Properties

Label 2254.4.a.x.1.8
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 165 x^{9} + 798 x^{8} + 8769 x^{7} - 38472 x^{6} - 184213 x^{5} + 644009 x^{4} + \cdots + 2848203 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.74955\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.74955 q^{3} +4.00000 q^{4} -14.1785 q^{5} +7.49911 q^{6} +8.00000 q^{8} -12.9409 q^{9} -28.3569 q^{10} +48.6127 q^{11} +14.9982 q^{12} +60.3778 q^{13} -53.1629 q^{15} +16.0000 q^{16} +29.0238 q^{17} -25.8817 q^{18} +0.266041 q^{19} -56.7138 q^{20} +97.2254 q^{22} -23.0000 q^{23} +29.9964 q^{24} +76.0287 q^{25} +120.756 q^{26} -149.760 q^{27} -67.2909 q^{29} -106.326 q^{30} +89.5691 q^{31} +32.0000 q^{32} +182.276 q^{33} +58.0476 q^{34} -51.7634 q^{36} -241.316 q^{37} +0.532083 q^{38} +226.390 q^{39} -113.428 q^{40} +106.382 q^{41} -215.270 q^{43} +194.451 q^{44} +183.481 q^{45} -46.0000 q^{46} +216.082 q^{47} +59.9928 q^{48} +152.057 q^{50} +108.826 q^{51} +241.511 q^{52} +44.3423 q^{53} -299.521 q^{54} -689.253 q^{55} +0.997537 q^{57} -134.582 q^{58} +228.015 q^{59} -212.652 q^{60} +375.759 q^{61} +179.138 q^{62} +64.0000 q^{64} -856.064 q^{65} +364.552 q^{66} +1019.88 q^{67} +116.095 q^{68} -86.2397 q^{69} -243.002 q^{71} -103.527 q^{72} +46.2389 q^{73} -482.632 q^{74} +285.073 q^{75} +1.06417 q^{76} +452.779 q^{78} -214.895 q^{79} -226.855 q^{80} -212.131 q^{81} +212.763 q^{82} +829.464 q^{83} -411.513 q^{85} -430.540 q^{86} -252.311 q^{87} +388.902 q^{88} -995.496 q^{89} +366.963 q^{90} -92.0000 q^{92} +335.844 q^{93} +432.165 q^{94} -3.77206 q^{95} +119.986 q^{96} +1095.74 q^{97} -629.090 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 6 q^{3} + 44 q^{4} + 27 q^{5} + 12 q^{6} + 88 q^{8} + 59 q^{9} + 54 q^{10} + 56 q^{11} + 24 q^{12} + 103 q^{13} + 62 q^{15} + 176 q^{16} + 157 q^{17} + 118 q^{18} + 266 q^{19} + 108 q^{20}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.74955 0.721602 0.360801 0.932643i \(-0.382503\pi\)
0.360801 + 0.932643i \(0.382503\pi\)
\(4\) 4.00000 0.500000
\(5\) −14.1785 −1.26816 −0.634080 0.773268i \(-0.718621\pi\)
−0.634080 + 0.773268i \(0.718621\pi\)
\(6\) 7.49911 0.510249
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −12.9409 −0.479291
\(10\) −28.3569 −0.896724
\(11\) 48.6127 1.33248 0.666240 0.745737i \(-0.267903\pi\)
0.666240 + 0.745737i \(0.267903\pi\)
\(12\) 14.9982 0.360801
\(13\) 60.3778 1.28814 0.644069 0.764968i \(-0.277245\pi\)
0.644069 + 0.764968i \(0.277245\pi\)
\(14\) 0 0
\(15\) −53.1629 −0.915106
\(16\) 16.0000 0.250000
\(17\) 29.0238 0.414077 0.207038 0.978333i \(-0.433618\pi\)
0.207038 + 0.978333i \(0.433618\pi\)
\(18\) −25.8817 −0.338910
\(19\) 0.266041 0.00321232 0.00160616 0.999999i \(-0.499489\pi\)
0.00160616 + 0.999999i \(0.499489\pi\)
\(20\) −56.7138 −0.634080
\(21\) 0 0
\(22\) 97.2254 0.942205
\(23\) −23.0000 −0.208514
\(24\) 29.9964 0.255125
\(25\) 76.0287 0.608229
\(26\) 120.756 0.910851
\(27\) −149.760 −1.06746
\(28\) 0 0
\(29\) −67.2909 −0.430883 −0.215441 0.976517i \(-0.569119\pi\)
−0.215441 + 0.976517i \(0.569119\pi\)
\(30\) −106.326 −0.647078
\(31\) 89.5691 0.518938 0.259469 0.965751i \(-0.416452\pi\)
0.259469 + 0.965751i \(0.416452\pi\)
\(32\) 32.0000 0.176777
\(33\) 182.276 0.961520
\(34\) 58.0476 0.292796
\(35\) 0 0
\(36\) −51.7634 −0.239645
\(37\) −241.316 −1.07222 −0.536109 0.844148i \(-0.680107\pi\)
−0.536109 + 0.844148i \(0.680107\pi\)
\(38\) 0.532083 0.00227145
\(39\) 226.390 0.929522
\(40\) −113.428 −0.448362
\(41\) 106.382 0.405220 0.202610 0.979260i \(-0.435058\pi\)
0.202610 + 0.979260i \(0.435058\pi\)
\(42\) 0 0
\(43\) −215.270 −0.763450 −0.381725 0.924276i \(-0.624670\pi\)
−0.381725 + 0.924276i \(0.624670\pi\)
\(44\) 194.451 0.666240
\(45\) 183.481 0.607817
\(46\) −46.0000 −0.147442
\(47\) 216.082 0.670614 0.335307 0.942109i \(-0.391160\pi\)
0.335307 + 0.942109i \(0.391160\pi\)
\(48\) 59.9928 0.180400
\(49\) 0 0
\(50\) 152.057 0.430083
\(51\) 108.826 0.298798
\(52\) 241.511 0.644069
\(53\) 44.3423 0.114922 0.0574611 0.998348i \(-0.481699\pi\)
0.0574611 + 0.998348i \(0.481699\pi\)
\(54\) −299.521 −0.754807
\(55\) −689.253 −1.68980
\(56\) 0 0
\(57\) 0.997537 0.00231802
\(58\) −134.582 −0.304680
\(59\) 228.015 0.503135 0.251568 0.967840i \(-0.419054\pi\)
0.251568 + 0.967840i \(0.419054\pi\)
\(60\) −212.652 −0.457553
\(61\) 375.759 0.788706 0.394353 0.918959i \(-0.370969\pi\)
0.394353 + 0.918959i \(0.370969\pi\)
\(62\) 179.138 0.366945
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −856.064 −1.63356
\(66\) 364.552 0.679897
\(67\) 1019.88 1.85967 0.929833 0.367983i \(-0.119952\pi\)
0.929833 + 0.367983i \(0.119952\pi\)
\(68\) 116.095 0.207038
\(69\) −86.2397 −0.150464
\(70\) 0 0
\(71\) −243.002 −0.406183 −0.203092 0.979160i \(-0.565099\pi\)
−0.203092 + 0.979160i \(0.565099\pi\)
\(72\) −103.527 −0.169455
