Properties

Label 2254.4.a.y.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 4 x^{10} - 212 x^{9} + 487 x^{8} + 16315 x^{7} - 9025 x^{6} - 516068 x^{5} - 504693 x^{4} + \cdots - 11394027 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(9.96981\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -7.96981 q^{3} +4.00000 q^{4} +15.4032 q^{5} -15.9396 q^{6} +8.00000 q^{8} +36.5179 q^{9} +30.8063 q^{10} -59.6292 q^{11} -31.8793 q^{12} -17.4445 q^{13} -122.760 q^{15} +16.0000 q^{16} -100.674 q^{17} +73.0358 q^{18} -64.5559 q^{19} +61.6126 q^{20} -119.258 q^{22} +23.0000 q^{23} -63.7585 q^{24} +112.257 q^{25} -34.8889 q^{26} -75.8561 q^{27} -260.291 q^{29} -245.521 q^{30} +248.506 q^{31} +32.0000 q^{32} +475.233 q^{33} -201.348 q^{34} +146.072 q^{36} -358.250 q^{37} -129.112 q^{38} +139.029 q^{39} +123.225 q^{40} +432.148 q^{41} +470.883 q^{43} -238.517 q^{44} +562.491 q^{45} +46.0000 q^{46} -199.178 q^{47} -127.517 q^{48} +224.514 q^{50} +802.353 q^{51} -69.7778 q^{52} -120.925 q^{53} -151.712 q^{54} -918.477 q^{55} +514.498 q^{57} -520.583 q^{58} +881.429 q^{59} -491.041 q^{60} +320.352 q^{61} +497.013 q^{62} +64.0000 q^{64} -268.700 q^{65} +950.466 q^{66} +757.878 q^{67} -402.696 q^{68} -183.306 q^{69} -326.086 q^{71} +292.143 q^{72} -56.9293 q^{73} -716.500 q^{74} -894.668 q^{75} -258.224 q^{76} +278.058 q^{78} +562.924 q^{79} +246.450 q^{80} -381.425 q^{81} +864.296 q^{82} +342.227 q^{83} -1550.70 q^{85} +941.766 q^{86} +2074.47 q^{87} -477.033 q^{88} -96.5644 q^{89} +1124.98 q^{90} +92.0000 q^{92} -1980.55 q^{93} -398.356 q^{94} -994.364 q^{95} -255.034 q^{96} -102.191 q^{97} -2177.53 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 18 q^{3} + 44 q^{4} + 33 q^{5} + 36 q^{6} + 88 q^{8} + 171 q^{9} + 66 q^{10} + 8 q^{11} + 72 q^{12} + 185 q^{13} - 186 q^{15} + 176 q^{16} + 107 q^{17} + 342 q^{18} + 114 q^{19} + 132 q^{20}+ \cdots - 1729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −7.96981 −1.53379 −0.766896 0.641772i \(-0.778200\pi\)
−0.766896 + 0.641772i \(0.778200\pi\)
\(4\) 4.00000 0.500000
\(5\) 15.4032 1.37770 0.688850 0.724904i \(-0.258116\pi\)
0.688850 + 0.724904i \(0.258116\pi\)
\(6\) −15.9396 −1.08455
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 36.5179 1.35252
\(10\) 30.8063 0.974181
\(11\) −59.6292 −1.63444 −0.817221 0.576324i \(-0.804487\pi\)
−0.817221 + 0.576324i \(0.804487\pi\)
\(12\) −31.8793 −0.766896
\(13\) −17.4445 −0.372171 −0.186085 0.982534i \(-0.559580\pi\)
−0.186085 + 0.982534i \(0.559580\pi\)
\(14\) 0 0
\(15\) −122.760 −2.11310
\(16\) 16.0000 0.250000
\(17\) −100.674 −1.43630 −0.718148 0.695891i \(-0.755010\pi\)
−0.718148 + 0.695891i \(0.755010\pi\)
\(18\) 73.0358 0.956373
\(19\) −64.5559 −0.779481 −0.389740 0.920925i \(-0.627435\pi\)
−0.389740 + 0.920925i \(0.627435\pi\)
\(20\) 61.6126 0.688850
\(21\) 0 0
\(22\) −119.258 −1.15573
\(23\) 23.0000 0.208514
\(24\) −63.7585 −0.542277
\(25\) 112.257 0.898057
\(26\) −34.8889 −0.263165
\(27\) −75.8561 −0.540686
\(28\) 0 0
\(29\) −260.291 −1.66672 −0.833361 0.552730i \(-0.813586\pi\)
−0.833361 + 0.552730i \(0.813586\pi\)
\(30\) −245.521 −1.49419
\(31\) 248.506 1.43978 0.719888 0.694090i \(-0.244193\pi\)
0.719888 + 0.694090i \(0.244193\pi\)
\(32\) 32.0000 0.176777
\(33\) 475.233 2.50689
\(34\) −201.348 −1.01561
\(35\) 0 0
\(36\) 146.072 0.676258
\(37\) −358.250 −1.59178 −0.795891 0.605439i \(-0.792997\pi\)
−0.795891 + 0.605439i \(0.792997\pi\)
\(38\) −129.112 −0.551176
\(39\) 139.029 0.570833
\(40\) 123.225 0.487090
\(41\) 432.148 1.64610 0.823050 0.567968i \(-0.192270\pi\)
0.823050 + 0.567968i \(0.192270\pi\)
\(42\) 0 0
\(43\) 470.883 1.66998 0.834988 0.550268i \(-0.185475\pi\)
0.834988 + 0.550268i \(0.185475\pi\)
\(44\) −238.517 −0.817221
\(45\) 562.491 1.86336
\(46\) 46.0000 0.147442
\(47\) −199.178 −0.618152 −0.309076 0.951037i \(-0.600020\pi\)
−0.309076 + 0.951037i \(0.600020\pi\)
\(48\) −127.517 −0.383448
\(49\) 0 0
\(50\) 224.514 0.635022
\(51\) 802.353 2.20298
\(52\) −69.7778 −0.186085
\(53\) −120.925 −0.313402 −0.156701 0.987646i \(-0.550086\pi\)
−0.156701 + 0.987646i \(0.550086\pi\)
\(54\) −151.712 −0.382322
\(55\) −918.477 −2.25177
\(56\) 0 0
\(57\) 514.498 1.19556
\(58\) −520.583 −1.17855
\(59\) 881.429 1.94495 0.972477 0.233001i \(-0.0748545\pi\)
0.972477 + 0.233001i \(0.0748545\pi\)
\(60\) −491.041 −1.05655
\(61\) 320.352 0.672408 0.336204 0.941789i \(-0.390857\pi\)
0.336204 + 0.941789i \(0.390857\pi\)
\(62\) 497.013 1.01808
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −268.700 −0.512740
\(66\) 950.466 1.77264
\(67\) 757.878 1.38193 0.690967 0.722887i \(-0.257185\pi\)
0.690967 + 0.722887i \(0.257185\pi\)
\(68\) −402.696 −0.718148
\(69\) −183.306 −0.319818
\(70\) 0 0
\(71\) −326.086 −0.545061 −0.272530 0.962147i \(-0.587860\pi\)
−0.272530 + 0.962147i \(0.587860\pi\)
