Properties

Label 2254.4.a.x.1.6
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 165 x^{9} + 798 x^{8} + 8769 x^{7} - 38472 x^{6} - 184213 x^{5} + 644009 x^{4} + \cdots + 2848203 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.05420\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -0.0542033 q^{3} +4.00000 q^{4} -13.0870 q^{5} -0.108407 q^{6} +8.00000 q^{8} -26.9971 q^{9} -26.1741 q^{10} -31.4054 q^{11} -0.216813 q^{12} -19.0210 q^{13} +0.709361 q^{15} +16.0000 q^{16} +73.1836 q^{17} -53.9941 q^{18} -55.6496 q^{19} -52.3481 q^{20} -62.8108 q^{22} -23.0000 q^{23} -0.433627 q^{24} +46.2704 q^{25} -38.0421 q^{26} +2.92682 q^{27} -193.443 q^{29} +1.41872 q^{30} +14.1796 q^{31} +32.0000 q^{32} +1.70228 q^{33} +146.367 q^{34} -107.988 q^{36} +343.112 q^{37} -111.299 q^{38} +1.03100 q^{39} -104.696 q^{40} -289.370 q^{41} -372.570 q^{43} -125.622 q^{44} +353.311 q^{45} -46.0000 q^{46} +33.2197 q^{47} -0.867254 q^{48} +92.5408 q^{50} -3.96679 q^{51} -76.0841 q^{52} -459.874 q^{53} +5.85364 q^{54} +411.003 q^{55} +3.01640 q^{57} -386.887 q^{58} +749.606 q^{59} +2.83744 q^{60} -4.40654 q^{61} +28.3593 q^{62} +64.0000 q^{64} +248.929 q^{65} +3.40455 q^{66} -283.350 q^{67} +292.734 q^{68} +1.24668 q^{69} -487.770 q^{71} -215.976 q^{72} +385.512 q^{73} +686.225 q^{74} -2.50801 q^{75} -222.599 q^{76} +2.06201 q^{78} +706.336 q^{79} -209.392 q^{80} +728.762 q^{81} -578.740 q^{82} +1253.54 q^{83} -957.756 q^{85} -745.140 q^{86} +10.4853 q^{87} -251.243 q^{88} +13.9601 q^{89} +706.623 q^{90} -92.0000 q^{92} -0.768584 q^{93} +66.4394 q^{94} +728.289 q^{95} -1.73451 q^{96} -256.212 q^{97} +847.853 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 22 q^{2} + 6 q^{3} + 44 q^{4} + 27 q^{5} + 12 q^{6} + 88 q^{8} + 59 q^{9} + 54 q^{10} + 56 q^{11} + 24 q^{12} + 103 q^{13} + 62 q^{15} + 176 q^{16} + 157 q^{17} + 118 q^{18} + 266 q^{19} + 108 q^{20}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −0.0542033 −0.0104314 −0.00521572 0.999986i \(-0.501660\pi\)
−0.00521572 + 0.999986i \(0.501660\pi\)
\(4\) 4.00000 0.500000
\(5\) −13.0870 −1.17054 −0.585270 0.810839i \(-0.699011\pi\)
−0.585270 + 0.810839i \(0.699011\pi\)
\(6\) −0.108407 −0.00737614
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) −26.9971 −0.999891
\(10\) −26.1741 −0.827697
\(11\) −31.4054 −0.860825 −0.430413 0.902632i \(-0.641632\pi\)
−0.430413 + 0.902632i \(0.641632\pi\)
\(12\) −0.216813 −0.00521572
\(13\) −19.0210 −0.405807 −0.202903 0.979199i \(-0.565038\pi\)
−0.202903 + 0.979199i \(0.565038\pi\)
\(14\) 0 0
\(15\) 0.709361 0.0122104
\(16\) 16.0000 0.250000
\(17\) 73.1836 1.04410 0.522048 0.852916i \(-0.325168\pi\)
0.522048 + 0.852916i \(0.325168\pi\)
\(18\) −53.9941 −0.707030
\(19\) −55.6496 −0.671942 −0.335971 0.941872i \(-0.609064\pi\)
−0.335971 + 0.941872i \(0.609064\pi\)
\(20\) −52.3481 −0.585270
\(21\) 0 0
\(22\) −62.8108 −0.608695
\(23\) −23.0000 −0.208514
\(24\) −0.433627 −0.00368807
\(25\) 46.2704 0.370163
\(26\) −38.0421 −0.286949
\(27\) 2.92682 0.0208617
\(28\) 0 0
\(29\) −193.443 −1.23867 −0.619337 0.785125i \(-0.712599\pi\)
−0.619337 + 0.785125i \(0.712599\pi\)
\(30\) 1.41872 0.00863407
\(31\) 14.1796 0.0821528 0.0410764 0.999156i \(-0.486921\pi\)