\(73\) 46.2389 0.0741350 0.0370675 0.999313i \(-0.488198\pi\)
0.0370675 + 0.999313i \(0.488198\pi\)
\(74\) −482.632 −0.758173
\(75\) 285.073 0.438899
\(76\) 1.06417 0.00160616
\(77\) 0 0
\(78\) 452.779 0.657272
\(79\) −214.895 −0.306045 −0.153023 0.988223i \(-0.548901\pi\)
−0.153023 + 0.988223i \(0.548901\pi\)
\(80\) −226.855 −0.317040
\(81\) −212.131 −0.290989
\(82\) 212.763 0.286534
\(83\) 829.464 1.09693 0.548467 0.836172i \(-0.315212\pi\)
0.548467 + 0.836172i \(0.315212\pi\)
\(84\) 0 0
\(85\) −411.513 −0.525115
\(86\) −430.540 −0.539840
\(87\) −252.311 −0.310926
\(88\) 388.902 0.471103
\(89\) −995.496 −1.18564 −0.592822 0.805333i \(-0.701986\pi\)
−0.592822 + 0.805333i \(0.701986\pi\)
\(90\) 366.963 0.429792
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) 335.844 0.374467
\(94\) 432.165 0.474196
\(95\) −3.77206 −0.00407374
\(96\) 119.986 0.127562
\(97\) 1095.74 1.14697 0.573483 0.819217i \(-0.305592\pi\)
0.573483 + 0.819217i \(0.305592\pi\)
\(98\) 0 0
\(99\) −629.090 −0.638645
\(100\) 304.115 0.304115
\(101\) 1447.69 1.42624 0.713120 0.701042i \(-0.247281\pi\)
0.713120 + 0.701042i \(0.247281\pi\)
\(102\) 217.652 0.211282
\(103\) 1601.06 1.53162 0.765810 0.643067i \(-0.222338\pi\)
0.765810 + 0.643067i \(0.222338\pi\)
\(104\) 483.022 0.455425
\(105\) 0 0
\(106\) 88.6845 0.0812623
\(107\) 1276.99 1.15375 0.576875 0.816833i \(-0.304272\pi\)
0.576875 + 0.816833i \(0.304272\pi\)
\(108\) −599.041 −0.533729
\(109\) −557.328 −0.489747 −0.244873 0.969555i \(-0.578746\pi\)
−0.244873 + 0.969555i \(0.578746\pi\)
\(110\) −1378.51 −1.19487
\(111\) −904.827 −0.773715
\(112\) 0 0
\(113\) −559.393 −0.465693 −0.232846 0.972514i \(-0.574804\pi\)
−0.232846 + 0.972514i \(0.574804\pi\)
\(114\) 1.99507 0.00163909
\(115\) 326.105 0.264430
\(116\) −269.164 −0.215441
\(117\) −781.340 −0.617393
\(118\) 456.029 0.355770
\(119\) 0 0
\(120\) −425.303 −0.323539
\(121\) 1032.19 0.775502
\(122\) 751.519 0.557699
\(123\) 398.884 0.292407
\(124\) 358.276 0.259469
\(125\) 694.338 0.496828
\(126\) 0 0
\(127\) 1160.62 0.810932 0.405466 0.914110i \(-0.367109\pi\)
0.405466 + 0.914110i \(0.367109\pi\)
\(128\) 128.000 0.0883883
\(129\) −807.165 −0.550907
\(130\) −1712.13 −1.15510
\(131\) −2661.57 −1.77513 −0.887567 0.460679i \(-0.847606\pi\)
−0.887567 + 0.460679i \(0.847606\pi\)
\(132\) 729.103 0.480760
\(133\) 0 0
\(134\) 2039.75 1.31498
\(135\) 2123.37 1.35371
\(136\) 232.190 0.146398
\(137\) 2994.06 1.86715 0.933575 0.358382i \(-0.116672\pi\)
0.933575 + 0.358382i \(0.116672\pi\)
\(138\) −172.479 −0.106394
\(139\) 1480.91 0.903665 0.451833 0.892103i \(-0.350770\pi\)
0.451833 + 0.892103i \(0.350770\pi\)
\(140\) 0 0
\(141\) 810.212 0.483916
\(142\) −486.003 −0.287215
\(143\) 2935.13 1.71642
\(144\) −207.054 −0.119823
\(145\) 954.081 0.546428
\(146\) 92.4778 0.0524213
\(147\) 0 0
\(148\) −965.264 −0.536109
\(149\) 1176.82 0.647041 0.323521 0.946221i \(-0.395134\pi\)
0.323521 + 0.946221i \(0.395134\pi\)
\(150\) 570.147 0.310349
\(151\) 221.550 0.119401 0.0597004 0.998216i \(-0.480985\pi\)
0.0597004 + 0.998216i \(0.480985\pi\)
\(152\) 2.12833 0.00113573
\(153\) −375.593 −0.198463
\(154\) 0 0
\(155\) −1269.95 −0.658096
\(156\) 905.559 0.464761
\(157\) −2091.05 −1.06296 −0.531478 0.847072i \(-0.678363\pi\)
−0.531478 + 0.847072i \(0.678363\pi\)
\(158\) −429.790 −0.216407
\(159\) 166.264 0.0829281
\(160\) −453.711 −0.224181
\(161\) 0 0
\(162\) −424.262 −0.205761
\(163\) 702.545 0.337593 0.168796 0.985651i \(-0.446012\pi\)
0.168796 + 0.985651i \(0.446012\pi\)
\(164\) 425.527 0.202610
\(165\) −2584.39 −1.21936
\(166\) 1658.93 0.775649
\(167\) 2797.35 1.29620 0.648101 0.761555i \(-0.275564\pi\)
0.648101 + 0.761555i \(0.275564\pi\)
\(168\) 0 0
\(169\) 1448.48 0.659298
\(170\) −823.025 −0.371313
\(171\) −3.44280 −0.00153964
\(172\) −861.079 −0.381725
\(173\) 461.133 0.202655 0.101328 0.994853i \(-0.467691\pi\)
0.101328 + 0.994853i \(0.467691\pi\)
\(174\) −504.622 −0.219858
\(175\) 0 0
\(176\) 777.803 0.333120
\(177\) 854.953 0.363063
\(178\) −1990.99 −0.838377
\(179\) 36.1898 0.0151115 0.00755573 0.999971i \(-0.497595\pi\)
0.00755573 + 0.999971i \(0.497595\pi\)
\(180\) 733.925 0.303909
\(181\) 3882.22 1.59427 0.797136 0.603799i \(-0.206347\pi\)
0.797136 + 0.603799i \(0.206347\pi\)
\(182\) 0 0
\(183\) 1408.93 0.569132
\(184\) −184.000 −0.0737210
\(185\) 3421.49 1.35974
\(186\) 671.688 0.264788
\(187\) 1410.92 0.551749
\(188\) 864.329 0.335307
\(189\) 0 0
\(190\) −7.54412 −0.00288057
\(191\) 3908.40 1.48064 0.740318 0.672257i \(-0.234675\pi\)
0.740318 + 0.672257i \(0.234675\pi\)
\(192\) 239.971 0.0902002
\(193\) −1399.25 −0.521866 −0.260933 0.965357i \(-0.584030\pi\)
−0.260933 + 0.965357i \(0.584030\pi\)
\(194\) 2191.48 0.811027
\(195\) −3209.86 −1.17878
\(196\) 0 0
\(197\) 2441.53 0.883004 0.441502 0.897260i \(-0.354446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(198\) −1258.18 −0.451591
