461.455 −1.43213 −0.716065 0.698034i \(-0.754058\pi\)
−0.716065 + 0.698034i \(0.754058\pi\)
\(48\) 153.596 0.461869
\(49\) 0 0
\(50\) 53.4858 0.151281
\(51\) −377.968 −1.03777
\(52\) 362.026 0.965461
\(53\) 532.272 1.37949 0.689746 0.724051i \(-0.257722\pi\)
0.689746 + 0.724051i \(0.257722\pi\)
\(54\) 732.566 1.84610
\(55\) 39.4832 0.0967984
\(56\) 0 0
\(57\) −300.245 −0.697692
\(58\) −201.953 −0.457203
\(59\) −535.315 −1.18122 −0.590611 0.806956i \(-0.701113\pi\)
−0.590611 + 0.806956i \(0.701113\pi\)
\(60\) 473.015 1.01777
\(61\) −61.3049 −0.128677 −0.0643384 0.997928i \(-0.520494\pi\)
−0.0643384 + 0.997928i \(0.520494\pi\)
\(62\) 203.477 0.416800
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 1114.90 2.12747
\(66\) 61.5387 0.114771
\(67\) 324.862 0.592361 0.296180 0.955132i \(-0.404287\pi\)
0.296180 + 0.955132i \(0.404287\pi\)
\(68\) −157.491 −0.280861
\(69\) 220.794 0.385225
\(70\) 0 0
\(71\) 339.474 0.567439 0.283719 0.958907i \(-0.408432\pi\)
0.283719 + 0.958907i \(0.408432\pi\)
\(72\) 521.243 0.853182
\(73\) −493.299 −0.790908 −0.395454 0.918486i \(-0.629413\pi\)
−0.395454 + 0.918486i \(0.629413\pi\)
\(74\) −553.833 −0.870023
\(75\) 256.726 0.395255
\(76\) −125.105 −0.188823
\(77\) 0 0
\(78\) 1737.68 2.52248
\(79\) −1027.27 −1.46300 −0.731502 0.681839i \(-0.761180\pi\)
−0.731502 + 0.681839i \(0.761180\pi\)
\(80\) 197.094 0.275448
\(81\) 1757.03 2.41019
\(82\) −857.383 −1.15466
\(83\) −967.752 −1.27981 −0.639907 0.768452i \(-0.721027\pi\)
−0.639907 + 0.768452i \(0.721027\pi\)
\(84\) 0 0
\(85\) −485.008 −0.618900
\(86\) 378.582 0.474692
\(87\) −969.351 −1.19454
\(88\) 25.6418 0.0310616
\(89\) 141.069 0.168015 0.0840075 0.996465i \(-0.473228\pi\)
0.0840075 + 0.996465i \(0.473228\pi\)
\(90\) 1605.22 1.88006
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 976.665 1.08898
\(94\) −922.909 −1.01267
\(95\) −385.274 −0.416087
\(96\) 307.192 0.326590
\(97\) 533.840 0.558796 0.279398 0.960175i \(-0.409865\pi\)
0.279398 + 0.960175i \(0.409865\pi\)
\(98\) 0 0
\(99\) 208.837 0.212010
\(100\) 106.972 0.106972
\(101\) 778.628 0.767093 0.383546 0.923522i \(-0.374703\pi\)
0.383546 + 0.923522i \(0.374703\pi\)
\(102\) −755.936 −0.733812
\(103\) −713.698 −0.682745 −0.341372 0.939928i \(-0.610892\pi\)
−0.341372 + 0.939928i \(0.610892\pi\)
\(104\) 724.052 0.682684
\(105\) 0 0
\(106\) 1064.54 0.975449
\(107\) −507.532 −0.458551 −0.229276 0.973362i \(-0.573636\pi\)
−0.229276 + 0.973362i \(0.573636\pi\)
\(108\) 1465.13 1.30539
\(109\) −1436.73 −1.26251 −0.631257 0.775574i \(-0.717461\pi\)
−0.631257 + 0.775574i \(0.717461\pi\)
\(110\) 78.9664 0.0684468
\(111\) −2658.33 −2.27313
\(112\) 0 0
\(113\) 1213.13 1.00993 0.504963 0.863141i \(-0.331506\pi\)
0.504963 + 0.863141i \(0.331506\pi\)
\(114\) −600.490 −0.493343
\(115\) 283.323 0.229739
\(116\) −403.906 −0.323291
\(117\) 5896.99 4.65963
\(118\) −1070.63 −0.835250
\(119\) 0 0
\(120\) 946.029 0.719669
\(121\) −1320.73 −0.992281
\(122\) −122.610 −0.0909882
\(123\) −4115.33 −3.01681
\(124\) 406.954 0.294722
\(125\) −1210.37 −0.866070
\(126\) 0 0
\(127\) −2138.33 −1.49406 −0.747031 0.664789i \(-0.768522\pi\)
−0.747031 + 0.664789i \(0.768522\pi\)
\(128\) 128.000 0.0883883
\(129\) 1817.15 1.24024
\(130\) 2229.79 1.50435
\(131\) 2057.53 1.37227 0.686134 0.727475i \(-0.259306\pi\)
0.686134 + 0.727475i \(0.259306\pi\)
\(132\) 123.077 0.0811554
\(133\) 0 0
\(134\) 649.724 0.418862
\(135\) 4512.02 2.87654
\(136\) −314.981 −0.198599
\(137\) 1729.65 1.07864 0.539321 0.842100i \(-0.318681\pi\)
0.539321 + 0.842100i \(0.318681\pi\)
\(138\) 441.589 0.272395
\(139\) 2294.70 1.40024 0.700121 0.714024i \(-0.253129\pi\)
0.700121 + 0.714024i \(0.253129\pi\)
\(140\) 0 0
\(141\) −4429.85 −2.64582
\(142\) 678.948 0.401240
\(143\) 290.093 0.169642
\(144\) 1042.49 0.603291
\(145\) −1243.87 −0.712399
\(146\) −986.598 −0.559256
\(147\) 0 0
\(148\) −1107.67 −0.615200
\(149\) −2915.09 −1.60277 −0.801387 0.598146i \(-0.795904\pi\)
−0.801387 + 0.598146i \(0.795904\pi\)
\(150\) 513.451 0.279487
\(151\) 2462.75 1.32726 0.663628 0.748063i \(-0.269016\pi\)
0.663628 + 0.748063i \(0.269016\pi\)
\(152\) −250.211 −0.133518
\(153\) −2565.34 −1.35553
\(154\) 0 0
\(155\) 1253.26 0.649444
\(156\) 3475.36 1.78366
\(157\) −611.315 −0.310753 −0.155377 0.987855i \(-0.549659\pi\)
−0.155377 + 0.987855i \(0.549659\pi\)