\(72\) 292.143 0.478187
\(73\) −56.9293 −0.0912750 −0.0456375 0.998958i \(-0.514532\pi\)
−0.0456375 + 0.998958i \(0.514532\pi\)
\(74\) −716.500 −1.12556
\(75\) −894.668 −1.37743
\(76\) −258.224 −0.389740
\(77\) 0 0
\(78\) 278.058 0.403640
\(79\) 562.924 0.801695 0.400848 0.916145i \(-0.368716\pi\)
0.400848 + 0.916145i \(0.368716\pi\)
\(80\) 246.450 0.344425
\(81\) −381.425 −0.523217
\(82\) 864.296 1.16397
\(83\) 342.227 0.452582 0.226291 0.974060i \(-0.427340\pi\)
0.226291 + 0.974060i \(0.427340\pi\)
\(84\) 0 0
\(85\) −1550.70 −1.97878
\(86\) 941.766 1.18085
\(87\) 2074.47 2.55640
\(88\) −477.033 −0.577863
\(89\) −96.5644 −0.115009 −0.0575045 0.998345i \(-0.518314\pi\)
−0.0575045 + 0.998345i \(0.518314\pi\)
\(90\) 1124.98 1.31760
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) −1980.55 −2.20832
\(94\) −398.356 −0.437099
\(95\) −994.364 −1.07389
\(96\) −255.034 −0.271139
\(97\) −102.191 −0.106968 −0.0534841 0.998569i \(-0.517033\pi\)
−0.0534841 + 0.998569i \(0.517033\pi\)
\(98\) 0 0
\(99\) −2177.53 −2.21061
\(100\) 449.028 0.449028
\(101\) 1327.01 1.30735 0.653675 0.756775i \(-0.273226\pi\)
0.653675 + 0.756775i \(0.273226\pi\)
\(102\) 1604.71 1.55774
\(103\) 179.661 0.171869 0.0859345 0.996301i \(-0.472612\pi\)
0.0859345 + 0.996301i \(0.472612\pi\)
\(104\) −139.556 −0.131582
\(105\) 0 0
\(106\) −241.850 −0.221609
\(107\) 545.895 0.493212 0.246606 0.969116i \(-0.420685\pi\)
0.246606 + 0.969116i \(0.420685\pi\)
\(108\) −303.424 −0.270343
\(109\) −1478.63 −1.29933 −0.649665 0.760221i \(-0.725091\pi\)
−0.649665 + 0.760221i \(0.725091\pi\)
\(110\) −1836.95 −1.59224
\(111\) 2855.19 2.44146
\(112\) 0 0
\(113\) 456.443 0.379987 0.189993 0.981785i \(-0.439153\pi\)
0.189993 + 0.981785i \(0.439153\pi\)
\(114\) 1029.00 0.845389
\(115\) 354.273 0.287270
\(116\) −1041.17 −0.833361
\(117\) −637.035 −0.503367
\(118\) 1762.86 1.37529
\(119\) 0 0
\(120\) −982.082 −0.747095
\(121\) 2224.64 1.67140
\(122\) 640.705 0.475464
\(123\) −3444.14 −2.52478
\(124\) 994.026 0.719888
\(125\) −196.280 −0.140447
\(126\) 0 0
\(127\) 1176.09 0.821739 0.410870 0.911694i \(-0.365225\pi\)
0.410870 + 0.911694i \(0.365225\pi\)
\(128\) 128.000 0.0883883
\(129\) −3752.85 −2.56139
\(130\) −537.399 −0.362562
\(131\) 661.390 0.441114 0.220557 0.975374i \(-0.429212\pi\)
0.220557 + 0.975374i \(0.429212\pi\)
\(132\) 1900.93 1.25345
\(133\) 0 0
\(134\) 1515.76 0.977174
\(135\) −1168.42 −0.744902
\(136\) −805.392 −0.507807
\(137\) −1716.85 −1.07066 −0.535331 0.844642i \(-0.679813\pi\)
−0.535331 + 0.844642i \(0.679813\pi\)
\(138\) −366.611 −0.226145
\(139\) −888.405 −0.542112 −0.271056 0.962564i \(-0.587373\pi\)
−0.271056 + 0.962564i \(0.587373\pi\)
\(140\) 0 0
\(141\) 1587.41 0.948116
\(142\) −652.172 −0.385416
\(143\) 1040.20 0.608292
\(144\) 584.287 0.338129
\(145\) −4009.31 −2.29624
\(146\) −113.859 −0.0645412
\(147\) 0 0
\(148\) −1433.00 −0.795891
\(149\) −289.992 −0.159443 −0.0797216 0.996817i \(-0.525403\pi\)
−0.0797216 + 0.996817i \(0.525403\pi\)
\(150\) −1789.34 −0.973992
\(151\) −2947.09 −1.58828 −0.794142 0.607732i \(-0.792080\pi\)
−0.794142 + 0.607732i \(0.792080\pi\)
\(152\) −516.447 −0.275588
\(153\) −3676.40 −1.94261
\(154\) 0 0
\(155\) 3827.78 1.98358
\(156\) 556.116 0.285416
\(157\) 608.838 0.309494 0.154747 0.987954i \(-0.450544\pi\)
0.154747 + 0.987954i \(0.450544\pi\)
\(158\) 1125.85 0.566884
\(159\) 963.748 0.480693
\(160\) 492.901 0.243545
\(161\) 0 0
\(162\) −762.850 −0.369970
\(163\) −2741.67 −1.31745 −0.658725 0.752384i \(-0.728904\pi\)
−0.658725 + 0.752384i \(0.728904\pi\)
\(164\) 1728.59 0.823050
\(165\) 7320.09 3.45375
\(166\) 684.455 0.320024
\(167\) 1990.81 0.922475 0.461237 0.887277i \(-0.347406\pi\)
0.461237 + 0.887277i \(0.347406\pi\)
\(168\) 0 0
\(169\) −1892.69 −0.861489
\(170\) −3101.39 −1.39921
\(171\) −2357.45 −1.05426
\(172\) 1883.53 0.834988
\(173\) 3786.37 1.66400 0.832001 0.554774i \(-0.187195\pi\)
0.832001 + 0.554774i \(0.187195\pi\)
\(174\) 4148.95 1.80765
\(175\) 0 0
\(176\) −954.066 −0.408611
\(177\) −7024.82 −2.98315
\(178\) −193.129 −0.0813237
\(179\) 650.483 0.271617 0.135808 0.990735i \(-0.456637\pi\)
0.135808 + 0.990735i \(0.456637\pi\)
\(180\) 2249.96 0.931680
\(181\) 1343.81 0.551847 0.275924 0.961180i \(-0.411016\pi\)
0.275924 + 0.961180i \(0.411016\pi\)
\(182\) 0 0
\(183\) −2553.15 −1.03133
\(184\) 184.000 0.0737210
\(185\) −5518.18 −2.19300
\(186\) −3961.10 −1.56152
\(187\) 6003.10 2.34754
\(188\) −796.713 −0.309076
\(189\) 0 0
\(190\) −1988.73 −0.759355
\(191\) 1560.25 0.591077 0.295538 0.955331i \(-0.404501\pi\)
0.295538 + 0.955331i \(0.404501\pi\)
\(192\) −510.068 −0.191724
\(193\) 844.757 0.315062 0.157531 0.987514i \(-0.449647\pi\)
0.157531 + 0.987514i \(0.449647\pi\)
\(194\) −204.382 −0.0756380
\(195\) 2141.49 0.786436
\(196\) 0 0
\(197\) 3215.32 1.16285 0.581427 0.813598i \(-0.302494\pi\)