\(199\) 2188.86 0.779719 0.389860 0.920874i \(-0.372524\pi\)
0.389860 + 0.920874i \(0.372524\pi\)
\(200\) 608.229 0.215042
\(201\) 3824.08 1.34194
\(202\) 2895.38 1.00850
\(203\) 0 0
\(204\) 435.305 0.149399
\(205\) −1508.33 −0.513884
\(206\) 3202.11 1.08302
\(207\) 297.640 0.0999391
\(208\) 966.045 0.322034
\(209\) 12.9330 0.00428035
\(210\) 0 0
\(211\) −5185.63 −1.69191 −0.845956 0.533252i \(-0.820970\pi\)
−0.845956 + 0.533252i \(0.820970\pi\)
\(212\) 177.369 0.0574611
\(213\) −911.148 −0.293102
\(214\) 2553.98 0.815824
\(215\) 3052.19 0.968176
\(216\) −1198.08 −0.377404
\(217\) 0 0
\(218\) −1114.66 −0.346303
\(219\) 173.375 0.0534959
\(220\) −2757.01 −0.844899
\(221\) 1752.39 0.533388
\(222\) −1809.65 −0.547099
\(223\) −1016.81 −0.305339 −0.152669 0.988277i \(-0.548787\pi\)
−0.152669 + 0.988277i \(0.548787\pi\)
\(224\) 0 0
\(225\) −983.876 −0.291519
\(226\) −1118.79 −0.329295
\(227\) −2411.55 −0.705112 −0.352556 0.935791i \(-0.614687\pi\)
−0.352556 + 0.935791i \(0.614687\pi\)
\(228\) 3.99015 0.00115901
\(229\) 4621.34 1.33357 0.666783 0.745252i \(-0.267671\pi\)
0.666783 + 0.745252i \(0.267671\pi\)
\(230\) 652.209 0.186980
\(231\) 0 0
\(232\) −538.327 −0.152340
\(233\) −3487.53 −0.980584 −0.490292 0.871558i \(-0.663110\pi\)
−0.490292 + 0.871558i \(0.663110\pi\)
\(234\) −1562.68 −0.436563
\(235\) −3063.71 −0.850445
\(236\) 912.058 0.251568
\(237\) −805.760 −0.220843
\(238\) 0 0
\(239\) −6164.99 −1.66854 −0.834268 0.551359i \(-0.814109\pi\)
−0.834268 + 0.551359i \(0.814109\pi\)
\(240\) −850.606 −0.228777
\(241\) −1225.09 −0.327449 −0.163725 0.986506i \(-0.552351\pi\)
−0.163725 + 0.986506i \(0.552351\pi\)
\(242\) 2064.39 0.548363
\(243\) 3248.13 0.857481
\(244\) 1503.04 0.394353
\(245\) 0 0
\(246\) 797.767 0.206763
\(247\) 16.0630 0.00413791
\(248\) 716.553 0.183472
\(249\) 3110.12 0.791549
\(250\) 1388.68 0.351310
\(251\) 1499.55 0.377094 0.188547 0.982064i \(-0.439622\pi\)
0.188547 + 0.982064i \(0.439622\pi\)
\(252\) 0 0
\(253\) −1118.09 −0.277841
\(254\) 2321.24 0.573416
\(255\) −1542.99 −0.378924
\(256\) 256.000 0.0625000
\(257\) 3362.45 0.816124 0.408062 0.912954i \(-0.366205\pi\)
0.408062 + 0.912954i \(0.366205\pi\)
\(258\) −1614.33 −0.389550
\(259\) 0 0
\(260\) −3424.26 −0.816782
\(261\) 870.802 0.206518
\(262\) −5323.14 −1.25521
\(263\) −6287.94 −1.47426 −0.737131 0.675750i \(-0.763820\pi\)
−0.737131 + 0.675750i \(0.763820\pi\)
\(264\) 1458.21 0.339949
\(265\) −628.705 −0.145740
\(266\) 0 0
\(267\) −3732.66 −0.855563
\(268\) 4079.50 0.929833
\(269\) 2213.82 0.501781 0.250891 0.968015i \(-0.419277\pi\)
0.250891 + 0.968015i \(0.419277\pi\)
\(270\) 4246.74 0.957216
\(271\) −2651.01 −0.594233 −0.297117 0.954841i \(-0.596025\pi\)
−0.297117 + 0.954841i \(0.596025\pi\)
\(272\) 464.381 0.103519
\(273\) 0 0
\(274\) 5988.11 1.32027
\(275\) 3695.96 0.810453
\(276\) −344.959 −0.0752322
\(277\) −2337.19 −0.506960 −0.253480 0.967341i \(-0.581575\pi\)
−0.253480 + 0.967341i \(0.581575\pi\)
\(278\) 2961.83 0.638988
\(279\) −1159.10 −0.248722
\(280\) 0 0
\(281\) 1693.43 0.359506 0.179753 0.983712i \(-0.442470\pi\)
0.179753 + 0.983712i \(0.442470\pi\)
\(282\) 1620.42 0.342180
\(283\) −110.893 −0.0232930 −0.0116465 0.999932i \(-0.503707\pi\)
−0.0116465 + 0.999932i \(0.503707\pi\)
\(284\) −972.007 −0.203092
\(285\) −14.1435 −0.00293962
\(286\) 5870.25 1.21369
\(287\) 0 0
\(288\) −414.107 −0.0847275
\(289\) −4070.62 −0.828541
\(290\) 1908.16 0.386383
\(291\) 4108.54 0.827653
\(292\) 184.956 0.0370675
\(293\) −7665.00 −1.52831 −0.764153 0.645035i \(-0.776843\pi\)
−0.764153 + 0.645035i \(0.776843\pi\)
\(294\) 0 0
\(295\) −3232.90 −0.638056
\(296\) −1930.53 −0.379087
\(297\) −7280.25 −1.42237
\(298\) 2353.65 0.457527
\(299\) −1388.69 −0.268595
\(300\) 1140.29 0.219450
\(301\) 0 0
\(302\) 443.101 0.0844291
\(303\) 5428.18 1.02918
\(304\) 4.25666 0.000803080 0
\(305\) −5327.69 −1.00021
\(306\) −751.185 −0.140335
\(307\) −3951.57 −0.734620 −0.367310 0.930099i \(-0.619721\pi\)
−0.367310 + 0.930099i \(0.619721\pi\)
\(308\) 0 0
\(309\) 6003.25 1.10522
\(310\) −2539.90 −0.465344
\(311\) 6938.06 1.26502 0.632510 0.774552i \(-0.282025\pi\)
0.632510 + 0.774552i \(0.282025\pi\)
\(312\) 1811.12 0.328636
\(313\) 4221.98 0.762430 0.381215 0.924486i \(-0.375506\pi\)
0.381215 + 0.924486i \(0.375506\pi\)
\(314\) −4182.10 −0.751623
\(315\) 0 0
\(316\) −859.580 −0.153023
\(317\) −1689.93 −0.299420 −0.149710 0.988730i \(-0.547834\pi\)
−0.149710 + 0.988730i \(0.547834\pi\)
\(318\) 332.527 0.0586390
\(319\) −3271.19 −0.574143
\(320\) −907.421 −0.158520
\(321\) 4788.14 0.832548
\(322\) 0 0
\(323\) 7.72153 0.00133015
\(324\) −848.525 −0.145495
\(325\) 4590.44 0.783483
\(326\) 1405.09 0.238714
\(327\) −2089.73 −0.353402
\(328\) 851.053 0.143267
\(329\) 0 0
\(330\) −5168.78 −0.862218