\(158\) −2054.55 −1.03450
\(159\) 5109.68 2.54858
\(160\) 394.189 0.194771
\(161\) 0 0
\(162\) 3514.06 1.70426
\(163\) 1426.67 0.685555 0.342778 0.939417i \(-0.388632\pi\)
0.342778 + 0.939417i \(0.388632\pi\)
\(164\) −1714.77 −0.816468
\(165\) 379.029 0.178833
\(166\) −1935.50 −0.904966
\(167\) 2650.58 1.22819 0.614095 0.789232i \(-0.289521\pi\)
0.614095 + 0.789232i \(0.289521\pi\)
\(168\) 0 0
\(169\) 5994.43 2.72846
\(170\) −970.016 −0.437629
\(171\) −2037.82 −0.911322
\(172\) 757.163 0.335658
\(173\) 978.955 0.430223 0.215112 0.976589i \(-0.430988\pi\)
0.215112 + 0.976589i \(0.430988\pi\)
\(174\) −1938.70 −0.844671
\(175\) 0 0
\(176\) 51.2835 0.0219639
\(177\) −5138.90 −2.18228
\(178\) 282.139 0.118804
\(179\) 4511.37 1.88377 0.941887 0.335929i \(-0.109050\pi\)
0.941887 + 0.335929i \(0.109050\pi\)
\(180\) 3210.44 1.32940
\(181\) −1920.55 −0.788693 −0.394346 0.918962i \(-0.629029\pi\)
−0.394346 + 0.918962i \(0.629029\pi\)
\(182\) 0 0
\(183\) −588.512 −0.237727
\(184\) 184.000 0.0737210
\(185\) −3411.17 −1.35564
\(186\) 1953.33 0.770028
\(187\) −126.198 −0.0493504
\(188\) −1845.82 −0.716065
\(189\) 0 0
\(190\) −770.548 −0.294218
\(191\) −3574.68 −1.35421 −0.677106 0.735885i \(-0.736766\pi\)
−0.677106 + 0.735885i \(0.736766\pi\)
\(192\) 614.385 0.230934
\(193\) 2888.94 1.07746 0.538731 0.842478i \(-0.318904\pi\)
0.538731 + 0.842478i \(0.318904\pi\)
\(194\) 1067.68 0.395129
\(195\) 10702.7 3.93045
\(196\) 0 0
\(197\) 3758.27 1.35921 0.679607 0.733576i \(-0.262150\pi\)
0.679607 + 0.733576i \(0.262150\pi\)
\(198\) 417.675 0.149913
\(199\) −1703.40 −0.606788 −0.303394 0.952865i \(-0.598120\pi\)
−0.303394 + 0.952865i \(0.598120\pi\)
\(200\) 213.943 0.0756404
\(201\) 3118.60 1.09437
\(202\) 1557.26 0.542416
\(203\) 0 0
\(204\) −1511.87 −0.518884
\(205\) −5280.79 −1.79915
\(206\) −1427.40 −0.482774
\(207\) 1498.57 0.503179
\(208\) 1448.10 0.482730
\(209\) −100.248 −0.0331783
\(210\) 0 0
\(211\) −4098.54 −1.33723 −0.668614 0.743609i \(-0.733112\pi\)
−0.668614 + 0.743609i \(0.733112\pi\)
\(212\) 2129.09 0.689746
\(213\) 3258.87 1.04833
\(214\) −1015.06 −0.324245
\(215\) 2331.76 0.739650
\(216\) 2930.26 0.923051
\(217\) 0 0
\(218\) −2873.46 −0.892732
\(219\) −4735.55 −1.46118
\(220\) 157.933 0.0483992
\(221\) −3563.48 −1.08464
\(222\) −5316.66 −1.60735
\(223\) 159.396 0.0478652 0.0239326 0.999714i \(-0.492381\pi\)
0.0239326 + 0.999714i \(0.492381\pi\)
\(224\) 0 0
\(225\) 1742.45 0.516280
\(226\) 2426.26 0.714126
\(227\) 824.662 0.241122 0.120561 0.992706i \(-0.461531\pi\)
0.120561 + 0.992706i \(0.461531\pi\)
\(228\) −1200.98 −0.348846
\(229\) 4701.27 1.35663 0.678316 0.734770i \(-0.262710\pi\)
0.678316 + 0.734770i \(0.262710\pi\)
\(230\) 566.646 0.162450
\(231\) 0 0
\(232\) −807.813 −0.228601
\(233\) −5078.00 −1.42777 −0.713886 0.700262i \(-0.753067\pi\)
−0.713886 + 0.700262i \(0.753067\pi\)
\(234\) 11794.0 3.29486
\(235\) −5684.38 −1.57791
\(236\) −2141.26 −0.590611
\(237\) −9861.58 −2.70286
\(238\) 0 0
\(239\) −871.048 −0.235747 −0.117873 0.993029i \(-0.537608\pi\)
−0.117873 + 0.993029i \(0.537608\pi\)
\(240\) 1892.06 0.508883
\(241\) −472.461 −0.126282 −0.0631409 0.998005i \(-0.520112\pi\)
−0.0631409 + 0.998005i \(0.520112\pi\)
\(242\) −2641.45 −0.701649
\(243\) 6977.44 1.84199
\(244\) −245.219 −0.0643384
\(245\) 0 0
\(246\) −8230.67 −2.13320
\(247\) −2830.71 −0.729206
\(248\) 813.908 0.208400
\(249\) −9290.19 −2.36443
\(250\) −2420.74 −0.612404
\(251\) 6104.29 1.53506 0.767528 0.641015i \(-0.221486\pi\)
0.767528 + 0.641015i \(0.221486\pi\)
\(252\) 0 0
\(253\) 73.7201 0.0183191
\(254\) −4276.66 −1.05646
\(255\) −4655.96 −1.14340
\(256\) 256.000 0.0625000
\(257\) 43.7778 0.0106256 0.00531281 0.999986i \(-0.498309\pi\)
0.00531281 + 0.999986i \(0.498309\pi\)
\(258\) 3634.29 0.876981
\(259\) 0 0
\(260\) 4459.58 1.06374
\(261\) −6579.17 −1.56031
\(262\) 4115.06 0.970340
\(263\) −1834.78 −0.430179 −0.215090 0.976594i \(-0.569004\pi\)
−0.215090 + 0.976594i \(0.569004\pi\)
\(264\) 246.155 0.0573855
\(265\) 6556.73 1.51991
\(266\) 0 0
\(267\) 1354.23 0.310403
\(268\) 1299.45 0.296180
\(269\) −2092.73 −0.474335 −0.237167 0.971469i \(-0.576219\pi\)
−0.237167 + 0.971469i \(0.576219\pi\)
\(270\) 9024.03 2.03402
\(271\) −2432.91 −0.545347 −0.272673 0.962107i \(-0.587908\pi\)
−0.272673 + 0.962107i \(0.587908\pi\)
\(272\) −629.963 −0.140430
\(273\) 0 0