0.581427 + 0.813598i \(0.302494\pi\)
\(198\) −4355.07 −1.56314
\(199\) 2357.22 0.839694 0.419847 0.907595i \(-0.362084\pi\)
0.419847 + 0.907595i \(0.362084\pi\)
\(200\) 898.057 0.317511
\(201\) −6040.14 −2.11960
\(202\) 2654.02 0.924436
\(203\) 0 0
\(204\) 3209.41 1.10149
\(205\) 6656.44 2.26783
\(206\) 359.322 0.121530
\(207\) 839.912 0.282019
\(208\) −279.111 −0.0930427
\(209\) 3849.41 1.27402
\(210\) 0 0
\(211\) 3643.73 1.18884 0.594418 0.804156i \(-0.297382\pi\)
0.594418 + 0.804156i \(0.297382\pi\)
\(212\) −483.699 −0.156701
\(213\) 2598.85 0.836009
\(214\) 1091.79 0.348753
\(215\) 7253.08 2.30073
\(216\) −606.849 −0.191161
\(217\) 0 0
\(218\) −2957.26 −0.918765
\(219\) 453.716 0.139997
\(220\) −3673.91 −1.12589
\(221\) 1756.20 0.534548
\(222\) 5710.37 1.72637
\(223\) −1785.62 −0.536205 −0.268102 0.963390i \(-0.586397\pi\)
−0.268102 + 0.963390i \(0.586397\pi\)
\(224\) 0 0
\(225\) 4099.40 1.21464
\(226\) 912.885 0.268691
\(227\) 940.953 0.275125 0.137562 0.990493i \(-0.456073\pi\)
0.137562 + 0.990493i \(0.456073\pi\)
\(228\) 2057.99 0.597780
\(229\) 3171.87 0.915297 0.457649 0.889133i \(-0.348692\pi\)
0.457649 + 0.889133i \(0.348692\pi\)
\(230\) 708.545 0.203131
\(231\) 0 0
\(232\) −2082.33 −0.589275
\(233\) −712.021 −0.200198 −0.100099 0.994978i \(-0.531916\pi\)
−0.100099 + 0.994978i \(0.531916\pi\)
\(234\) −1274.07 −0.355934
\(235\) −3067.97 −0.851628
\(236\) 3525.71 0.972477
\(237\) −4486.40 −1.22963
\(238\) 0 0
\(239\) 4657.92 1.26065 0.630325 0.776331i \(-0.282921\pi\)
0.630325 + 0.776331i \(0.282921\pi\)
\(240\) −1964.16 −0.528276
\(241\) −511.972 −0.136842 −0.0684212 0.997657i \(-0.521796\pi\)
−0.0684212 + 0.997657i \(0.521796\pi\)
\(242\) 4449.27 1.18186
\(243\) 5088.00 1.34319
\(244\) 1281.41 0.336204
\(245\) 0 0
\(246\) −6888.27 −1.78529
\(247\) 1126.14 0.290100
\(248\) 1988.05 0.509038
\(249\) −2727.49 −0.694167
\(250\) −392.561 −0.0993109
\(251\) 3152.53 0.792774 0.396387 0.918084i \(-0.370264\pi\)
0.396387 + 0.918084i \(0.370264\pi\)
\(252\) 0 0
\(253\) −1371.47 −0.340805
\(254\) 2352.18 0.581057
\(255\) 12358.8 3.03504
\(256\) 256.000 0.0625000
\(257\) −1653.27 −0.401276 −0.200638 0.979665i \(-0.564302\pi\)
−0.200638 + 0.979665i \(0.564302\pi\)
\(258\) −7505.70 −1.81118
\(259\) 0 0
\(260\) −1074.80 −0.256370
\(261\) −9505.30 −2.25427
\(262\) 1322.78 0.311915
\(263\) 2612.79 0.612592 0.306296 0.951936i \(-0.400910\pi\)
0.306296 + 0.951936i \(0.400910\pi\)
\(264\) 3801.87 0.886321
\(265\) −1862.62 −0.431774
\(266\) 0 0
\(267\) 769.600 0.176400
\(268\) 3031.51 0.690967
\(269\) 6546.93 1.48392 0.741958 0.670447i \(-0.233898\pi\)
0.741958 + 0.670447i \(0.233898\pi\)
\(270\) −2336.85 −0.526726
\(271\) −2092.92 −0.469135 −0.234568 0.972100i \(-0.575367\pi\)
−0.234568 + 0.972100i \(0.575367\pi\)
\(272\) −1610.78 −0.359074
\(273\) 0 0
\(274\) −3433.71 −0.757073
\(275\) −6693.80 −1.46782
\(276\) −733.223 −0.159909
\(277\) 1711.78 0.371302 0.185651 0.982616i \(-0.440561\pi\)
0.185651 + 0.982616i \(0.440561\pi\)
\(278\) −1776.81 −0.383331
\(279\) 9074.94 1.94732
\(280\) 0 0
\(281\) −800.750 −0.169996 −0.0849978 0.996381i \(-0.527088\pi\)
−0.0849978 + 0.996381i \(0.527088\pi\)
\(282\) 3174.83 0.670419
\(283\) 3460.14 0.726798 0.363399 0.931634i \(-0.381616\pi\)
0.363399 + 0.931634i \(0.381616\pi\)
\(284\) −1304.34 −0.272530
\(285\) 7924.90 1.64712
\(286\) 2080.40 0.430127
\(287\) 0 0
\(288\) 1168.57 0.239093
\(289\) 5222.25 1.06295
\(290\) −8018.62 −1.62369
\(291\) 814.443 0.164067
\(292\) −227.717 −0.0456375
\(293\) −7559.50 −1.50727 −0.753636 0.657292i \(-0.771702\pi\)
−0.753636 + 0.657292i \(0.771702\pi\)
\(294\) 0 0
\(295\) 13576.8 2.67956
\(296\) −2866.00 −0.562780
\(297\) 4523.23 0.883719
\(298\) −579.983 −0.112743
\(299\) −401.223 −0.0776030
\(300\) −3578.67 −0.688716
\(301\) 0 0
\(302\) −5894.19 −1.12309
\(303\) −10576.0 −2.00520
\(304\) −1032.89 −0.194870
\(305\) 4934.44 0.926377
\(306\) −7352.81 −1.37363
\(307\) −2846.92 −0.529259 −0.264629 0.964350i \(-0.585250\pi\)
−0.264629 + 0.964350i \(0.585250\pi\)
\(308\) 0 0
\(309\) −1431.86 −0.263611
\(310\) 7655.57 1.40260
\(311\) −186.727 −0.0340461 −0.0170231 0.999855i \(-0.505419\pi\)
−0.0170231 + 0.999855i \(0.505419\pi\)
\(312\) 1112.23 0.201820
\(313\) −6248.48 −1.12839 −0.564193 0.825643i \(-0.690813\pi\)
−0.564193 + 0.825643i \(0.690813\pi\)
\(314\) 1217.68 0.218845
\(315\) 0 0
\(316\) 2251.70 0.400848
\(317\) 8063.68 1.42871 0.714356 0.699783i \(-0.246720\pi\)
0.714356 + 0.699783i \(0.246720\pi\)
\(318\) 1927.50 0.339901
\(319\) 15521.0 2.72416
\(320\) 985.802 0.172212
\(321\) −4350.68 −0.756484
\(322\) 0 0
\(323\) 6499.10 1.11957
\(324\) −1525.70 −0.261608
\(325\) −1958.26 −0.334231
\(326\) −5483.34 −0.931578
\(327\) 11784.4 1.99290
\(328\) 3457.18 0.581985
\(329\) 0 0
\(330\) 14640.2 2.44217