\(331\) 3728.75 0.619186 0.309593 0.950869i \(-0.399807\pi\)
0.309593 + 0.950869i \(0.399807\pi\)
\(332\) 3317.85 0.548467
\(333\) 3122.83 0.513905
\(334\) 5594.71 0.916553
\(335\) −14460.3 −2.35835
\(336\) 0 0
\(337\) 837.300 0.135343 0.0676716 0.997708i \(-0.478443\pi\)
0.0676716 + 0.997708i \(0.478443\pi\)
\(338\) 2896.96 0.466194
\(339\) −2097.47 −0.336045
\(340\) −1646.05 −0.262558
\(341\) 4354.19 0.691474
\(342\) −6.88561 −0.00108869
\(343\) 0 0
\(344\) −1722.16 −0.269920
\(345\) 1222.75 0.190813
\(346\) 922.267 0.143299
\(347\) 1107.14 0.171281 0.0856405 0.996326i \(-0.472706\pi\)
0.0856405 + 0.996326i \(0.472706\pi\)
\(348\) −1009.24 −0.155463
\(349\) 6461.90 0.991111 0.495555 0.868576i \(-0.334965\pi\)
0.495555 + 0.868576i \(0.334965\pi\)
\(350\) 0 0
\(351\) −9042.20 −1.37503
\(352\) 1555.61 0.235551
\(353\) −4969.58 −0.749304 −0.374652 0.927166i \(-0.622238\pi\)
−0.374652 + 0.927166i \(0.622238\pi\)
\(354\) 1709.91 0.256724
\(355\) 3445.39 0.515105
\(356\) −3981.98 −0.592822
\(357\) 0 0
\(358\) 72.3796 0.0106854
\(359\) −1290.16 −0.189671 −0.0948356 0.995493i \(-0.530233\pi\)
−0.0948356 + 0.995493i \(0.530233\pi\)
\(360\) 1467.85 0.214896
\(361\) −6858.93 −0.999990
\(362\) 7764.45 1.12732
\(363\) 3870.26 0.559604
\(364\) 0 0
\(365\) −655.596 −0.0940150
\(366\) 2817.86 0.402437
\(367\) 10709.3 1.52322 0.761610 0.648035i \(-0.224409\pi\)
0.761610 + 0.648035i \(0.224409\pi\)
\(368\) −368.000 −0.0521286
\(369\) −1376.67 −0.194218
\(370\) 6842.98 0.961485
\(371\) 0 0
\(372\) 1343.38 0.187233
\(373\) −10316.3 −1.43206 −0.716031 0.698068i \(-0.754043\pi\)
−0.716031 + 0.698068i \(0.754043\pi\)
\(374\) 2821.85 0.390145
\(375\) 2603.46 0.358512
\(376\) 1728.66 0.237098
\(377\) −4062.88 −0.555037
\(378\) 0 0
\(379\) −12606.5 −1.70859 −0.854293 0.519792i \(-0.826009\pi\)
−0.854293 + 0.519792i \(0.826009\pi\)
\(380\) −15.0882 −0.00203687
\(381\) 4351.81 0.585170
\(382\) 7816.79 1.04697
\(383\) −14702.1 −1.96147 −0.980734 0.195349i \(-0.937416\pi\)
−0.980734 + 0.195349i \(0.937416\pi\)
\(384\) 479.943 0.0637812
\(385\) 0 0
\(386\) −2798.50 −0.369015
\(387\) 2785.77 0.365914
\(388\) 4382.97 0.573483
\(389\) 14410.1 1.87820 0.939100 0.343645i \(-0.111662\pi\)
0.939100 + 0.343645i \(0.111662\pi\)
\(390\) −6419.71 −0.833525
\(391\) −667.547 −0.0863409
\(392\) 0 0
\(393\) −9979.70 −1.28094
\(394\) 4883.06 0.624378
\(395\) 3046.88 0.388114
\(396\) −2516.36 −0.319323
\(397\) 9966.02 1.25990 0.629950 0.776636i \(-0.283075\pi\)
0.629950 + 0.776636i \(0.283075\pi\)
\(398\) 4377.72 0.551345
\(399\) 0 0
\(400\) 1216.46 0.152057
\(401\) 8234.71 1.02549 0.512746 0.858541i \(-0.328628\pi\)
0.512746 + 0.858541i \(0.328628\pi\)
\(402\) 7648.15 0.948893
\(403\) 5407.98 0.668464
\(404\) 5790.75 0.713120
\(405\) 3007.69 0.369021
\(406\) 0 0
\(407\) −11731.0 −1.42871
\(408\) 870.610 0.105641
\(409\) −5061.02 −0.611861 −0.305930 0.952054i \(-0.598968\pi\)
−0.305930 + 0.952054i \(0.598968\pi\)
\(410\) −3016.66 −0.363371
\(411\) 11226.4 1.34734
\(412\) 6404.23 0.765810
\(413\) 0 0
\(414\) 595.279 0.0706676
\(415\) −11760.5 −1.39109
\(416\) 1932.09 0.227713
\(417\) 5552.76 0.652086
\(418\) 25.8660 0.00302667
\(419\) −10902.9 −1.27122 −0.635611 0.772010i \(-0.719252\pi\)
−0.635611 + 0.772010i \(0.719252\pi\)
\(420\) 0 0
\(421\) −16125.7 −1.86680 −0.933398 0.358843i \(-0.883171\pi\)
−0.933398 + 0.358843i \(0.883171\pi\)
\(422\) −10371.3 −1.19636
\(423\) −2796.29 −0.321419
\(424\) 354.738 0.0406311
\(425\) 2206.64 0.251854
\(426\) −1822.30 −0.207255
\(427\) 0 0
\(428\) 5107.96 0.576875
\(429\) 11005.4 1.23857
\(430\) 6104.39 0.684604
\(431\) −14451.5 −1.61509 −0.807545 0.589807i \(-0.799204\pi\)
−0.807545 + 0.589807i \(0.799204\pi\)
\(432\) −2396.17 −0.266865
\(433\) 132.229 0.0146755 0.00733776 0.999973i \(-0.497664\pi\)
0.00733776 + 0.999973i \(0.497664\pi\)
\(434\) 0 0
\(435\) 3577.38 0.394304
\(436\) −2229.31 −0.244873
\(437\) −6.11895 −0.000669815 0
\(438\) 346.750 0.0378273
\(439\) 6294.88 0.684370 0.342185 0.939633i \(-0.388833\pi\)
0.342185 + 0.939633i \(0.388833\pi\)
\(440\) −5514.02 −0.597434
\(441\) 0 0
\(442\) 3504.78 0.377162
\(443\) 4345.97 0.466102 0.233051 0.972465i \(-0.425129\pi\)
0.233051 + 0.972465i \(0.425129\pi\)
\(444\) −3619.31 −0.386858
\(445\) 14114.6 1.50359
\(446\) −2033.62 −0.215907
\(447\) 4412.56 0.466906
\(448\) 0 0
\(449\) 14238.4 1.49656 0.748278 0.663385i \(-0.230881\pi\)
0.748278 + 0.663385i \(0.230881\pi\)
\(450\) −1967.75 −0.206135
\(451\) 5171.50 0.539947
\(452\) −2237.57 −0.232846
\(453\) 830.715 0.0861598
\(454\) −4823.11 −0.498590
\(455\) 0 0
\(456\) 7.98029 0.000819543 0
\(457\) 11994.8 1.22778 0.613888 0.789393i \(-0.289605\pi\)
0.613888 + 0.789393i \(0.289605\pi\)
\(458\) 9242.68 0.942974
\(459\) −4346.61 −0.442010
\(460\) 1304.42 0.132215
\(461\) −2960.34 −0.299082 −0.149541 0.988756i \(-0.547780\pi\)