\(274\) 3459.30 0.762715
\(275\) 85.7169 0.0187961
\(276\) 883.178 0.192613
\(277\) −78.7657 −0.0170851 −0.00854255 0.999964i \(-0.502719\pi\)
−0.00854255 + 0.999964i \(0.502719\pi\)
\(278\) 4589.39 0.990121
\(279\) 6628.81 1.42243
\(280\) 0 0
\(281\) 1626.25 0.345245 0.172622 0.984988i \(-0.444776\pi\)
0.172622 + 0.984988i \(0.444776\pi\)
\(282\) −8859.71 −1.87088
\(283\) −2019.49 −0.424191 −0.212096 0.977249i \(-0.568029\pi\)
−0.212096 + 0.977249i \(0.568029\pi\)
\(284\) 1357.90 0.283719
\(285\) −3698.54 −0.768711
\(286\) 580.187 0.119955
\(287\) 0 0
\(288\) 2084.97 0.426591
\(289\) −3362.79 −0.684468
\(290\) −2487.74 −0.503742
\(291\) 5124.74 1.03236
\(292\) −1973.20 −0.395454
\(293\) 213.222 0.0425138 0.0212569 0.999774i \(-0.493233\pi\)
0.0212569 + 0.999774i \(0.493233\pi\)
\(294\) 0 0
\(295\) −6594.22 −1.30146
\(296\) −2215.33 −0.435012
\(297\) 1174.02 0.229372
\(298\) −5830.18 −1.13333
\(299\) 2081.65 0.402625
\(300\) 1026.90 0.197627
\(301\) 0 0
\(302\) 4925.49 0.938511
\(303\) 7474.64 1.41718
\(304\) −500.421 −0.0944116
\(305\) −755.178 −0.141775
\(306\) −5130.68 −0.958502
\(307\) 554.869 0.103153 0.0515766 0.998669i \(-0.483575\pi\)
0.0515766 + 0.998669i \(0.483575\pi\)
\(308\) 0 0
\(309\) −6851.33 −1.26135
\(310\) 2506.51 0.459227
\(311\) 9101.92 1.65956 0.829779 0.558092i \(-0.188466\pi\)
0.829779 + 0.558092i \(0.188466\pi\)
\(312\) 6950.73 1.26124
\(313\) 3349.81 0.604928 0.302464 0.953161i \(-0.402191\pi\)
0.302464 + 0.953161i \(0.402191\pi\)
\(314\) −1222.63 −0.219736
\(315\) 0 0
\(316\) −4109.10 −0.731502
\(317\) 494.837 0.0876746 0.0438373 0.999039i \(-0.486042\pi\)
0.0438373 + 0.999039i \(0.486042\pi\)
\(318\) 10219.4 1.80212
\(319\) −323.652 −0.0568058
\(320\) 788.377 0.137724
\(321\) −4872.19 −0.847162
\(322\) 0 0
\(323\) 1231.43 0.212132
\(324\) 7028.12 1.20510
\(325\) 2420.41 0.413108
\(326\) 2853.34 0.484761
\(327\) −13792.3 −2.33246
\(328\) −3429.53 −0.577330
\(329\) 0 0
\(330\) 758.058 0.126454
\(331\) −5534.52 −0.919048 −0.459524 0.888165i \(-0.651980\pi\)
−0.459524 + 0.888165i \(0.651980\pi\)
\(332\) −3871.01 −0.639907
\(333\) −18042.6 −2.96915
\(334\) 5301.15 0.868462
\(335\) 4001.78 0.652658
\(336\) 0 0
\(337\) −6104.34 −0.986720 −0.493360 0.869825i \(-0.664231\pi\)
−0.493360 + 0.869825i \(0.664231\pi\)
\(338\) 11988.9 1.92931
\(339\) 11645.8 1.86581
\(340\) −1940.03 −0.309450
\(341\) 326.094 0.0517859
\(342\) −4075.64 −0.644402
\(343\) 0 0
\(344\) 1514.33 0.237346
\(345\) 2719.83 0.424438
\(346\) 1957.91 0.304214
\(347\) 4679.43 0.723934 0.361967 0.932191i \(-0.382105\pi\)
0.361967 + 0.932191i \(0.382105\pi\)
\(348\) −3877.41 −0.597272
\(349\) 10570.3 1.62124 0.810622 0.585570i \(-0.199129\pi\)
0.810622 + 0.585570i \(0.199129\pi\)
\(350\) 0 0
\(351\) 33151.0 5.04122
\(352\) 102.567 0.0155308
\(353\) 1138.62 0.171678 0.0858391 0.996309i \(-0.472643\pi\)
0.0858391 + 0.996309i \(0.472643\pi\)
\(354\) −10277.8 −1.54310
\(355\) 4181.78 0.625199
\(356\) 564.278 0.0840075
\(357\) 0 0
\(358\) 9022.74 1.33203
\(359\) 7926.33 1.16528 0.582640 0.812730i \(-0.302020\pi\)
0.582640 + 0.812730i \(0.302020\pi\)
\(360\) 6420.88 0.940028
\(361\) −5880.79 −0.857383
\(362\) −3841.10 −0.557690
\(363\) −12678.7 −1.83321
\(364\) 0 0
\(365\) −6076.65 −0.871415
\(366\) −1177.02 −0.168098
\(367\) 7201.35 1.02427 0.512136 0.858905i \(-0.328854\pi\)
0.512136 + 0.858905i \(0.328854\pi\)
\(368\) 368.000 0.0521286
\(369\) −27931.6 −3.94054
\(370\) −6822.33 −0.958584
\(371\) 0 0
\(372\) 3906.66 0.544492
\(373\) 5391.22 0.748383 0.374192 0.927351i \(-0.377920\pi\)
0.374192 + 0.927351i \(0.377920\pi\)
\(374\) −252.396 −0.0348960
\(375\) −11619.3 −1.60004
\(376\) −3691.64 −0.506334
\(377\) −9139.04 −1.24850
\(378\) 0 0
\(379\) −12296.3 −1.66653 −0.833267 0.552871i \(-0.813532\pi\)
−0.833267 + 0.552871i \(0.813532\pi\)
\(380\) −1541.10 −0.208044
\(381\) −20527.4 −2.76024
\(382\) −7149.36 −0.957573
\(383\) −9230.14 −1.23143 −0.615715 0.787969i \(-0.711133\pi\)
−0.615715 + 0.787969i \(0.711133\pi\)
\(384\) 1228.77 0.163295
\(385\) 0 0
\(386\) 5777.88 0.761881
\(387\) 12333.3 1.61999
\(388\) 2135.36 0.279398
\(389\) −12094.1 −1.57634 −0.788169 0.615459i \(-0.788971\pi\)
−0.788169 + 0.615459i \(0.788971\pi\)
\(390\) 21405.5 2.77925
\(391\) −905.571 −0.117127
\(392\) 0 0
\(393\) 19751.8 2.53523
\(394\) 7516.53 0.961110