\(331\) 8059.57 1.33835 0.669175 0.743105i \(-0.266648\pi\)
0.669175 + 0.743105i \(0.266648\pi\)
\(332\) 1368.91 0.226291
\(333\) −13082.6 −2.15291
\(334\) 3981.61 0.652288
\(335\) 11673.7 1.90389
\(336\) 0 0
\(337\) −6296.85 −1.01784 −0.508919 0.860814i \(-0.669955\pi\)
−0.508919 + 0.860814i \(0.669955\pi\)
\(338\) −3785.38 −0.609165
\(339\) −3637.76 −0.582821
\(340\) −6202.79 −0.989392
\(341\) −14818.2 −2.35323
\(342\) −4714.89 −0.745474
\(343\) 0 0
\(344\) 3767.06 0.590426
\(345\) −2823.49 −0.440613
\(346\) 7572.74 1.17663
\(347\) −43.9881 −0.00680521 −0.00340260 0.999994i \(-0.501083\pi\)
−0.00340260 + 0.999994i \(0.501083\pi\)
\(348\) 8297.90 1.27820
\(349\) −6164.14 −0.945441 −0.472720 0.881212i \(-0.656728\pi\)
−0.472720 + 0.881212i \(0.656728\pi\)
\(350\) 0 0
\(351\) 1323.27 0.201227
\(352\) −1908.13 −0.288931
\(353\) 5049.15 0.761301 0.380650 0.924719i \(-0.375700\pi\)
0.380650 + 0.924719i \(0.375700\pi\)
\(354\) −14049.6 −2.10941
\(355\) −5022.75 −0.750930
\(356\) −386.257 −0.0575045
\(357\) 0 0
\(358\) 1300.97 0.192062
\(359\) −8019.73 −1.17901 −0.589506 0.807764i \(-0.700677\pi\)
−0.589506 + 0.807764i \(0.700677\pi\)
\(360\) 4499.93 0.658798
\(361\) −2691.54 −0.392410
\(362\) 2687.61 0.390215
\(363\) −17729.9 −2.56358
\(364\) 0 0
\(365\) −876.891 −0.125750
\(366\) −5106.30 −0.729263
\(367\) −13785.4 −1.96074 −0.980372 0.197156i \(-0.936830\pi\)
−0.980372 + 0.197156i \(0.936830\pi\)
\(368\) 368.000 0.0521286
\(369\) 15781.1 2.22638
\(370\) −11036.4 −1.55068
\(371\) 0 0
\(372\) −7922.20 −1.10416
\(373\) −4957.51 −0.688177 −0.344089 0.938937i \(-0.611812\pi\)
−0.344089 + 0.938937i \(0.611812\pi\)
\(374\) 12006.2 1.65996
\(375\) 1564.32 0.215416
\(376\) −1593.43 −0.218550
\(377\) 4540.64 0.620305
\(378\) 0 0
\(379\) 6053.52 0.820444 0.410222 0.911986i \(-0.365451\pi\)
0.410222 + 0.911986i \(0.365451\pi\)
\(380\) −3977.46 −0.536945
\(381\) −9373.20 −1.26038
\(382\) 3120.50 0.417954
\(383\) −6923.15 −0.923646 −0.461823 0.886972i \(-0.652805\pi\)
−0.461823 + 0.886972i \(0.652805\pi\)
\(384\) −1020.14 −0.135569
\(385\) 0 0
\(386\) 1689.51 0.222782
\(387\) 17195.7 2.25867
\(388\) −408.764 −0.0534841
\(389\) 7909.68 1.03094 0.515471 0.856907i \(-0.327617\pi\)
0.515471 + 0.856907i \(0.327617\pi\)
\(390\) 4282.97 0.556094
\(391\) −2315.50 −0.299488
\(392\) 0 0
\(393\) −5271.16 −0.676577
\(394\) 6430.65 0.822262
\(395\) 8670.81 1.10450
\(396\) −8710.13 −1.10530
\(397\) 11152.7 1.40992 0.704962 0.709245i \(-0.250964\pi\)
0.704962 + 0.709245i \(0.250964\pi\)
\(398\) 4714.45 0.593753
\(399\) 0 0
\(400\) 1796.11 0.224514
\(401\) −3710.67 −0.462100 −0.231050 0.972942i \(-0.574216\pi\)
−0.231050 + 0.972942i \(0.574216\pi\)
\(402\) −12080.3 −1.49878
\(403\) −4335.06 −0.535843
\(404\) 5308.04 0.653675
\(405\) −5875.15 −0.720836
\(406\) 0 0
\(407\) 21362.2 2.60168
\(408\) 6418.82 0.778870
\(409\) 3842.05 0.464492 0.232246 0.972657i \(-0.425393\pi\)
0.232246 + 0.972657i \(0.425393\pi\)
\(410\) 13312.9 1.60360
\(411\) 13683.0 1.64217
\(412\) 718.643 0.0859345
\(413\) 0 0
\(414\) 1679.82 0.199418
\(415\) 5271.38 0.623523
\(416\) −558.223 −0.0657911
\(417\) 7080.42 0.831486
\(418\) 7698.83 0.900866
\(419\) −10311.4 −1.20226 −0.601129 0.799152i \(-0.705282\pi\)
−0.601129 + 0.799152i \(0.705282\pi\)
\(420\) 0 0
\(421\) 6068.12 0.702475 0.351238 0.936286i \(-0.385761\pi\)
0.351238 + 0.936286i \(0.385761\pi\)
\(422\) 7287.45 0.840634
\(423\) −7273.58 −0.836060
\(424\) −967.399 −0.110804
\(425\) −11301.4 −1.28988
\(426\) 5197.69 0.591148
\(427\) 0 0
\(428\) 2183.58 0.246606
\(429\) −8290.19 −0.932993
\(430\) 14506.2 1.62686
\(431\) 4463.21 0.498806 0.249403 0.968400i \(-0.419766\pi\)
0.249403 + 0.968400i \(0.419766\pi\)
\(432\) −1213.70 −0.135171
\(433\) −2649.47 −0.294055 −0.147027 0.989132i \(-0.546971\pi\)
−0.147027 + 0.989132i \(0.546971\pi\)
\(434\) 0 0
\(435\) 31953.4 3.52196
\(436\) −5914.51 −0.649665
\(437\) −1484.79 −0.162533
\(438\) 907.433 0.0989927
\(439\) −7598.28 −0.826073 −0.413037 0.910714i \(-0.635532\pi\)
−0.413037 + 0.910714i \(0.635532\pi\)
\(440\) −7347.82 −0.796121
\(441\) 0 0
\(442\) 3512.41 0.377982
\(443\) 9065.68 0.972287 0.486144 0.873879i \(-0.338403\pi\)
0.486144 + 0.873879i \(0.338403\pi\)
\(444\) 11420.7 1.22073
\(445\) −1487.40 −0.158448
\(446\) −3571.23 −0.379154
\(447\) 2311.18 0.244553
\(448\) 0 0
\(449\) 13830.2 1.45365 0.726823 0.686825i \(-0.240996\pi\)
0.726823 + 0.686825i \(0.240996\pi\)
\(450\) 8198.79 0.858877
\(451\) −25768.6 −2.69046
\(452\) 1825.77 0.189993
\(453\) 23487.8 2.43610
\(454\) 1881.91 0.194542
\(455\) 0 0
\(456\) 4115.99 0.422695
\(457\) 674.277 0.0690183 0.0345092 0.999404i \(-0.489013\pi\)
0.0345092 + 0.999404i \(0.489013\pi\)
\(458\) 6343.74 0.647213
\(459\) 7636.73 0.776584
\(460\) 1417.09 0.143635
\(461\) 899.140 0.0908398 0.0454199 0.998968i \(-0.485537\pi\)