−0.149541 + 0.988756i \(0.547780\pi\)
\(462\) 0 0
\(463\) −2534.97 −0.254449 −0.127225 0.991874i \(-0.540607\pi\)
−0.127225 + 0.991874i \(0.540607\pi\)
\(464\) −1076.65 −0.107721
\(465\) −4761.75 −0.474884
\(466\) −6975.07 −0.693377
\(467\) −14876.0 −1.47404 −0.737021 0.675870i \(-0.763768\pi\)
−0.737021 + 0.675870i \(0.763768\pi\)
\(468\) −3125.36 −0.308696
\(469\) 0 0
\(470\) −6127.43 −0.601356
\(471\) −7840.50 −0.767030
\(472\) 1824.12 0.177885
\(473\) −10464.8 −1.01728
\(474\) −1611.52 −0.156159
\(475\) 20.2268 0.00195383
\(476\) 0 0
\(477\) −573.827 −0.0550812
\(478\) −12330.0 −1.17983
\(479\) 5444.59 0.519352 0.259676 0.965696i \(-0.416384\pi\)
0.259676 + 0.965696i \(0.416384\pi\)
\(480\) −1701.21 −0.161769
\(481\) −14570.1 −1.38117
\(482\) −2450.19 −0.231542
\(483\) 0 0
\(484\) 4128.77 0.387751
\(485\) −15535.9 −1.45454
\(486\) 6496.26 0.606330
\(487\) −20465.3 −1.90426 −0.952129 0.305698i \(-0.901110\pi\)
−0.952129 + 0.305698i \(0.901110\pi\)
\(488\) 3006.08 0.278850
\(489\) 2634.23 0.243607
\(490\) 0 0
\(491\) −6247.24 −0.574203 −0.287102 0.957900i \(-0.592692\pi\)
−0.287102 + 0.957900i \(0.592692\pi\)
\(492\) 1595.53 0.146204
\(493\) −1953.04 −0.178419
\(494\) 32.1260 0.00292595
\(495\) 8919.52 0.809904
\(496\) 1433.11 0.129735
\(497\) 0 0
\(498\) 6220.24 0.559710
\(499\) −19087.4 −1.71236 −0.856182 0.516674i \(-0.827170\pi\)
−0.856182 + 0.516674i \(0.827170\pi\)
\(500\) 2777.35 0.248414
\(501\) 10488.8 0.935341
\(502\) 2999.09 0.266646
\(503\) 4291.01 0.380371 0.190186 0.981748i \(-0.439091\pi\)
0.190186 + 0.981748i \(0.439091\pi\)
\(504\) 0 0
\(505\) −20526.0 −1.80870
\(506\) −2236.18 −0.196463
\(507\) 5431.15 0.475751
\(508\) 4642.48 0.405466
\(509\) −7164.92 −0.623928 −0.311964 0.950094i \(-0.600987\pi\)
−0.311964 + 0.950094i \(0.600987\pi\)
\(510\) −3085.98 −0.267940
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −39.8425 −0.00342902
\(514\) 6724.90 0.577087
\(515\) −22700.5 −1.94234
\(516\) −3228.66 −0.275453
\(517\) 10504.3 0.893579
\(518\) 0 0
\(519\) 1729.04 0.146236
\(520\) −6848.51 −0.577552
\(521\) 10113.7 0.850459 0.425229 0.905086i \(-0.360193\pi\)
0.425229 + 0.905086i \(0.360193\pi\)
\(522\) 1741.60 0.146030
\(523\) −13719.7 −1.14707 −0.573537 0.819180i \(-0.694429\pi\)
−0.573537 + 0.819180i \(0.694429\pi\)
\(524\) −10646.3 −0.887567
\(525\) 0 0
\(526\) −12575.9 −1.04246
\(527\) 2599.63 0.214880
\(528\) 2916.41 0.240380
\(529\) 529.000 0.0434783
\(530\) −1257.41 −0.103054
\(531\) −2950.70 −0.241148
\(532\) 0 0
\(533\) 6423.09 0.521979
\(534\) −7465.33 −0.604974
\(535\) −18105.7 −1.46314
\(536\) 8159.00 0.657491
\(537\) 135.696 0.0109045
\(538\) 4427.65 0.354813
\(539\) 0 0
\(540\) 8493.48 0.676854
\(541\) 3358.70 0.266916 0.133458 0.991054i \(-0.457392\pi\)
0.133458 + 0.991054i \(0.457392\pi\)
\(542\) −5302.01 −0.420186
\(543\) 14556.6 1.15043
\(544\) 928.761 0.0731991
\(545\) 7902.06 0.621077
\(546\) 0 0
\(547\) 13242.2 1.03509 0.517545 0.855656i \(-0.326846\pi\)
0.517545 + 0.855656i \(0.326846\pi\)
\(548\) 11976.2 0.933575
\(549\) −4862.65 −0.378020
\(550\) 7391.92 0.573077
\(551\) −17.9022 −0.00138413
\(552\) −689.918 −0.0531972
\(553\) 0 0
\(554\) −4674.37 −0.358475
\(555\) 12829.1 0.981194
\(556\) 5923.66 0.451833
\(557\) 21134.9 1.60774 0.803872 0.594803i \(-0.202770\pi\)
0.803872 + 0.594803i \(0.202770\pi\)
\(558\) −2318.20 −0.175873
\(559\) −12997.5 −0.983428
\(560\) 0 0
\(561\) 5290.34 0.398143
\(562\) 3386.85 0.254209
\(563\) −19331.5 −1.44711 −0.723557 0.690265i \(-0.757494\pi\)
−0.723557 + 0.690265i \(0.757494\pi\)
\(564\) 3240.85 0.241958
\(565\) 7931.33 0.590573
\(566\) −221.786 −0.0164706
\(567\) 0 0
\(568\) −1944.01 −0.143607
\(569\) 25141.5 1.85235 0.926173 0.377100i \(-0.123079\pi\)
0.926173 + 0.377100i \(0.123079\pi\)
\(570\) −28.2871 −0.00207862
\(571\) 26174.1 1.91831 0.959153 0.282889i \(-0.0912928\pi\)
0.959153 + 0.282889i \(0.0912928\pi\)
\(572\) 11740.5 0.858209
\(573\) 14654.7 1.06843
\(574\) 0 0
\(575\) −1748.66 −0.126825
\(576\) −828.215 −0.0599114
\(577\) −13690.1 −0.987738 −0.493869 0.869536i \(-0.664418\pi\)
−0.493869 + 0.869536i \(0.664418\pi\)
\(578\) −8141.24 −0.585867
\(579\) −5246.56 −0.376579
\(580\) 3816.32 0.273214
\(581\) 0 0
\(582\) 8217.08 0.585239
\(583\) 2155.60 0.153132
\(584\) 369.911 0.0262107
\(585\) 11078.2 0.782953
\(586\) −15330.0 −1.08068
\(587\) 17982.6 1.26443 0.632217 0.774791i \(-0.282145\pi\)
0.632217 + 0.774791i \(0.282145\pi\)
\(588\) 0 0
\(589\) 23.8291 0.00166700
\(590\) −6465.79 −0.451174
\(591\) 9154.64 0.637177
\(592\) −3861.06 −0.268055
\(593\) 4545.73 0.314790 0.157395 0.987536i \(-0.449690\pi\)
0.157395 + 0.987536i \(0.449690\pi\)
\(594\) −14560.5 −1.00577
\(595\) 0 0
\(596\) 4707.29 0.323521
\(597\) 8207.24 0.562647
\(598\) −2777.38 −0.189926
\(599\) −16482.1 −1.12427 −0.562136 0.827045i \(-0.690020\pi\)