\(395\) −12654.4 −1.61192
\(396\) 835.350 0.106005
\(397\) −4796.97 −0.606430 −0.303215 0.952922i \(-0.598060\pi\)
−0.303215 + 0.952922i \(0.598060\pi\)
\(398\) −3406.80 −0.429064
\(399\) 0 0
\(400\) 427.887 0.0534858
\(401\) 5211.25 0.648971 0.324486 0.945891i \(-0.394809\pi\)
0.324486 + 0.945891i \(0.394809\pi\)
\(402\) 6237.19 0.773838
\(403\) 9208.00 1.13817
\(404\) 3114.51 0.383546
\(405\) 21643.8 2.65553
\(406\) 0 0
\(407\) −887.578 −0.108097
\(408\) −3023.75 −0.366906
\(409\) 7034.91 0.850499 0.425250 0.905076i \(-0.360186\pi\)
0.425250 + 0.905076i \(0.360186\pi\)
\(410\) −10561.6 −1.27219
\(411\) 16604.2 1.99276
\(412\) −2854.79 −0.341372
\(413\) 0 0
\(414\) 2997.15 0.355802
\(415\) −11921.2 −1.41009
\(416\) 2896.21 0.341342
\(417\) 22028.5 2.58691
\(418\) −200.495 −0.0234606
\(419\) 8463.00 0.986742 0.493371 0.869819i \(-0.335765\pi\)
0.493371 + 0.869819i \(0.335765\pi\)
\(420\) 0 0
\(421\) −12704.8 −1.47077 −0.735386 0.677649i \(-0.762999\pi\)
−0.735386 + 0.677649i \(0.762999\pi\)
\(422\) −8197.08 −0.945564
\(423\) −30066.3 −3.45596
\(424\) 4258.17 0.487724
\(425\) −1052.94 −0.120177
\(426\) 6517.74 0.741280
\(427\) 0 0
\(428\) −2030.13 −0.229276
\(429\) 2784.83 0.313409
\(430\) 4663.52 0.523011
\(431\) −14888.0 −1.66387 −0.831935 0.554873i \(-0.812767\pi\)
−0.831935 + 0.554873i \(0.812767\pi\)
\(432\) 5860.52 0.652696
\(433\) −15105.4 −1.67649 −0.838244 0.545295i \(-0.816418\pi\)
−0.838244 + 0.545295i \(0.816418\pi\)
\(434\) 0 0
\(435\) −11940.9 −1.31614
\(436\) −5746.93 −0.631257
\(437\) −719.355 −0.0787447
\(438\) −9471.11 −1.03321
\(439\) −10682.1 −1.16135 −0.580673 0.814137i \(-0.697211\pi\)
−0.580673 + 0.814137i \(0.697211\pi\)
\(440\) 315.865 0.0342234
\(441\) 0 0
\(442\) −7126.96 −0.766957
\(443\) 4901.10 0.525640 0.262820 0.964845i \(-0.415347\pi\)
0.262820 + 0.964845i \(0.415347\pi\)
\(444\) −10633.3 −1.13657
\(445\) 1737.75 0.185117
\(446\) 318.792 0.0338458
\(447\) −27984.2 −2.96109
\(448\) 0 0
\(449\) 13352.4 1.40342 0.701712 0.712460i \(-0.252419\pi\)
0.701712 + 0.712460i \(0.252419\pi\)
\(450\) 3484.89 0.365065
\(451\) −1374.05 −0.143462
\(452\) 4852.52 0.504963
\(453\) 23641.8 2.45207
\(454\) 1649.32 0.170499
\(455\) 0 0
\(456\) −2401.96 −0.246671
\(457\) 6832.77 0.699395 0.349698 0.936863i \(-0.386284\pi\)
0.349698 + 0.936863i \(0.386284\pi\)
\(458\) 9402.54 0.959283
\(459\) −14421.5 −1.46653
\(460\) 1133.29 0.114870
\(461\) 1494.84 0.151023 0.0755115 0.997145i \(-0.475941\pi\)
0.0755115 + 0.997145i \(0.475941\pi\)
\(462\) 0 0
\(463\) 3632.90 0.364655 0.182328 0.983238i \(-0.441637\pi\)
0.182328 + 0.983238i \(0.441637\pi\)
\(464\) −1615.63 −0.161646
\(465\) 12031.0 1.19983
\(466\) −10156.0 −1.00959
\(467\) 8702.16 0.862287 0.431143 0.902283i \(-0.358110\pi\)
0.431143 + 0.902283i \(0.358110\pi\)
\(468\) 23588.0 2.32982
\(469\) 0 0
\(470\) −11368.8 −1.11575
\(471\) −5868.48 −0.574109
\(472\) −4282.52 −0.417625
\(473\) 606.719 0.0589788
\(474\) −19723.2 −1.91121
\(475\) −836.420 −0.0807949
\(476\) 0 0
\(477\) 34680.4 3.32894
\(478\) −1742.10 −0.166698
\(479\) 10930.5 1.04265 0.521324 0.853359i \(-0.325438\pi\)
0.521324 + 0.853359i \(0.325438\pi\)
\(480\) 3784.12 0.359834
\(481\) −25062.7 −2.37580
\(482\) −944.922 −0.0892947
\(483\) 0 0
\(484\) −5282.91 −0.496141
\(485\) 6576.05 0.615677
\(486\) 13954.9 1.30248
\(487\) 12266.0 1.14132 0.570661 0.821186i \(-0.306687\pi\)
0.570661 + 0.821186i \(0.306687\pi\)
\(488\) −490.439 −0.0454941
\(489\) 13695.7 1.26655
\(490\) 0 0
\(491\) −1818.20 −0.167117 −0.0835584 0.996503i \(-0.526629\pi\)
−0.0835584 + 0.996503i \(0.526629\pi\)
\(492\) −16461.3 −1.50840
\(493\) 3975.72 0.363199
\(494\) −5661.42 −0.515626
\(495\) 2572.54 0.233590
\(496\) 1627.82 0.147361
\(497\) 0 0
\(498\) −18580.4 −1.67190
\(499\) 4982.41 0.446980 0.223490 0.974706i \(-0.428255\pi\)
0.223490 + 0.974706i \(0.428255\pi\)
\(500\) −4841.48 −0.433035
\(501\) 25444.9 2.26905
\(502\) 12208.6 1.08545
\(503\) 21067.0 1.86746 0.933730 0.357979i \(-0.116534\pi\)
0.933730 + 0.357979i \(0.116534\pi\)
\(504\) 0 0
\(505\) 9591.45 0.845176
\(506\) 147.440 0.0129536
\(507\) 57545.1 5.04076
\(508\) −8553.31 −0.747031
\(509\) −6133.98 −0.534153 −0.267077 0.963675i \(-0.586058\pi\)
−0.267077 + 0.963675i \(0.586058\pi\)
\(510\) −9311.92 −0.808508
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −11456.0 −0.985953