0.0454199 + 0.998968i \(0.485537\pi\)
\(462\) 0 0
\(463\) −11739.4 −1.17835 −0.589173 0.808007i \(-0.700546\pi\)
−0.589173 + 0.808007i \(0.700546\pi\)
\(464\) −4164.66 −0.416680
\(465\) −30506.7 −3.04240
\(466\) −1424.04 −0.141561
\(467\) −132.823 −0.0131613 −0.00658065 0.999978i \(-0.502095\pi\)
−0.00658065 + 0.999978i \(0.502095\pi\)
\(468\) −2548.14 −0.251684
\(469\) 0 0
\(470\) −6135.95 −0.602192
\(471\) −4852.32 −0.474699
\(472\) 7051.43 0.687645
\(473\) −28078.3 −2.72948
\(474\) −8972.80 −0.869482
\(475\) −7246.86 −0.700018
\(476\) 0 0
\(477\) −4415.92 −0.423881
\(478\) 9315.83 0.891415
\(479\) −4716.34 −0.449885 −0.224943 0.974372i \(-0.572220\pi\)
−0.224943 + 0.974372i \(0.572220\pi\)
\(480\) −3928.33 −0.373548
\(481\) 6249.48 0.592415
\(482\) −1023.94 −0.0967622
\(483\) 0 0
\(484\) 8898.54 0.835701
\(485\) −1574.06 −0.147370
\(486\) 10176.0 0.949780
\(487\) 18058.7 1.68032 0.840160 0.542339i \(-0.182461\pi\)
0.840160 + 0.542339i \(0.182461\pi\)
\(488\) 2562.82 0.237732
\(489\) 21850.6 2.02069
\(490\) 0 0
\(491\) 3733.72 0.343178 0.171589 0.985169i \(-0.445110\pi\)
0.171589 + 0.985169i \(0.445110\pi\)
\(492\) −13776.5 −1.26239
\(493\) 26204.6 2.39390
\(494\) 2252.28 0.205132
\(495\) −33540.9 −3.04556
\(496\) 3976.10 0.359944
\(497\) 0 0
\(498\) −5454.98 −0.490850
\(499\) −13918.6 −1.24866 −0.624332 0.781159i \(-0.714629\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(500\) −785.122 −0.0702234
\(501\) −15866.4 −1.41488
\(502\) 6305.07 0.560576
\(503\) 15996.1 1.41795 0.708977 0.705232i \(-0.249157\pi\)
0.708977 + 0.705232i \(0.249157\pi\)
\(504\) 0 0
\(505\) 20440.1 1.80114
\(506\) −2742.94 −0.240985
\(507\) 15084.4 1.32134
\(508\) 4704.35 0.410870
\(509\) −9209.23 −0.801949 −0.400975 0.916089i \(-0.631328\pi\)
−0.400975 + 0.916089i \(0.631328\pi\)
\(510\) 24717.5 2.14610
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 4896.96 0.421454
\(514\) −3306.54 −0.283745
\(515\) 2767.34 0.236784
\(516\) −15011.4 −1.28070
\(517\) 11876.8 1.01033
\(518\) 0 0
\(519\) −30176.7 −2.55223
\(520\) −2149.60 −0.181281
\(521\) −9400.35 −0.790474 −0.395237 0.918579i \(-0.629338\pi\)
−0.395237 + 0.918579i \(0.629338\pi\)
\(522\) −19010.6 −1.59401
\(523\) −2027.12 −0.169483 −0.0847415 0.996403i \(-0.527006\pi\)
−0.0847415 + 0.996403i \(0.527006\pi\)
\(524\) 2645.56 0.220557
\(525\) 0 0
\(526\) 5225.59 0.433168
\(527\) −25018.1 −2.06794
\(528\) 7603.73 0.626723
\(529\) 529.000 0.0434783
\(530\) −3725.25 −0.305310
\(531\) 32187.9 2.63058
\(532\) 0 0
\(533\) −7538.58 −0.612631
\(534\) 1539.20 0.124734
\(535\) 8408.50 0.679498
\(536\) 6063.02 0.488587
\(537\) −5184.23 −0.416603
\(538\) 13093.9 1.04929
\(539\) 0 0
\(540\) −4673.69 −0.372451
\(541\) 14892.7 1.18353 0.591764 0.806111i \(-0.298432\pi\)
0.591764 + 0.806111i \(0.298432\pi\)
\(542\) −4185.83 −0.331729
\(543\) −10709.9 −0.846419
\(544\) −3221.57 −0.253904
\(545\) −22775.5 −1.79009
\(546\) 0 0
\(547\) 5957.23 0.465654 0.232827 0.972518i \(-0.425202\pi\)
0.232827 + 0.972518i \(0.425202\pi\)
\(548\) −6867.42 −0.535331
\(549\) 11698.6 0.909443
\(550\) −13387.6 −1.03791
\(551\) 16803.3 1.29918
\(552\) −1466.45 −0.113073
\(553\) 0 0
\(554\) 3423.56 0.262550
\(555\) 43978.9 3.36360
\(556\) −3553.62 −0.271056
\(557\) −4821.93 −0.366807 −0.183404 0.983038i \(-0.558712\pi\)
−0.183404 + 0.983038i \(0.558712\pi\)
\(558\) 18149.9 1.37696
\(559\) −8214.30 −0.621516
\(560\) 0 0
\(561\) −47843.6 −3.60064
\(562\) −1601.50 −0.120205
\(563\) 15077.7 1.12868 0.564341 0.825542i \(-0.309130\pi\)
0.564341 + 0.825542i \(0.309130\pi\)
\(564\) 6349.65 0.474058
\(565\) 7030.66 0.523508
\(566\) 6920.27 0.513924
\(567\) 0 0
\(568\) −2608.69 −0.192708
\(569\) 14270.2 1.05139 0.525693 0.850675i \(-0.323806\pi\)
0.525693 + 0.850675i \(0.323806\pi\)
\(570\) 15849.8 1.16469
\(571\) 13692.0 1.00349 0.501744 0.865016i \(-0.332692\pi\)
0.501744 + 0.865016i \(0.332692\pi\)
\(572\) 4160.79 0.304146
\(573\) −12434.9 −0.906588
\(574\) 0 0
\(575\) 2581.91 0.187258
\(576\) 2337.15 0.169064
\(577\) −22213.0 −1.60267 −0.801333 0.598218i \(-0.795876\pi\)
−0.801333 + 0.598218i \(0.795876\pi\)
\(578\) 10444.5 0.751616
\(579\) −6732.55 −0.483239
\(580\) −16037.2 −1.14812
\(581\) 0 0
\(582\) 1628.89 0.116013
\(583\) 7210.64 0.512237
\(584\) −455.435 −0.0322706
\(585\) −9812.35 −0.693489
\(586\) −15119.0 −1.06580
\(587\) −388.512 −0.0273179 −0.0136590 0.999907i \(-0.504348\pi\)
−0.0136590 + 0.999907i \(0.504348\pi\)
\(588\) 0 0
\(589\) −16042.6 −1.12228
\(590\) 27153.6 1.89474
\(591\) −25625.5 −1.78358
\(592\) −5732.00 −0.397946
\(593\) 12154.3 0.841680 0.420840 0.907135i \(-0.361735\pi\)
0.420840 + 0.907135i \(0.361735\pi\)
\(594\) 9046.47 0.624884
\(595\) 0 0
\(596\) −1159.97 −0.0797216
\(597\) −18786.6 −1.28792
\(598\) −802.445 −0.0548736