0.0410764 + 0.999156i \(0.486921\pi\)
\(32\) 32.0000 0.176777
\(33\) 1.70228 0.00897965
\(34\) 146.367 0.738287
\(35\) 0 0
\(36\) −107.988 −0.499946
\(37\) 343.112 1.52452 0.762261 0.647269i \(-0.224089\pi\)
0.762261 + 0.647269i \(0.224089\pi\)
\(38\) −111.299 −0.475135
\(39\) 1.03100 0.00423315
\(40\) −104.696 −0.413848
\(41\) −289.370 −1.10224 −0.551122 0.834425i \(-0.685800\pi\)
−0.551122 + 0.834425i \(0.685800\pi\)
\(42\) 0 0
\(43\) −372.570 −1.32131 −0.660656 0.750689i \(-0.729722\pi\)
−0.660656 + 0.750689i \(0.729722\pi\)
\(44\) −125.622 −0.430413
\(45\) 353.311 1.17041
\(46\) −46.0000 −0.147442
\(47\) 33.2197 0.103098 0.0515489 0.998670i \(-0.483584\pi\)
0.0515489 + 0.998670i \(0.483584\pi\)
\(48\) −0.867254 −0.00260786
\(49\) 0 0
\(50\) 92.5408 0.261745
\(51\) −3.96679 −0.0108914
\(52\) −76.0841 −0.202903
\(53\) −459.874 −1.19186 −0.595929 0.803037i \(-0.703216\pi\)
−0.595929 + 0.803037i \(0.703216\pi\)
\(54\) 5.85364 0.0147515
\(55\) 411.003 1.00763
\(56\) 0 0
\(57\) 3.01640 0.00700933
\(58\) −386.887 −0.875875
\(59\) 749.606 1.65407 0.827037 0.562148i \(-0.190025\pi\)
0.827037 + 0.562148i \(0.190025\pi\)
\(60\) 2.83744 0.00610521
\(61\) −4.40654 −0.00924918 −0.00462459 0.999989i \(-0.501472\pi\)
−0.00462459 + 0.999989i \(0.501472\pi\)
\(62\) 28.3593 0.0580908
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 248.929 0.475013
\(66\) 3.40455 0.00634957
\(67\) −283.350 −0.516667 −0.258334 0.966056i \(-0.583173\pi\)
−0.258334 + 0.966056i \(0.583173\pi\)
\(68\) 292.734 0.522048
\(69\) 1.24668 0.00217511
\(70\) 0 0
\(71\) −487.770 −0.815319 −0.407659 0.913134i \(-0.633655\pi\)
−0.407659 + 0.913134i \(0.633655\pi\)
\(72\) −215.976 −0.353515
\(73\) 385.512 0.618093 0.309046 0.951047i \(-0.399990\pi\)
0.309046 + 0.951047i \(0.399990\pi\)
\(74\) 686.225 1.07800
\(75\) −2.50801 −0.00386133
\(76\) −222.599 −0.335971
\(77\) 0 0
\(78\) 2.06201 0.00299329
\(79\) 706.336 1.00594 0.502969 0.864305i \(-0.332241\pi\)
0.502969 + 0.864305i \(0.332241\pi\)
\(80\) −209.392 −0.292635
\(81\) 728.762 0.999674
\(82\) −578.740 −0.779404
\(83\) 1253.54 1.65775 0.828877 0.559431i \(-0.188980\pi\)
0.828877 + 0.559431i \(0.188980\pi\)
\(84\) 0 0
\(85\) −957.756 −1.22216
\(86\) −745.140 −0.934309
\(87\) 10.4853 0.0129212
\(88\) −251.243 −0.304348
\(89\) 13.9601 0.0166266 0.00831331 0.999965i \(-0.497354\pi\)
0.00831331 + 0.999965i \(0.497354\pi\)
\(90\) 706.623 0.827606
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) −0.768584 −0.000856972 0
\(94\) 66.4394 0.0729011
\(95\) 728.289 0.786535
\(96\) −1.73451 −0.00184404
\(97\) −256.212 −0.268190 −0.134095 0.990969i \(-0.542813\pi\)
−0.134095 + 0.990969i \(0.542813\pi\)
\(98\) 0 0
\(99\) 847.853 0.860732
\(100\) 185.082 0.185082
\(101\) 1627.32 1.60321 0.801606 0.597853i \(-0.203979\pi\)
0.801606 + 0.597853i \(0.203979\pi\)
\(102\) −7.93359 −0.00770140
\(103\) −57.6098 −0.0551113 −0.0275557 0.999620i \(-0.508772\pi\)
−0.0275557 + 0.999620i \(0.508772\pi\)
\(104\) −152.168 −0.143474
\(105\) 0 0
\(106\) −919.747 −0.842771
\(107\) −752.393 −0.679781 −0.339890 0.940465i \(-0.610390\pi\)
−0.339890 + 0.940465i \(0.610390\pi\)
\(108\) 11.7073 0.0104309
\(109\) −1403.77 −1.23355 −0.616776 0.787139i \(-0.711562\pi\)