\(514\) 87.5557 0.00751345
\(515\) −8791.61 −0.752242
\(516\) 7268.59 0.620120
\(517\) −1479.06 −0.125820
\(518\) 0 0
\(519\) 9397.74 0.794826
\(520\) 8919.16 0.752175
\(521\) −18238.5 −1.53367 −0.766835 0.641844i \(-0.778170\pi\)
−0.766835 + 0.641844i \(0.778170\pi\)
\(522\) −13158.3 −1.10330
\(523\) 4632.05 0.387276 0.193638 0.981073i \(-0.437971\pi\)
0.193638 + 0.981073i \(0.437971\pi\)
\(524\) 8230.11 0.686134
\(525\) 0 0
\(526\) −3669.55 −0.304183
\(527\) −4005.72 −0.331104
\(528\) 492.310 0.0405777
\(529\) 529.000 0.0434783
\(530\) 13113.5 1.07474
\(531\) −34878.7 −2.85048
\(532\) 0 0
\(533\) −38799.4 −3.15307
\(534\) 2708.46 0.219488
\(535\) −6251.98 −0.505228
\(536\) 2598.89 0.209431
\(537\) 43308.1 3.48023
\(538\) −4185.46 −0.335405
\(539\) 0 0
\(540\) 18048.1 1.43827
\(541\) 21368.5 1.69816 0.849078 0.528268i \(-0.177158\pi\)
0.849078 + 0.528268i \(0.177158\pi\)
\(542\) −4865.83 −0.385618
\(543\) −18436.8 −1.45709
\(544\) −1259.93 −0.0992994
\(545\) −17698.2 −1.39103
\(546\) 0 0
\(547\) −1245.08 −0.0973234 −0.0486617 0.998815i \(-0.515496\pi\)
−0.0486617 + 0.998815i \(0.515496\pi\)
\(548\) 6918.60 0.539321
\(549\) −3994.34 −0.310518
\(550\) 171.434 0.0132908
\(551\) 3158.18 0.244179
\(552\) 1766.36 0.136198
\(553\) 0 0
\(554\) −157.531 −0.0120810
\(555\) −32746.4 −2.50452
\(556\) 9178.79 0.700121
\(557\) 17190.3 1.30768 0.653840 0.756633i \(-0.273157\pi\)
0.653840 + 0.756633i \(0.273157\pi\)
\(558\) 13257.6 1.00581
\(559\) 17132.0 1.29626
\(560\) 0 0
\(561\) −1211.47 −0.0911735
\(562\) 3252.49 0.244125
\(563\) −10898.7 −0.815854 −0.407927 0.913015i \(-0.633748\pi\)
−0.407927 + 0.913015i \(0.633748\pi\)
\(564\) −17719.4 −1.32291
\(565\) 14943.8 1.11273
\(566\) −4038.98 −0.299948
\(567\) 0 0
\(568\) 2715.79 0.200620
\(569\) −10552.2 −0.777456 −0.388728 0.921353i \(-0.627085\pi\)
−0.388728 + 0.921353i \(0.627085\pi\)
\(570\) −7397.08 −0.543561
\(571\) −10692.3 −0.783643 −0.391822 0.920041i \(-0.628155\pi\)
−0.391822 + 0.920041i \(0.628155\pi\)
\(572\) 1160.37 0.0848210
\(573\) −34316.1 −2.50187
\(574\) 0 0
\(575\) 615.087 0.0446103
\(576\) 4169.95 0.301645
\(577\) −7386.53 −0.532938 −0.266469 0.963843i \(-0.585857\pi\)
−0.266469 + 0.963843i \(0.585857\pi\)
\(578\) −6725.59 −0.483992
\(579\) 27733.1 1.99059
\(580\) −4975.48 −0.356199
\(581\) 0 0
\(582\) 10249.5 0.729990
\(583\) 1706.05 0.121196
\(584\) −3946.39 −0.279628
\(585\) 72641.4 5.13394
\(586\) 426.444 0.0300618
\(587\) 14194.6 0.998079 0.499040 0.866579i \(-0.333686\pi\)
0.499040 + 0.866579i \(0.333686\pi\)
\(588\) 0 0
\(589\) −3182.01 −0.222601
\(590\) −13188.4 −0.920271
\(591\) 36078.5 2.51112
\(592\) −4430.66 −0.307600
\(593\) −4223.73 −0.292492 −0.146246 0.989248i \(-0.546719\pi\)
−0.146246 + 0.989248i \(0.546719\pi\)
\(594\) 2348.03 0.162190
\(595\) 0 0
\(596\) −11660.4 −0.801387
\(597\) −16352.2 −1.12102
\(598\) 4163.30 0.284699
\(599\) −5658.02 −0.385944 −0.192972 0.981204i \(-0.561813\pi\)
−0.192972 + 0.981204i \(0.561813\pi\)
\(600\) 2053.80 0.139744
\(601\) −9080.45 −0.616305 −0.308152 0.951337i \(-0.599711\pi\)
−0.308152 + 0.951337i \(0.599711\pi\)
\(602\) 0 0
\(603\) 21166.5 1.42946
\(604\) 9850.99 0.663628
\(605\) −16269.2 −1.09329
\(606\) 14949.3 1.00210
\(607\) 10474.0 0.700375 0.350187 0.936680i \(-0.386118\pi\)
0.350187 + 0.936680i \(0.386118\pi\)
\(608\) −1000.84 −0.0667591
\(609\) 0 0
\(610\) −1510.36 −0.100250
\(611\) −41764.6 −2.76533
\(612\) −10261.4 −0.677763
\(613\) −14206.8 −0.936064 −0.468032 0.883711i \(-0.655037\pi\)
−0.468032 + 0.883711i \(0.655037\pi\)
\(614\) 1109.74 0.0729403
\(615\) −50694.3 −3.32389
\(616\) 0 0
\(617\) −1625.86 −0.106085 −0.0530427 0.998592i \(-0.516892\pi\)
−0.0530427 + 0.998592i \(0.516892\pi\)
\(618\) −13702.7 −0.891912
\(619\) −22233.0 −1.44365 −0.721826 0.692074i \(-0.756697\pi\)
−0.721826 + 0.692074i \(0.756697\pi\)
\(620\) 5013.02 0.324722
\(621\) 8424.50 0.544386
\(622\) 18203.8 1.17349
\(623\) 0 0
\(624\) 13901.5 0.891832
\(625\) −18252.7 −1.16817
\(626\) 6699.62 0.427748
\(627\) −962.352 −0.0612961
\(628\) −2445.26 −0.155377
\(629\) 10902.9 0.691142
\(630\) 0 0
\(631\) 19654.9 1.24002 0.620008 0.784596i \(-0.287129\pi\)
0.620008 + 0.784596i \(0.287129\pi\)
\(632\) −8218.19 −0.517250
\(633\) −39345.0 −2.47050
\(634\) 989.675 0.0619953
\(635\) −26340.8 −1.64615
\(636\) 20438.7 1.27429
\(637\) 0 0