\(599\) −21860.7 −1.49116 −0.745580 0.666417i \(-0.767827\pi\)
−0.745580 + 0.666417i \(0.767827\pi\)
\(600\) −7157.35 −0.486996
\(601\) −2299.43 −0.156066 −0.0780330 0.996951i \(-0.524864\pi\)
−0.0780330 + 0.996951i \(0.524864\pi\)
\(602\) 0 0
\(603\) 27676.1 1.86909
\(604\) −11788.4 −0.794142
\(605\) 34266.4 2.30269
\(606\) −21152.0 −1.41789
\(607\) −401.714 −0.0268617 −0.0134309 0.999910i \(-0.504275\pi\)
−0.0134309 + 0.999910i \(0.504275\pi\)
\(608\) −2065.79 −0.137794
\(609\) 0 0
\(610\) 9868.87 0.655047
\(611\) 3474.56 0.230058
\(612\) −14705.6 −0.971306
\(613\) 4192.17 0.276215 0.138108 0.990417i \(-0.455898\pi\)
0.138108 + 0.990417i \(0.455898\pi\)
\(614\) −5693.84 −0.374242
\(615\) −53050.6 −3.47838
\(616\) 0 0
\(617\) −4018.32 −0.262190 −0.131095 0.991370i \(-0.541849\pi\)
−0.131095 + 0.991370i \(0.541849\pi\)
\(618\) −2863.73 −0.186401
\(619\) 813.547 0.0528259 0.0264129 0.999651i \(-0.491592\pi\)
0.0264129 + 0.999651i \(0.491592\pi\)
\(620\) 15311.1 0.991790
\(621\) −1744.69 −0.112741
\(622\) −373.455 −0.0240742
\(623\) 0 0
\(624\) 2224.47 0.142708
\(625\) −17055.5 −1.09155
\(626\) −12497.0 −0.797890
\(627\) −30679.1 −1.95408
\(628\) 2435.35 0.154747
\(629\) 36066.5 2.28627
\(630\) 0 0
\(631\) −7571.14 −0.477658 −0.238829 0.971062i \(-0.576764\pi\)
−0.238829 + 0.971062i \(0.576764\pi\)
\(632\) 4503.39 0.283442
\(633\) −29039.8 −1.82343
\(634\) 16127.4 1.01025
\(635\) 18115.5 1.13211
\(636\) 3854.99 0.240347
\(637\) 0 0
\(638\) 31041.9 1.92627
\(639\) −11908.0 −0.737203
\(640\) 1971.60 0.121773
\(641\) 7871.02 0.485002 0.242501 0.970151i \(-0.422032\pi\)
0.242501 + 0.970151i \(0.422032\pi\)
\(642\) −8701.36 −0.534915
\(643\) 12067.2 0.740100 0.370050 0.929012i \(-0.379340\pi\)
0.370050 + 0.929012i \(0.379340\pi\)
\(644\) 0 0
\(645\) −57805.7 −3.52883
\(646\) 12998.2 0.791652
\(647\) −12351.5 −0.750520 −0.375260 0.926919i \(-0.622447\pi\)
−0.375260 + 0.926919i \(0.622447\pi\)
\(648\) −3051.40 −0.184985
\(649\) −52558.8 −3.17891
\(650\) −3916.53 −0.236337
\(651\) 0 0
\(652\) −10966.7 −0.658725
\(653\) 1910.93 0.114518 0.0572592 0.998359i \(-0.481764\pi\)
0.0572592 + 0.998359i \(0.481764\pi\)
\(654\) 23568.8 1.40919
\(655\) 10187.5 0.607723
\(656\) 6914.36 0.411525
\(657\) −2078.94 −0.123451
\(658\) 0 0
\(659\) −23086.9 −1.36470 −0.682351 0.731025i \(-0.739042\pi\)
−0.682351 + 0.731025i \(0.739042\pi\)
\(660\) 29280.4 1.72687
\(661\) 24129.5 1.41986 0.709931 0.704271i \(-0.248726\pi\)
0.709931 + 0.704271i \(0.248726\pi\)
\(662\) 16119.1 0.946356
\(663\) −13996.6 −0.819884
\(664\) 2737.82 0.160012
\(665\) 0 0
\(666\) −26165.1 −1.52234
\(667\) −5986.70 −0.347535
\(668\) 7963.23 0.461237
\(669\) 14231.0 0.822426
\(670\) 23347.4 1.34625
\(671\) −19102.3 −1.09901
\(672\) 0 0
\(673\) 29226.2 1.67398 0.836990 0.547219i \(-0.184313\pi\)
0.836990 + 0.547219i \(0.184313\pi\)
\(674\) −12593.7 −0.719720
\(675\) −8515.39 −0.485566
\(676\) −7570.76 −0.430744
\(677\) −8812.55 −0.500286 −0.250143 0.968209i \(-0.580478\pi\)
−0.250143 + 0.968209i \(0.580478\pi\)
\(678\) −7275.53 −0.412116
\(679\) 0 0
\(680\) −12405.6 −0.699606
\(681\) −7499.22 −0.421984
\(682\) −29636.5 −1.66399
\(683\) −5070.92 −0.284090 −0.142045 0.989860i \(-0.545368\pi\)
−0.142045 + 0.989860i \(0.545368\pi\)
\(684\) −9429.79 −0.527130
\(685\) −26445.0 −1.47505
\(686\) 0 0
\(687\) −25279.2 −1.40387
\(688\) 7534.13 0.417494
\(689\) 2109.47 0.116639
\(690\) −5646.97 −0.311560
\(691\) 16394.6 0.902577 0.451289 0.892378i \(-0.350964\pi\)
0.451289 + 0.892378i \(0.350964\pi\)
\(692\) 15145.5 0.832001
\(693\) 0 0
\(694\) −87.9763 −0.00481201
\(695\) −13684.2 −0.746867
\(696\) 16595.8 0.903825
\(697\) −43506.0 −2.36429
\(698\) −12328.3 −0.668528
\(699\) 5674.67 0.307061
\(700\) 0 0
\(701\) −21162.5 −1.14022 −0.570111 0.821567i \(-0.693100\pi\)
−0.570111 + 0.821567i \(0.693100\pi\)
\(702\) 2646.54 0.142289
\(703\) 23127.2 1.24076
\(704\) −3816.27 −0.204305
\(705\) 24451.2 1.30622
\(706\) 10098.3 0.538321
\(707\) 0 0
\(708\) −28099.3 −1.49158
\(709\) −12610.6 −0.667986 −0.333993 0.942576i \(-0.608396\pi\)
−0.333993 + 0.942576i \(0.608396\pi\)
\(710\) −10045.5 −0.530988
\(711\) 20556.8 1.08431
\(712\) −772.515 −0.0406618
\(713\) 5715.65 0.300214
\(714\) 0 0
\(715\) 16022.3 0.838044
\(716\) 2601.93 0.135808
\(717\) −37122.7 −1.93358
\(718\) −16039.5 −0.833687
\(719\) 2986.22 0.154892 0.0774458 0.996997i \(-0.475324\pi\)
0.0774458 + 0.996997i \(0.475324\pi\)
\(720\) 8999.86 0.465840
\(721\) 0 0
\(722\) −5383.07 −0.277475
\(723\) 4080.32 0.209888
\(724\) 5375.23 0.275924
\(725\) −29219.6 −1.49681
\(726\) −35459.9 −1.81273
\(727\) −9678.12 −0.493730 −0.246865 0.969050i \(-0.579400\pi\)
−0.246865 + 0.969050i \(0.579400\pi\)
\(728\) 0 0
\(729\) −30251.9 −1.53696
\(730\) −1753.78 −0.0889184
\(731\) −47405.6 −2.39858
\(732\) −10212.6 −0.515667