−0.562136 + 0.827045i \(0.690020\pi\)
\(600\) 2280.59 0.155174
\(601\) −15905.7 −1.07955 −0.539774 0.841810i \(-0.681490\pi\)
−0.539774 + 0.841810i \(0.681490\pi\)
\(602\) 0 0
\(603\) −13198.1 −0.891321
\(604\) 886.201 0.0597004
\(605\) −14634.9 −0.983461
\(606\) 10856.4 0.727739
\(607\) 13004.0 0.869549 0.434774 0.900539i \(-0.356828\pi\)
0.434774 + 0.900539i \(0.356828\pi\)
\(608\) 8.51333 0.000567863 0
\(609\) 0 0
\(610\) −10655.4 −0.707252
\(611\) 13046.6 0.863843
\(612\) −1502.37 −0.0992316
\(613\) −4549.63 −0.299768 −0.149884 0.988704i \(-0.547890\pi\)
−0.149884 + 0.988704i \(0.547890\pi\)
\(614\) −7903.15 −0.519454
\(615\) −5655.55 −0.370819
\(616\) 0 0
\(617\) 13522.4 0.882323 0.441162 0.897428i \(-0.354567\pi\)
0.441162 + 0.897428i \(0.354567\pi\)
\(618\) 12006.5 0.781508
\(619\) −13513.1 −0.877445 −0.438722 0.898623i \(-0.644569\pi\)
−0.438722 + 0.898623i \(0.644569\pi\)
\(620\) −5079.81 −0.329048
\(621\) 3444.49 0.222581
\(622\) 13876.1 0.894504
\(623\) 0 0
\(624\) 3622.24 0.232381
\(625\) −19348.2 −1.23829
\(626\) 8443.96 0.539119
\(627\) 48.4929 0.00308871
\(628\) −8364.20 −0.531478
\(629\) −7003.90 −0.443981
\(630\) 0 0
\(631\) −8568.92 −0.540608 −0.270304 0.962775i \(-0.587124\pi\)
−0.270304 + 0.962775i \(0.587124\pi\)
\(632\) −1719.16 −0.108203
\(633\) −19443.8 −1.22089
\(634\) −3379.87 −0.211722
\(635\) −16455.8 −1.02839
\(636\) 665.055 0.0414640
\(637\) 0 0
\(638\) −6542.38 −0.405980
\(639\) 3144.65 0.194680
\(640\) −1814.84 −0.112091
\(641\) 17958.0 1.10655 0.553275 0.832999i \(-0.313378\pi\)
0.553275 + 0.832999i \(0.313378\pi\)
\(642\) 9576.28 0.588700
\(643\) −232.314 −0.0142481 −0.00712407 0.999975i \(-0.502268\pi\)
−0.00712407 + 0.999975i \(0.502268\pi\)
\(644\) 0 0
\(645\) 11444.4 0.698638
\(646\) 15.4431 0.000940556 0
\(647\) 20467.9 1.24370 0.621851 0.783136i \(-0.286381\pi\)
0.621851 + 0.783136i \(0.286381\pi\)
\(648\) −1697.05 −0.102880
\(649\) 11084.4 0.670417
\(650\) 9180.89 0.554006
\(651\) 0 0
\(652\) 2810.18 0.168796
\(653\) −1224.64 −0.0733904 −0.0366952 0.999327i \(-0.511683\pi\)
−0.0366952 + 0.999327i \(0.511683\pi\)
\(654\) −4179.47 −0.249893
\(655\) 37737.0 2.25115
\(656\) 1702.11 0.101305
\(657\) −598.371 −0.0355322
\(658\) 0 0
\(659\) 16443.6 0.972008 0.486004 0.873957i \(-0.338454\pi\)
0.486004 + 0.873957i \(0.338454\pi\)
\(660\) −10337.6 −0.609680
\(661\) −8782.98 −0.516821 −0.258410 0.966035i \(-0.583199\pi\)
−0.258410 + 0.966035i \(0.583199\pi\)
\(662\) 7457.50 0.437831
\(663\) 6570.69 0.384893
\(664\) 6635.71 0.387825
\(665\) 0 0
\(666\) 6245.67 0.363386
\(667\) 1547.69 0.0898453
\(668\) 11189.4 0.648101
\(669\) −3812.58 −0.220333
\(670\) −28920.5 −1.66761
\(671\) 18266.7 1.05093
\(672\) 0 0
\(673\) 26555.7 1.52102 0.760510 0.649326i \(-0.224949\pi\)
0.760510 + 0.649326i \(0.224949\pi\)
\(674\) 1674.60 0.0957021
\(675\) −11386.1 −0.649260
\(676\) 5793.91 0.329649
\(677\) 20532.9 1.16565 0.582824 0.812598i \(-0.301948\pi\)
0.582824 + 0.812598i \(0.301948\pi\)
\(678\) −4194.95 −0.237620
\(679\) 0 0
\(680\) −3292.10 −0.185656
\(681\) −9042.25 −0.508810
\(682\) 8708.39 0.488946
\(683\) 12060.7 0.675678 0.337839 0.941204i \(-0.390304\pi\)
0.337839 + 0.941204i \(0.390304\pi\)
\(684\) −13.7712 −0.000769818 0
\(685\) −42451.1 −2.36784
\(686\) 0 0
\(687\) 17328.0 0.962304
\(688\) −3444.32 −0.190862
\(689\) 2677.29 0.148036
\(690\) 2445.49 0.134925
\(691\) 4575.07 0.251872 0.125936 0.992038i \(-0.459807\pi\)
0.125936 + 0.992038i \(0.459807\pi\)
\(692\) 1844.53 0.101328
\(693\) 0 0
\(694\) 2214.28 0.121114
\(695\) −20997.1 −1.14599
\(696\) −2018.49 −0.109929
\(697\) 3087.60 0.167792
\(698\) 12923.8 0.700821
\(699\) −13076.7 −0.707591
\(700\) 0 0
\(701\) 9743.67 0.524984 0.262492 0.964934i \(-0.415456\pi\)
0.262492 + 0.964934i \(0.415456\pi\)
\(702\) −18084.4 −0.972296
\(703\) −64.2001 −0.00344431
\(704\) 3111.21 0.166560
\(705\) −11487.6 −0.613683
\(706\) −9939.16 −0.529838
\(707\) 0 0
\(708\) 3419.81 0.181532
\(709\) 28402.2 1.50446 0.752232 0.658898i \(-0.228977\pi\)
0.752232 + 0.658898i \(0.228977\pi\)
\(710\) 6890.78 0.364234
\(711\) 2780.92 0.146685
\(712\) −7963.97 −0.419189
\(713\) −2060.09 −0.108206
\(714\) 0 0
\(715\) −41615.6 −2.17669
\(716\) 144.759 0.00755573
\(717\) −23116.0 −1.20402
\(718\) −2580.32 −0.134118
\(719\) 36134.8 1.87427 0.937136 0.348965i \(-0.113467\pi\)
0.937136 + 0.348965i \(0.113467\pi\)
\(720\) 2935.70 0.151954
\(721\) 0 0
\(722\) −13717.9 −0.707099
\(723\) −4593.56 −0.236288
\(724\) 15528.9 0.797136
\(725\) −5116.04 −0.262076
\(726\) 7740.53 0.395700
\(727\) 16156.1 0.824202 0.412101 0.911138i \(-0.364795\pi\)
0.412101 + 0.911138i \(0.364795\pi\)
\(728\) 0 0
\(729\) 17906.6 0.909749
\(730\) −1311.19 −0.0664786
\(731\) −6247.94 −0.316127
\(732\) 5635.72 0.284566
\(733\) −38195.1 −1.92465 −0.962325 0.271903i \(-0.912347\pi\)
−0.962325 + 0.271903i \(0.912347\pi\)