\(638\) −647.305 −0.0401678
\(639\) 22118.6 1.36932
\(640\) 1576.75 0.0973855
\(641\) −5791.55 −0.356868 −0.178434 0.983952i \(-0.557103\pi\)
−0.178434 + 0.983952i \(0.557103\pi\)
\(642\) −9744.38 −0.599034
\(643\) 28777.7 1.76498 0.882491 0.470330i \(-0.155865\pi\)
0.882491 + 0.470330i \(0.155865\pi\)
\(644\) 0 0
\(645\) 22384.3 1.36648
\(646\) 2462.86 0.150000
\(647\) 3658.70 0.222316 0.111158 0.993803i \(-0.464544\pi\)
0.111158 + 0.993803i \(0.464544\pi\)
\(648\) 14056.2 0.852132
\(649\) −1715.80 −0.103777
\(650\) 4840.82 0.292111
\(651\) 0 0
\(652\) 5706.68 0.342778
\(653\) 22504.0 1.34862 0.674311 0.738447i \(-0.264441\pi\)
0.674311 + 0.738447i \(0.264441\pi\)
\(654\) −27584.6 −1.64930
\(655\) 25345.4 1.51195
\(656\) −6859.06 −0.408234
\(657\) −32141.1 −1.90859
\(658\) 0 0
\(659\) −24842.1 −1.46845 −0.734227 0.678904i \(-0.762455\pi\)
−0.734227 + 0.678904i \(0.762455\pi\)
\(660\) 1516.12 0.0894163
\(661\) −19488.7 −1.14678 −0.573390 0.819282i \(-0.694372\pi\)
−0.573390 + 0.819282i \(0.694372\pi\)
\(662\) −11069.0 −0.649865
\(663\) −34208.6 −2.00385
\(664\) −7742.02 −0.452483
\(665\) 0 0
\(666\) −36085.2 −2.09951
\(667\) −2322.46 −0.134822
\(668\) 10602.3 0.614095
\(669\) 1530.16 0.0884297
\(670\) 8003.55 0.461499
\(671\) −196.496 −0.0113050
\(672\) 0 0
\(673\) −3510.32 −0.201059 −0.100530 0.994934i \(-0.532054\pi\)
−0.100530 + 0.994934i \(0.532054\pi\)
\(674\) −12208.7 −0.697716
\(675\) 9795.47 0.558560
\(676\) 23977.7 1.36423
\(677\) −8630.86 −0.489972 −0.244986 0.969527i \(-0.578783\pi\)
−0.244986 + 0.969527i \(0.578783\pi\)
\(678\) 23291.5 1.31933
\(679\) 0 0
\(680\) −3880.07 −0.218814
\(681\) 7916.55 0.445467
\(682\) 652.189 0.0366182
\(683\) −5485.63 −0.307323 −0.153662 0.988124i \(-0.549107\pi\)
−0.153662 + 0.988124i \(0.549107\pi\)
\(684\) −8151.29 −0.455661
\(685\) 21306.5 1.18844
\(686\) 0 0
\(687\) 45131.1 2.50634
\(688\) 3028.65 0.167829
\(689\) 48174.0 2.66369
\(690\) 5439.67 0.300123
\(691\) 24519.4 1.34987 0.674937 0.737875i \(-0.264171\pi\)
0.674937 + 0.737875i \(0.264171\pi\)
\(692\) 3915.82 0.215112
\(693\) 0 0
\(694\) 9358.86 0.511898
\(695\) 28267.0 1.54277
\(696\) −7754.81 −0.422335
\(697\) 16878.7 0.917256
\(698\) 21140.6 1.14639
\(699\) −48747.6 −2.63777
\(700\) 0 0
\(701\) −3991.48 −0.215059 −0.107529 0.994202i \(-0.534294\pi\)
−0.107529 + 0.994202i \(0.534294\pi\)
\(702\) 66301.9 3.56468
\(703\) 8660.92 0.464656
\(704\) 205.134 0.0109819
\(705\) −54568.7 −2.91514
\(706\) 2277.23 0.121395
\(707\) 0 0
\(708\) −20555.6 −1.09114
\(709\) 26142.2 1.38476 0.692378 0.721535i \(-0.256563\pi\)
0.692378 + 0.721535i \(0.256563\pi\)
\(710\) 8363.55 0.442082
\(711\) −66932.4 −3.53047
\(712\) 1128.56 0.0594022
\(713\) 2339.99 0.122908
\(714\) 0 0
\(715\) 3573.48 0.186910
\(716\) 18045.5 0.941887
\(717\) −8361.85 −0.435536
\(718\) 15852.7 0.823977
\(719\) 6281.19 0.325798 0.162899 0.986643i \(-0.447916\pi\)
0.162899 + 0.986643i \(0.447916\pi\)
\(720\) 12841.8 0.664700
\(721\) 0 0
\(722\) −11761.6 −0.606262
\(723\) −4535.51 −0.233302
\(724\) −7682.20 −0.394346
\(725\) −2700.41 −0.138332
\(726\) −25357.3 −1.29628
\(727\) 16949.5 0.864681 0.432340 0.901711i \(-0.357688\pi\)
0.432340 + 0.901711i \(0.357688\pi\)
\(728\) 0 0
\(729\) 19542.0 0.992834
\(730\) −12153.3 −0.616184
\(731\) −7452.88 −0.377093
\(732\) −2354.05 −0.118864
\(733\) 25101.0 1.26484 0.632420 0.774626i \(-0.282062\pi\)
0.632420 + 0.774626i \(0.282062\pi\)
\(734\) 14402.7 0.724269
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 1041.25 0.0520422
\(738\) −55863.1 −2.78638
\(739\) 15306.6 0.761924 0.380962 0.924591i \(-0.375593\pi\)
0.380962 + 0.924591i \(0.375593\pi\)
\(740\) −13644.7 −0.677821
\(741\) −27174.1 −1.34719
\(742\) 0 0
\(743\) −9114.17 −0.450022 −0.225011 0.974356i \(-0.572242\pi\)
−0.225011 + 0.974356i \(0.572242\pi\)
\(744\) 7813.32 0.385014
\(745\) −35909.2 −1.76592
\(746\) 10782.4 0.529187
\(747\) −63054.3 −3.08840
\(748\) −504.792 −0.0246752
\(749\) 0 0
\(750\) −23238.5 −1.13140
\(751\) 18894.4 0.918062 0.459031 0.888420i \(-0.348197\pi\)
0.459031 + 0.888420i \(0.348197\pi\)
\(752\) −7383.27 −0.358032
\(753\) 58599.7 2.83598
\(754\) −18278.1 −0.882823
\(755\) 30337.1 1.46236
\(756\) 0 0
\(757\) 40455.6 1.94238 0.971192 0.238299i \(-0.0765897\pi\)
0.971192 + 0.238299i \(0.0765897\pi\)
\(758\) −24592.5 −1.17842