\(733\) −10650.7 −0.536689 −0.268344 0.963323i \(-0.586477\pi\)
−0.268344 + 0.963323i \(0.586477\pi\)
\(734\) −27570.8 −1.38646
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −45191.6 −2.25869
\(738\) 31562.3 1.57429
\(739\) 765.563 0.0381079 0.0190539 0.999818i \(-0.493935\pi\)
0.0190539 + 0.999818i \(0.493935\pi\)
\(740\) −22072.7 −1.09650
\(741\) −8975.15 −0.444953
\(742\) 0 0
\(743\) −255.490 −0.0126151 −0.00630754 0.999980i \(-0.502008\pi\)
−0.00630754 + 0.999980i \(0.502008\pi\)
\(744\) −15844.4 −0.780758
\(745\) −4466.79 −0.219665
\(746\) −9915.02 −0.486615
\(747\) 12497.4 0.612125
\(748\) 24012.4 1.17377
\(749\) 0 0
\(750\) 3128.64 0.152322
\(751\) 15374.7 0.747046 0.373523 0.927621i \(-0.378150\pi\)
0.373523 + 0.927621i \(0.378150\pi\)
\(752\) −3186.85 −0.154538
\(753\) −25125.1 −1.21595
\(754\) 9081.29 0.438622
\(755\) −45394.5 −2.18818
\(756\) 0 0
\(757\) 8167.12 0.392125 0.196063 0.980591i \(-0.437184\pi\)
0.196063 + 0.980591i \(0.437184\pi\)
\(758\) 12107.0 0.580141
\(759\) 10930.4 0.522723
\(760\) −7954.91 −0.379678
\(761\) 8199.89 0.390599 0.195299 0.980744i \(-0.437432\pi\)
0.195299 + 0.980744i \(0.437432\pi\)
\(762\) −18746.4 −0.891221
\(763\) 0 0
\(764\) 6241.00 0.295538
\(765\) −56628.2 −2.67634
\(766\) −13846.3 −0.653117
\(767\) −15376.0 −0.723855
\(768\) −2040.27 −0.0958620
\(769\) 26199.4 1.22858 0.614289 0.789081i \(-0.289443\pi\)
0.614289 + 0.789081i \(0.289443\pi\)
\(770\) 0 0
\(771\) 13176.2 0.615474
\(772\) 3379.03 0.157531
\(773\) 38258.8 1.78017 0.890087 0.455790i \(-0.150643\pi\)
0.890087 + 0.455790i \(0.150643\pi\)
\(774\) 34391.3 1.59712
\(775\) 27896.6 1.29300
\(776\) −817.528 −0.0378190
\(777\) 0 0
\(778\) 15819.4 0.728986
\(779\) −27897.7 −1.28310
\(780\) 8565.94 0.393218
\(781\) 19444.2 0.890870
\(782\) −4631.00 −0.211770
\(783\) 19744.7 0.901172
\(784\) 0 0
\(785\) 9378.02 0.426390
\(786\) −10542.3 −0.478412
\(787\) −10063.3 −0.455805 −0.227903 0.973684i \(-0.573187\pi\)
−0.227903 + 0.973684i \(0.573187\pi\)
\(788\) 12861.3 0.581427
\(789\) −20823.5 −0.939589
\(790\) 17341.6 0.780996
\(791\) 0 0
\(792\) −17420.3 −0.781568
\(793\) −5588.37 −0.250251
\(794\) 22305.5 0.996966
\(795\) 14844.8 0.662251
\(796\) 9428.89 0.419847
\(797\) −25523.9 −1.13438 −0.567191 0.823586i \(-0.691970\pi\)
−0.567191 + 0.823586i \(0.691970\pi\)
\(798\) 0 0
\(799\) 20052.1 0.887849
\(800\) 3592.23 0.158756
\(801\) −3526.33 −0.155552
\(802\) −7421.34 −0.326754
\(803\) 3394.65 0.149184
\(804\) −24160.6 −1.05980
\(805\) 0 0
\(806\) −8670.12 −0.378898
\(807\) −52177.8 −2.27602
\(808\) 10616.1 0.462218
\(809\) 7745.70 0.336618 0.168309 0.985734i \(-0.446169\pi\)
0.168309 + 0.985734i \(0.446169\pi\)
\(810\) −11750.3 −0.509708
\(811\) −29179.0 −1.26340 −0.631698 0.775214i \(-0.717642\pi\)
−0.631698 + 0.775214i \(0.717642\pi\)
\(812\) 0 0
\(813\) 16680.2 0.719556
\(814\) 42724.3 1.83966
\(815\) −42230.4 −1.81505
\(816\) 12837.6 0.550744
\(817\) −30398.3 −1.30171
\(818\) 7684.10 0.328445
\(819\) 0 0
\(820\) 26625.8 1.13392
\(821\) −15828.5 −0.672861 −0.336431 0.941708i \(-0.609220\pi\)
−0.336431 + 0.941708i \(0.609220\pi\)
\(822\) 27366.0 1.16119
\(823\) −34843.9 −1.47580 −0.737900 0.674910i \(-0.764182\pi\)
−0.737900 + 0.674910i \(0.764182\pi\)
\(824\) 1437.29 0.0607648
\(825\) 53348.3 2.25133
\(826\) 0 0
\(827\) −11330.2 −0.476408 −0.238204 0.971215i \(-0.576559\pi\)
−0.238204 + 0.971215i \(0.576559\pi\)
\(828\) 3359.65 0.141010
\(829\) 6364.05 0.266626 0.133313 0.991074i \(-0.457439\pi\)
0.133313 + 0.991074i \(0.457439\pi\)
\(830\) 10542.8 0.440897
\(831\) −13642.6 −0.569500
\(832\) −1116.45 −0.0465214
\(833\) 0 0
\(834\) 14160.8 0.587949
\(835\) 30664.7 1.27089
\(836\) 15397.7 0.637008
\(837\) −18850.7 −0.778466
\(838\) −20622.8 −0.850124
\(839\) −11672.0 −0.480288 −0.240144 0.970737i \(-0.577195\pi\)
−0.240144 + 0.970737i \(0.577195\pi\)
\(840\) 0 0
\(841\) 43362.6 1.77796
\(842\) 12136.2 0.496725
\(843\) 6381.83 0.260738
\(844\) 14574.9 0.594418
\(845\) −29153.4 −1.18687
\(846\) −14547.2 −0.591184
\(847\) 0 0
\(848\) −1934.80 −0.0783505
\(849\) −27576.6 −1.11476
\(850\) −22602.7 −0.912080
\(851\) −8239.75 −0.331910
\(852\) 10395.4 0.418005
\(853\) 42128.8 1.69105 0.845523 0.533939i \(-0.179289\pi\)
0.845523 + 0.533939i \(0.179289\pi\)
\(854\) 0 0
\(855\) −36312.1 −1.45245
\(856\) 4367.16 0.174377
\(857\) 40576.1 1.61733 0.808667 0.588267i \(-0.200190\pi\)
0.808667 + 0.588267i \(0.200190\pi\)
\(858\) −16580.4 −0.659726
\(859\) 14917.0 0.592506 0.296253 0.955109i \(-0.404263\pi\)
0.296253 + 0.955109i \(0.404263\pi\)
\(860\) 29012.3 1.15036
\(861\) 0 0
\(862\) 8926.42 0.352709
\(863\) −14364.7 −0.566604 −0.283302 0.959031i \(-0.591430\pi\)
−0.283302 + 0.959031i \(0.591430\pi\)
\(864\) −2427.39 −0.0955806
\(865\) 58322.0 2.29250
\(866\) −5298.95 −0.207928
\(867\) −41620.4 −1.63034
\(868\) 0 0