\(734\) 21418.6 1.07708
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 49578.9 2.47797
\(738\) −2753.34 −0.137333
\(739\) −31790.2 −1.58244 −0.791219 0.611533i \(-0.790553\pi\)
−0.791219 + 0.611533i \(0.790553\pi\)
\(740\) 13686.0 0.679872
\(741\) 60.2291 0.00298592
\(742\) 0 0
\(743\) −1657.10 −0.0818210 −0.0409105 0.999163i \(-0.513026\pi\)
−0.0409105 + 0.999163i \(0.513026\pi\)
\(744\) 2686.75 0.132394
\(745\) −16685.5 −0.820552
\(746\) −20632.7 −1.01262
\(747\) −10734.0 −0.525750
\(748\) 5643.70 0.275874
\(749\) 0 0
\(750\) 5206.91 0.253506
\(751\) 12336.6 0.599425 0.299712 0.954030i \(-0.403109\pi\)
0.299712 + 0.954030i \(0.403109\pi\)
\(752\) 3457.32 0.167653
\(753\) 5622.63 0.272112
\(754\) −8125.75 −0.392470
\(755\) −3141.24 −0.151419
\(756\) 0 0
\(757\) 19801.6 0.950727 0.475363 0.879790i \(-0.342317\pi\)
0.475363 + 0.879790i \(0.342317\pi\)
\(758\) −25213.1 −1.20815
\(759\) −4192.34 −0.200491
\(760\) −30.1765 −0.00144028
\(761\) 2043.78 0.0973546 0.0486773 0.998815i \(-0.484499\pi\)
0.0486773 + 0.998815i \(0.484499\pi\)
\(762\) 8703.61 0.413778
\(763\) 0 0
\(764\) 15633.6 0.740318
\(765\) 5325.32 0.251683
\(766\) −29404.2 −1.38697
\(767\) 13767.0 0.648107
\(768\) 959.885 0.0451001
\(769\) −20117.6 −0.943378 −0.471689 0.881765i \(-0.656356\pi\)
−0.471689 + 0.881765i \(0.656356\pi\)
\(770\) 0 0
\(771\) 12607.7 0.588917
\(772\) −5597.00 −0.260933
\(773\) −7575.56 −0.352489 −0.176244 0.984346i \(-0.556395\pi\)
−0.176244 + 0.984346i \(0.556395\pi\)
\(774\) 5571.55 0.258741
\(775\) 6809.82 0.315633
\(776\) 8765.93 0.405514
\(777\) 0 0
\(778\) 28820.1 1.32809
\(779\) 28.3019 0.00130170
\(780\) −12839.4 −0.589391
\(781\) −11813.0 −0.541231
\(782\) −1335.09 −0.0610523
\(783\) 10077.5 0.459950
\(784\) 0 0
\(785\) 29647.9 1.34800
\(786\) −19959.4 −0.905761
\(787\) 2961.31 0.134129 0.0670644 0.997749i \(-0.478637\pi\)
0.0670644 + 0.997749i \(0.478637\pi\)
\(788\) 9766.12 0.441502
\(789\) −23577.0 −1.06383
\(790\) 6093.76 0.274438
\(791\) 0 0
\(792\) −5032.72 −0.225795
\(793\) 22687.5 1.01596
\(794\) 19932.0 0.890883
\(795\) −2357.36 −0.105166
\(796\) 8755.44 0.389860
\(797\) −31231.3 −1.38804 −0.694022 0.719954i \(-0.744163\pi\)
−0.694022 + 0.719954i \(0.744163\pi\)
\(798\) 0 0
\(799\) 6271.53 0.277685
\(800\) 2432.92 0.107521
\(801\) 12882.6 0.568268
\(802\) 16469.4 0.725132
\(803\) 2247.80 0.0987834
\(804\) 15296.3 0.670969
\(805\) 0 0
\(806\) 10816.0 0.472675
\(807\) 8300.85 0.362086
\(808\) 11581.5 0.504252
\(809\) −43376.0 −1.88507 −0.942534 0.334111i \(-0.891564\pi\)
−0.942534 + 0.334111i \(0.891564\pi\)
\(810\) 6015.39 0.260937
\(811\) 33430.7 1.44748 0.723742 0.690071i \(-0.242421\pi\)
0.723742 + 0.690071i \(0.242421\pi\)
\(812\) 0 0
\(813\) −9940.09 −0.428800
\(814\) −23462.0 −1.01025
\(815\) −9961.01 −0.428121
\(816\) 1741.22 0.0746996
\(817\) −57.2707 −0.00245245
\(818\) −10122.0 −0.432651
\(819\) 0 0
\(820\) −6033.31 −0.256942
\(821\) −7382.93 −0.313844 −0.156922 0.987611i \(-0.550157\pi\)
−0.156922 + 0.987611i \(0.550157\pi\)
\(822\) 22452.7 0.952712
\(823\) −13896.8 −0.588594 −0.294297 0.955714i \(-0.595085\pi\)
−0.294297 + 0.955714i \(0.595085\pi\)
\(824\) 12808.5 0.541509
\(825\) 13858.2 0.584825
\(826\) 0 0
\(827\) 6254.03 0.262967 0.131484 0.991318i \(-0.458026\pi\)
0.131484 + 0.991318i \(0.458026\pi\)
\(828\) 1190.56 0.0499695
\(829\) 9397.49 0.393713 0.196857 0.980432i \(-0.436927\pi\)
0.196857 + 0.980432i \(0.436927\pi\)
\(830\) −23521.0 −0.983647
\(831\) −8763.40 −0.365823
\(832\) 3864.18 0.161017
\(833\) 0 0
\(834\) 11105.5 0.461095
\(835\) −39662.1 −1.64379
\(836\) 51.7320 0.00214018
\(837\) −13413.9 −0.553945
\(838\) −21805.8 −0.898889
\(839\) −17384.8 −0.715362 −0.357681 0.933844i \(-0.616432\pi\)
−0.357681 + 0.933844i \(0.616432\pi\)
\(840\) 0 0
\(841\) −19860.9 −0.814340
\(842\) −32251.5 −1.32002
\(843\) 6349.59 0.259420
\(844\) −20742.5 −0.845956
\(845\) −20537.2 −0.836096
\(846\) −5592.58 −0.227278
\(847\) 0 0
\(848\) 709.476 0.0287306
\(849\) −415.799 −0.0168082
\(850\) 4413.28 0.178087
\(851\) 5550.27 0.223573
\(852\) −3644.59 −0.146551
\(853\) −32263.7 −1.29506 −0.647530 0.762040i \(-0.724198\pi\)
−0.647530 + 0.762040i \(0.724198\pi\)
\(854\) 0 0
\(855\) 48.8137 0.00195250
\(856\) 10215.9 0.407912
\(857\) −42951.1 −1.71200 −0.855999 0.516977i \(-0.827057\pi\)
−0.855999 + 0.516977i \(0.827057\pi\)
\(858\) 22010.8 0.875801
\(859\) −15702.3 −0.623698 −0.311849 0.950132i \(-0.600948\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(860\) 12208.8 0.484088
\(861\) 0 0
\(862\) −28903.0 −1.14204
\(863\) 23146.9 0.913011 0.456505 0.889721i \(-0.349101\pi\)
0.456505 + 0.889721i \(0.349101\pi\)
\(864\) −4792.33 −0.188702
\(865\) −6538.16 −0.256999
\(866\) 264.457 0.0103772
\(867\) −15263.0 −0.597876
\(868\) 0 0
\(869\) −10446.6 −0.407799
\(870\) 7154.76 0.278815