\(759\) 707.695 0.0338441
\(760\) −3082.19 −0.147109
\(761\) −18058.1 −0.860189 −0.430095 0.902784i \(-0.641520\pi\)
−0.430095 + 0.902784i \(0.641520\pi\)
\(762\) −41054.9 −1.95179
\(763\) 0 0
\(764\) −14298.7 −0.677106
\(765\) −31600.9 −1.49351
\(766\) −18460.3 −0.870753
\(767\) −48449.5 −2.28085
\(768\) 2457.54 0.115467
\(769\) −8782.33 −0.411832 −0.205916 0.978570i \(-0.566017\pi\)
−0.205916 + 0.978570i \(0.566017\pi\)
\(770\) 0 0
\(771\) 420.257 0.0196306
\(772\) 11555.8 0.538731
\(773\) 14634.2 0.680926 0.340463 0.940258i \(-0.389416\pi\)
0.340463 + 0.940258i \(0.389416\pi\)
\(774\) 24666.6 1.14551
\(775\) 2720.78 0.126108
\(776\) 4270.72 0.197564
\(777\) 0 0
\(778\) −24188.2 −1.11464
\(779\) 13407.9 0.616672
\(780\) 42810.9 1.96523
\(781\) 1088.09 0.0498526
\(782\) −1811.14 −0.0828214
\(783\) −36986.0 −1.68809
\(784\) 0 0
\(785\) −7530.42 −0.342385
\(786\) 39503.6 1.79268
\(787\) −36107.0 −1.63542 −0.817710 0.575630i \(-0.804757\pi\)
−0.817710 + 0.575630i \(0.804757\pi\)
\(788\) 15033.1 0.679607
\(789\) −17613.4 −0.794745
\(790\) −25308.7 −1.13980
\(791\) 0 0
\(792\) 1670.70 0.0749567
\(793\) −5548.49 −0.248465
\(794\) −9593.93 −0.428811
\(795\) 62943.1 2.80800
\(796\) −6813.59 −0.303394
\(797\) −8052.00 −0.357862 −0.178931 0.983862i \(-0.557264\pi\)
−0.178931 + 0.983862i \(0.557264\pi\)
\(798\) 0 0
\(799\) 18168.7 0.804458
\(800\) 855.773 0.0378202
\(801\) 9191.43 0.405447
\(802\) 10422.5 0.458892
\(803\) −1581.13 −0.0694856
\(804\) 12474.4 0.547186
\(805\) 0 0
\(806\) 18416.0 0.804809
\(807\) −20089.7 −0.876321
\(808\) 6229.02 0.271208
\(809\) 10909.1 0.474094 0.237047 0.971498i \(-0.423820\pi\)
0.237047 + 0.971498i \(0.423820\pi\)
\(810\) 43287.6 1.87774
\(811\) −20492.9 −0.887302 −0.443651 0.896200i \(-0.646317\pi\)
−0.443651 + 0.896200i \(0.646317\pi\)
\(812\) 0 0
\(813\) −23355.4 −1.00751
\(814\) −1775.16 −0.0764363
\(815\) 17574.3 0.755339
\(816\) −6047.49 −0.259442
\(817\) −5920.32 −0.253520
\(818\) 14069.8 0.601394
\(819\) 0 0
\(820\) −21123.2 −0.899577
\(821\) −34410.3 −1.46276 −0.731381 0.681969i \(-0.761124\pi\)
−0.731381 + 0.681969i \(0.761124\pi\)
\(822\) 33208.4 1.40910
\(823\) −24532.0 −1.03904 −0.519521 0.854458i \(-0.673890\pi\)
−0.519521 + 0.854458i \(0.673890\pi\)
\(824\) −5709.58 −0.241387
\(825\) 822.862 0.0347253
\(826\) 0 0
\(827\) 15326.2 0.644430 0.322215 0.946666i \(-0.395573\pi\)
0.322215 + 0.946666i \(0.395573\pi\)
\(828\) 5994.30 0.251590
\(829\) 22832.6 0.956586 0.478293 0.878200i \(-0.341256\pi\)
0.478293 + 0.878200i \(0.341256\pi\)
\(830\) −23842.3 −0.997083
\(831\) −756.132 −0.0315643
\(832\) 5792.42 0.241365
\(833\) 0 0
\(834\) 44057.1 1.82922
\(835\) 32650.9 1.35321
\(836\) −400.990 −0.0165892
\(837\) 37265.1 1.53891
\(838\) 16926.0 0.697732
\(839\) −1197.07 −0.0492581 −0.0246291 0.999697i \(-0.507840\pi\)
−0.0246291 + 0.999697i \(0.507840\pi\)
\(840\) 0 0
\(841\) −14192.7 −0.581931
\(842\) −25409.6 −1.03999
\(843\) 15611.6 0.637831
\(844\) −16394.2 −0.668614
\(845\) 73841.7 3.00619
\(846\) −60132.5 −2.44373
\(847\) 0 0
\(848\) 8516.35 0.344873
\(849\) −19386.6 −0.783682
\(850\) −2105.88 −0.0849777
\(851\) −6369.08 −0.256556
\(852\) 13035.5 0.524164
\(853\) 37476.2 1.50429 0.752146 0.658997i \(-0.229019\pi\)
0.752146 + 0.658997i \(0.229019\pi\)
\(854\) 0 0
\(855\) −25102.7 −1.00409
\(856\) −4060.26 −0.162122
\(857\) −27855.2 −1.11029 −0.555143 0.831755i \(-0.687337\pi\)
−0.555143 + 0.831755i \(0.687337\pi\)
\(858\) 5569.65 0.221614
\(859\) 3897.45 0.154807 0.0774035 0.997000i \(-0.475337\pi\)
0.0774035 + 0.997000i \(0.475337\pi\)
\(860\) 9327.04 0.369825
\(861\) 0 0
\(862\) −29775.9 −1.17653
\(863\) −2633.38 −0.103872 −0.0519359 0.998650i \(-0.516539\pi\)
−0.0519359 + 0.998650i \(0.516539\pi\)
\(864\) 11721.0 0.461526
\(865\) 12059.2 0.474016
\(866\) −30210.8 −1.18546
\(867\) −32282.0 −1.26454
\(868\) 0 0
\(869\) −3292.64 −0.128533
\(870\) −23881.7 −0.930650
\(871\) 29402.1 1.14380
\(872\) −11493.9 −0.446366
\(873\) 34782.6 1.34847
\(874\) −1438.71 −0.0556809
\(875\) 0 0
\(876\) −18942.2 −0.730591
\(877\) −31560.8 −1.21520 −0.607601 0.794243i \(-0.707868\pi\)
−0.607601 + 0.794243i \(0.707868\pi\)
\(878\) −21364.3 −0.821196
\(879\) 2046.88 0.0785432
\(880\) 631.731 0.0241996
\(881\) 28596.5 1.09358 0.546788 0.837271i \(-0.315850\pi\)
0.546788 + 0.837271i \(0.315850\pi\)
\(882\) 0 0