\(869\) −33566.7 −1.31032
\(870\) 63906.9 2.49040
\(871\) −13220.8 −0.514315
\(872\) −11829.0 −0.459382
\(873\) −3731.80 −0.144676
\(874\) −2969.57 −0.114928
\(875\) 0 0
\(876\) 1814.87 0.0699984
\(877\) −4038.50 −0.155497 −0.0777483 0.996973i \(-0.524773\pi\)
−0.0777483 + 0.996973i \(0.524773\pi\)
\(878\) −15196.6 −0.584122
\(879\) 60247.8 2.31184
\(880\) −14695.6 −0.562943
\(881\) −2959.92 −0.113192 −0.0565960 0.998397i \(-0.518025\pi\)
−0.0565960 + 0.998397i \(0.518025\pi\)
\(882\) 0 0
\(883\) −15568.0 −0.593322 −0.296661 0.954983i \(-0.595873\pi\)
−0.296661 + 0.954983i \(0.595873\pi\)
\(884\) 7024.81 0.267274
\(885\) −108204. −4.10989
\(886\) 18131.4 0.687511
\(887\) 1825.62 0.0691074 0.0345537 0.999403i \(-0.488999\pi\)
0.0345537 + 0.999403i \(0.488999\pi\)
\(888\) 22841.5 0.863187
\(889\) 0 0
\(890\) −2974.79 −0.112040
\(891\) 22744.1 0.855168
\(892\) −7142.46 −0.268102
\(893\) 12858.1 0.481837
\(894\) 4622.36 0.172925
\(895\) 10019.5 0.374206
\(896\) 0 0
\(897\) 3197.67 0.119027
\(898\) 27660.4 1.02788
\(899\) −64684.1 −2.39971
\(900\) 16397.6 0.607318
\(901\) 12174.0 0.450138
\(902\) −51537.2 −1.90244
\(903\) 0 0
\(904\) 3651.54 0.134346
\(905\) 20698.9 0.760280
\(906\) 46975.6 1.72258
\(907\) 31949.6 1.16965 0.584823 0.811161i \(-0.301164\pi\)
0.584823 + 0.811161i \(0.301164\pi\)
\(908\) 3763.81 0.137562
\(909\) 48459.6 1.76821
\(910\) 0 0
\(911\) 44549.8 1.62020 0.810099 0.586294i \(-0.199413\pi\)
0.810099 + 0.586294i \(0.199413\pi\)
\(912\) 8231.97 0.298890
\(913\) −20406.7 −0.739720
\(914\) 1348.55 0.0488033
\(915\) −39326.5 −1.42087
\(916\) 12687.5 0.457649
\(917\) 0 0
\(918\) 15273.5 0.549128
\(919\) 16796.0 0.602884 0.301442 0.953484i \(-0.402532\pi\)
0.301442 + 0.953484i \(0.402532\pi\)
\(920\) 2834.18 0.101565
\(921\) 22689.4 0.811772
\(922\) 1798.28 0.0642334
\(923\) 5688.39 0.202856
\(924\) 0 0
\(925\) −40216.1 −1.42951
\(926\) −23478.7 −0.833217
\(927\) 6560.84 0.232455
\(928\) −8329.33 −0.294637
\(929\) 11688.3 0.412787 0.206394 0.978469i \(-0.433827\pi\)
0.206394 + 0.978469i \(0.433827\pi\)
\(930\) −61013.4 −2.15130
\(931\) 0 0
\(932\) −2848.08 −0.100099
\(933\) 1488.18 0.0522196
\(934\) −265.647 −0.00930645
\(935\) 92466.7 3.23421
\(936\) −5096.28 −0.177967
\(937\) 12287.6 0.428408 0.214204 0.976789i \(-0.431284\pi\)
0.214204 + 0.976789i \(0.431284\pi\)
\(938\) 0 0
\(939\) 49799.2 1.73071
\(940\) −12271.9 −0.425814
\(941\) −15234.5 −0.527769 −0.263885 0.964554i \(-0.585004\pi\)
−0.263885 + 0.964554i \(0.585004\pi\)
\(942\) −9704.65 −0.335663
\(943\) 9939.40 0.343236
\(944\) 14102.9 0.486238
\(945\) 0 0
\(946\) −56156.7 −1.93003
\(947\) 31525.3 1.08177 0.540884 0.841097i \(-0.318090\pi\)
0.540884 + 0.841097i \(0.318090\pi\)
\(948\) −17945.6 −0.614817
\(949\) 993.102 0.0339699
\(950\) −14493.7 −0.494988
\(951\) −64266.1 −2.19135
\(952\) 0 0
\(953\) −33318.0 −1.13250 −0.566251 0.824233i \(-0.691607\pi\)
−0.566251 + 0.824233i \(0.691607\pi\)
\(954\) −8831.85 −0.299729
\(955\) 24032.8 0.814326
\(956\) 18631.7 0.630325
\(957\) −123699. −4.17829
\(958\) −9432.68 −0.318117
\(959\) 0 0
\(960\) −7856.66 −0.264138
\(961\) 31964.5 1.07296
\(962\) 12499.0 0.418901
\(963\) 19934.9 0.667076
\(964\) −2047.89 −0.0684212
\(965\) 13011.9 0.434061
\(966\) 0 0
\(967\) −20850.2 −0.693379 −0.346689 0.937980i \(-0.612694\pi\)
−0.346689 + 0.937980i \(0.612694\pi\)
\(968\) 17797.1 0.590930
\(969\) −51796.6 −1.71718
\(970\) −3148.13 −0.104206
\(971\) 36281.5 1.19910 0.599551 0.800336i \(-0.295346\pi\)
0.599551 + 0.800336i \(0.295346\pi\)
\(972\) 20352.0 0.671596
\(973\) 0 0
\(974\) 36117.3 1.18817
\(975\) 15607.0 0.512640
\(976\) 5125.64 0.168102
\(977\) 31848.9 1.04292 0.521462 0.853274i \(-0.325387\pi\)
0.521462 + 0.853274i \(0.325387\pi\)
\(978\) 43701.2 1.42885
\(979\) 5758.05 0.187976
\(980\) 0 0
\(981\) −53996.4 −1.75736
\(982\) 7467.44 0.242663
\(983\) 16776.4 0.544337 0.272169 0.962250i \(-0.412259\pi\)
0.272169 + 0.962250i \(0.412259\pi\)
\(984\) −27553.1 −0.892643
\(985\) 49526.1 1.60206
\(986\) 52409.2 1.69275
\(987\) 0 0
\(988\) 4504.57 0.145050
\(989\) 10830.3 0.348214
\(990\) −67081.7 −2.15353
\(991\) 21653.8 0.694103 0.347052 0.937846i \(-0.387183\pi\)
0.347052 + 0.937846i \(0.387183\pi\)
\(992\) 7952.21 0.254519
\(993\) −64233.2 −2.05275
\(994\) 0 0
\(995\) 36308.7 1.15685
\(996\) −10910.0 −0.347084
\(997\) 19249.6 0.611475 0.305737 0.952116i \(-0.401097\pi\)
0.305737 + 0.952116i \(0.401097\pi\)
\(998\) −27837.3 −0.882939
\(999\) 27175.5 0.860654
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.y.1.1 11
7.2 even 3 322.4.e.a.277.11 yes 22
7.4 even 3 322.4.e.a.93.11 22
7.6 odd 2 2254.4.a.v.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.a.93.11 22 7.4 even 3
322.4.e.a.277.11 yes 22 7.2 even 3
2254.4.a.v.1.11 11 7.6 odd 2
2254.4.a.y.1.1 11 1.1 even 1 trivial