\(871\) 61577.8 2.39550
\(872\) −4458.63 −0.173152
\(873\) −14179.8 −0.549730
\(874\) −12.2379 −0.000473631 0
\(875\) 0 0
\(876\) 693.501 0.0267480
\(877\) 42380.2 1.63179 0.815893 0.578203i \(-0.196246\pi\)
0.815893 + 0.578203i \(0.196246\pi\)
\(878\) 12589.8 0.483922
\(879\) −28740.3 −1.10283
\(880\) −11028.0 −0.422449
\(881\) 10114.4 0.386791 0.193396 0.981121i \(-0.438050\pi\)
0.193396 + 0.981121i \(0.438050\pi\)
\(882\) 0 0
\(883\) −5552.09 −0.211600 −0.105800 0.994387i \(-0.533740\pi\)
−0.105800 + 0.994387i \(0.533740\pi\)
\(884\) 7009.57 0.266694
\(885\) −12121.9 −0.460422
\(886\) 8691.93 0.329584
\(887\) 14504.4 0.549054 0.274527 0.961579i \(-0.411479\pi\)
0.274527 + 0.961579i \(0.411479\pi\)
\(888\) −7238.62 −0.273550
\(889\) 0 0
\(890\) 28229.2 1.06320
\(891\) −10312.3 −0.387737
\(892\) −4067.23 −0.152669
\(893\) 57.4869 0.00215423
\(894\) 8825.12 0.330152
\(895\) −513.115 −0.0191638
\(896\) 0 0
\(897\) −5206.96 −0.193819
\(898\) 28476.9 1.05822
\(899\) −6027.18 −0.223602
\(900\) −3935.50 −0.145759
\(901\) 1286.98 0.0475866
\(902\) 10343.0 0.381801
\(903\) 0 0
\(904\) −4475.15 −0.164647
\(905\) −55043.9 −2.02179
\(906\) 1661.43 0.0609242
\(907\) −39573.3 −1.44874 −0.724372 0.689409i \(-0.757870\pi\)
−0.724372 + 0.689409i \(0.757870\pi\)
\(908\) −9646.22 −0.352556
\(909\) −18734.3 −0.683584
\(910\) 0 0
\(911\) −40575.1 −1.47565 −0.737823 0.674994i \(-0.764146\pi\)
−0.737823 + 0.674994i \(0.764146\pi\)
\(912\) 15.9606 0.000579504 0
\(913\) 40322.5 1.46164
\(914\) 23989.6 0.868168
\(915\) −19976.4 −0.721750
\(916\) 18485.4 0.666783
\(917\) 0 0
\(918\) −8693.22 −0.312548
\(919\) −14409.5 −0.517220 −0.258610 0.965982i \(-0.583264\pi\)
−0.258610 + 0.965982i \(0.583264\pi\)
\(920\) 2608.84 0.0934900
\(921\) −14816.6 −0.530103
\(922\) −5920.68 −0.211483
\(923\) −14671.9 −0.523220
\(924\) 0 0
\(925\) −18346.9 −0.652155
\(926\) −5069.94 −0.179923
\(927\) −20719.0 −0.734091
\(928\) −2153.31 −0.0761701
\(929\) −18626.7 −0.657827 −0.328913 0.944360i \(-0.606682\pi\)
−0.328913 + 0.944360i \(0.606682\pi\)
\(930\) −9523.50 −0.335793
\(931\) 0 0
\(932\) −13950.1 −0.490292
\(933\) 26014.6 0.912840
\(934\) −29751.9 −1.04231
\(935\) −20004.7 −0.699706
\(936\) −6250.72 −0.218281
\(937\) −13307.6 −0.463969 −0.231985 0.972719i \(-0.574522\pi\)
−0.231985 + 0.972719i \(0.574522\pi\)
\(938\) 0 0
\(939\) 15830.5 0.550171
\(940\) −12254.9 −0.425223
\(941\) −20348.0 −0.704917 −0.352458 0.935827i \(-0.614654\pi\)
−0.352458 + 0.935827i \(0.614654\pi\)
\(942\) −15681.0 −0.542372
\(943\) −2446.78 −0.0844942
\(944\) 3648.23 0.125784
\(945\) 0 0
\(946\) −20929.7 −0.719326
\(947\) 8864.55 0.304181 0.152090 0.988367i \(-0.451400\pi\)
0.152090 + 0.988367i \(0.451400\pi\)
\(948\) −3223.04 −0.110421
\(949\) 2791.80 0.0954961
\(950\) 40.4536 0.00138156
\(951\) −6336.50 −0.216062
\(952\) 0 0
\(953\) 48651.3 1.65369 0.826847 0.562427i \(-0.190132\pi\)
0.826847 + 0.562427i \(0.190132\pi\)
\(954\) −1147.65 −0.0389483
\(955\) −55415.0 −1.87768
\(956\) −24660.0 −0.834268
\(957\) −12265.5 −0.414302
\(958\) 10889.2 0.367237
\(959\) 0 0
\(960\) −3402.42 −0.114388
\(961\) −21768.4 −0.730703
\(962\) −29140.3 −0.976631
\(963\) −16525.3 −0.552982
\(964\) −4900.38 −0.163725
\(965\) 19839.2 0.661810
\(966\) 0 0
\(967\) −38135.4 −1.26820 −0.634101 0.773251i \(-0.718629\pi\)
−0.634101 + 0.773251i \(0.718629\pi\)
\(968\) 8257.55 0.274181
\(969\) 28.9523 0.000959836 0
\(970\) −31071.9 −1.02851
\(971\) −51160.8 −1.69086 −0.845431 0.534084i \(-0.820656\pi\)
−0.845431 + 0.534084i \(0.820656\pi\)
\(972\) 12992.5 0.428740
\(973\) 0 0
\(974\) −40930.7 −1.34651
\(975\) 17212.1 0.565363
\(976\) 6012.15 0.197176
\(977\) 46005.8 1.50650 0.753252 0.657732i \(-0.228484\pi\)
0.753252 + 0.657732i \(0.228484\pi\)
\(978\) 5268.46 0.172256
\(979\) −48393.7 −1.57985
\(980\) 0 0
\(981\) 7212.31 0.234731
\(982\) −12494.5 −0.406023
\(983\) 4371.78 0.141849 0.0709247 0.997482i \(-0.477405\pi\)
0.0709247 + 0.997482i \(0.477405\pi\)
\(984\) 3191.07 0.103382
\(985\) −34617.1 −1.11979
\(986\) −3906.07 −0.126161
\(987\) 0 0
\(988\) 64.2520 0.00206896
\(989\) 4951.20 0.159190
\(990\) 17839.0 0.572689
\(991\) 20836.2 0.667895 0.333947 0.942592i \(-0.391619\pi\)
0.333947 + 0.942592i \(0.391619\pi\)
\(992\) 2866.21 0.0917362
\(993\) 13981.1 0.446806
\(994\) 0 0
\(995\) −31034.7 −0.988809
\(996\) 12440.5 0.395775
\(997\) 16190.9 0.514315 0.257158 0.966369i \(-0.417214\pi\)
0.257158 + 0.966369i \(0.417214\pi\)
\(998\) −38174.8 −1.21082
\(999\) 36139.6 1.14455
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.x.1.8 11
7.3 odd 6 322.4.e.b.93.8 22
7.5 odd 6 322.4.e.b.277.8 yes 22
7.6 odd 2 2254.4.a.w.1.4 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.b.93.8 22 7.3 odd 6
322.4.e.b.277.8 yes 22 7.5 odd 6
2254.4.a.w.1.4 11 7.6 odd 2
2254.4.a.x.1.8 11 1.1 even 1 trivial