\(883\) 10131.2 0.386119 0.193059 0.981187i \(-0.438159\pi\)
0.193059 + 0.981187i \(0.438159\pi\)
\(884\) −14253.9 −0.542321
\(885\) −63303.0 −2.40441
\(886\) 9802.21 0.371684
\(887\) 3743.52 0.141708 0.0708540 0.997487i \(-0.477428\pi\)
0.0708540 + 0.997487i \(0.477428\pi\)
\(888\) −21266.6 −0.803673
\(889\) 0 0
\(890\) 3475.50 0.130898
\(891\) 5631.67 0.211749
\(892\) 637.583 0.0239326
\(893\) 14432.6 0.540838
\(894\) −55968.3 −2.09380
\(895\) 55572.9 2.07553
\(896\) 0 0
\(897\) 19983.3 0.743840
\(898\) 26704.8 0.992371
\(899\) −10273.2 −0.381124
\(900\) 6969.78 0.258140
\(901\) −20957.0 −0.774892
\(902\) −2748.10 −0.101443
\(903\) 0 0
\(904\) 9705.04 0.357063
\(905\) −23658.1 −0.868975
\(906\) 47283.6 1.73388
\(907\) −42283.7 −1.54797 −0.773984 0.633205i \(-0.781739\pi\)
−0.773984 + 0.633205i \(0.781739\pi\)
\(908\) 3298.65 0.120561
\(909\) 50731.8 1.85112
\(910\) 0 0
\(911\) −20097.2 −0.730899 −0.365449 0.930831i \(-0.619085\pi\)
−0.365449 + 0.930831i \(0.619085\pi\)
\(912\) −4803.92 −0.174423
\(913\) −3101.86 −0.112439
\(914\) 13665.5 0.494547
\(915\) −7249.53 −0.261926
\(916\) 18805.1 0.678316
\(917\) 0 0
\(918\) −28843.1 −1.03700
\(919\) −50782.5 −1.82281 −0.911405 0.411511i \(-0.865001\pi\)
−0.911405 + 0.411511i \(0.865001\pi\)
\(920\) 2266.59 0.0812251
\(921\) 5326.61 0.190573
\(922\) 2989.68 0.106789
\(923\) 30724.6 1.09568
\(924\) 0 0
\(925\) −7405.55 −0.263236
\(926\) 7265.81 0.257850
\(927\) −46501.3 −1.64758
\(928\) −3231.25 −0.114301
\(929\) 13395.8 0.473093 0.236546 0.971620i \(-0.423984\pi\)
0.236546 + 0.971620i \(0.423984\pi\)
\(930\) 24061.9 0.848410
\(931\) 0 0
\(932\) −20312.0 −0.713886
\(933\) 87376.3 3.06599
\(934\) 17404.3 0.609729
\(935\) −1554.56 −0.0543738
\(936\) 47175.9 1.64743
\(937\) −1753.27 −0.0611280 −0.0305640 0.999533i \(-0.509730\pi\)
−0.0305640 + 0.999533i \(0.509730\pi\)
\(938\) 0 0
\(939\) 32157.4 1.11759
\(940\) −22737.5 −0.788953
\(941\) −3805.28 −0.131826 −0.0659132 0.997825i \(-0.520996\pi\)
−0.0659132 + 0.997825i \(0.520996\pi\)
\(942\) −11737.0 −0.405956
\(943\) −9859.90 −0.340491
\(944\) −8565.04 −0.295305
\(945\) 0 0
\(946\) 1213.44 0.0417043
\(947\) 8663.09 0.297268 0.148634 0.988892i \(-0.452512\pi\)
0.148634 + 0.988892i \(0.452512\pi\)
\(948\) −39446.3 −1.35143
\(949\) −44646.8 −1.52718
\(950\) −1672.84 −0.0571306
\(951\) 4750.32 0.161977
\(952\) 0 0
\(953\) −40285.4 −1.36933 −0.684666 0.728857i \(-0.740052\pi\)
−0.684666 + 0.728857i \(0.740052\pi\)
\(954\) 69360.7 2.35392
\(955\) −44034.3 −1.49206
\(956\) −3484.19 −0.117873
\(957\) −3106.98 −0.104947
\(958\) 21861.0 0.737263
\(959\) 0 0
\(960\) 7568.23 0.254441
\(961\) −19440.3 −0.652555
\(962\) −50125.5 −1.67995
\(963\) −33068.5 −1.10656
\(964\) −1889.84 −0.0631409
\(965\) 35587.1 1.18714
\(966\) 0 0
\(967\) 11328.2 0.376723 0.188362 0.982100i \(-0.439682\pi\)
0.188362 + 0.982100i \(0.439682\pi\)
\(968\) −10565.8 −0.350824
\(969\) 11821.5 0.391909
\(970\) 13152.1 0.435349
\(971\) −16804.9 −0.555402 −0.277701 0.960668i \(-0.589572\pi\)
−0.277701 + 0.960668i \(0.589572\pi\)
\(972\) 27909.8 0.920994
\(973\) 0 0
\(974\) 24531.9 0.807037
\(975\) 23235.3 0.763206
\(976\) −980.878 −0.0321692
\(977\) −10358.8 −0.339208 −0.169604 0.985512i \(-0.554249\pi\)
−0.169604 + 0.985512i \(0.554249\pi\)
\(978\) 27391.4 0.895583
\(979\) 452.159 0.0147610
\(980\) 0 0
\(981\) −93610.8 −3.04665
\(982\) −3636.41 −0.118169
\(983\) 17315.0 0.561813 0.280906 0.959735i \(-0.409365\pi\)
0.280906 + 0.959735i \(0.409365\pi\)
\(984\) −32922.7 −1.06660
\(985\) 46295.8 1.49757
\(986\) 7951.44 0.256821
\(987\) 0 0
\(988\) −11322.8 −0.364603
\(989\) 4353.69 0.139979
\(990\) 5145.09 0.165173
\(991\) −5746.76 −0.184210 −0.0921048 0.995749i \(-0.529359\pi\)
−0.0921048 + 0.995749i \(0.529359\pi\)
\(992\) 3255.63 0.104200
\(993\) −53130.1 −1.69792
\(994\) 0 0
\(995\) −20983.1 −0.668553
\(996\) −37160.8 −1.18221
\(997\) −36523.2 −1.16018 −0.580091 0.814552i \(-0.696983\pi\)
−0.580091 + 0.814552i \(0.696983\pi\)
\(998\) 9964.81 0.316063
\(999\) −101430. −3.21231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.10 11
7.2 even 3 322.4.e.a.277.2 yes 22
7.4 even 3 322.4.e.a.93.2 22
7.6 odd 2 2254.4.a.v.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.2 22 7.4 even 3
322.4.e.a.277.2 yes 22 7.2 even 3
2254.4.a.v.1.2 11 7.6 odd 2
2254.4.a.y.1.10 11 1.1 even 1 trivial