−0.616776 + 0.787139i \(0.711562\pi\)
\(110\) 822.006 0.712502
\(111\) −18.5978 −0.0159030
\(112\) 0 0
\(113\) 1791.53 1.49144 0.745721 0.666258i \(-0.232105\pi\)
0.745721 + 0.666258i \(0.232105\pi\)
\(114\) 6.03279 0.00495634
\(115\) 301.002 0.244074
\(116\) −773.774 −0.619337
\(117\) 513.512 0.405762
\(118\) 1499.21 1.16961
\(119\) 0 0
\(120\) 5.67489 0.00431703
\(121\) −344.702 −0.258980
\(122\) −8.81309 −0.00654016
\(123\) 15.6848 0.0114980
\(124\) 56.7185 0.0410764
\(125\) 1030.34 0.737249
\(126\) 0 0
\(127\) 2170.48 1.51653 0.758264 0.651947i \(-0.226048\pi\)
0.758264 + 0.651947i \(0.226048\pi\)
\(128\) 128.000 0.0883883
\(129\) 20.1945 0.0137832
\(130\) 497.858 0.335885
\(131\) 2309.83 1.54054 0.770269 0.637720i \(-0.220122\pi\)
0.770269 + 0.637720i \(0.220122\pi\)
\(132\) 6.80911 0.00448982
\(133\) 0 0
\(134\) −566.700 −0.365339
\(135\) −38.3034 −0.0244195
\(136\) 585.469 0.369144
\(137\) −1606.60 −1.00191 −0.500954 0.865474i \(-0.667017\pi\)
−0.500954 + 0.865474i \(0.667017\pi\)
\(138\) 2.49335 0.00153803
\(139\) −840.040 −0.512599 −0.256300 0.966597i \(-0.582503\pi\)
−0.256300 + 0.966597i \(0.582503\pi\)
\(140\) 0 0
\(141\) −1.80062 −0.00107546
\(142\) −975.540 −0.576517
\(143\) 597.363 0.349329
\(144\) −431.953 −0.249973
\(145\) 2531.60 1.44992
\(146\) 771.024 0.437058
\(147\) 0 0
\(148\) 1372.45 0.762261
\(149\) 3553.48 1.95377 0.976886 0.213759i \(-0.0685706\pi\)
0.976886 + 0.213759i \(0.0685706\pi\)
\(150\) −5.01602 −0.00273037
\(151\) 1201.08 0.647303 0.323651 0.946176i \(-0.395090\pi\)
0.323651 + 0.946176i \(0.395090\pi\)
\(152\) −445.197 −0.237567
\(153\) −1975.74 −1.04398
\(154\) 0 0
\(155\) −185.569 −0.0961631
\(156\) 4.12401 0.00211657
\(157\) −787.465 −0.400297 −0.200148 0.979766i \(-0.564142\pi\)
−0.200148 + 0.979766i \(0.564142\pi\)
\(158\) 1412.67 0.711305
\(159\) 24.9267 0.0124328
\(160\) −418.785 −0.206924
\(161\) 0 0
\(162\) 1457.52 0.706876
\(163\) 1779.91 0.855297 0.427649 0.903945i \(-0.359342\pi\)
0.427649 + 0.903945i \(0.359342\pi\)
\(164\) −1157.48 −0.551122
\(165\) −22.2777 −0.0105110
\(166\) 2507.07 1.17221
\(167\) −1493.18 −0.691892 −0.345946 0.938254i \(-0.612442\pi\)
−0.345946 + 0.938254i \(0.612442\pi\)
\(168\) 0 0
\(169\) −1835.20 −0.835321
\(170\) −1915.51 −0.864194
\(171\) 1502.38 0.671869
\(172\) −1490.28 −0.660656
\(173\) 3992.74 1.75470 0.877349 0.479854i \(-0.159310\pi\)
0.877349 + 0.479854i \(0.159310\pi\)
\(174\) 20.9706 0.00913664
\(175\) 0 0
\(176\) −502.486 −0.215206
\(177\) −40.6311 −0.0172544
\(178\) 27.9202 0.0117568
\(179\) 102.217 0.0426818 0.0213409 0.999772i \(-0.493206\pi\)
0.0213409 + 0.999772i \(0.493206\pi\)
\(180\) 1413.25 0.585206
\(181\) 2286.03 0.938781 0.469391 0.882991i \(-0.344474\pi\)
0.469391 + 0.882991i \(0.344474\pi\)
\(182\) 0 0
\(183\) 0.238849 9.64823e−5 0
\(184\) −184.000 −0.0737210
\(185\) −4490.32 −1.78451
\(186\) −1.53717 −0.000605971 0
\(187\) −2298.36 −0.898784
\(188\) 132.879 0.0515489
\(189\) 0 0
\(190\) 1456.58 0.556164
\(191\) −3303.96 −1.25165 −0.625827 0.779962i \(-0.715239\pi\)
−0.625827 + 0.779962i \(0.715239\pi\)
\(192\) −3.46901 −0.00130393
\(193\) 1552.55 0.579041 0.289520 0.957172i \(-0.406504\pi\)
0.289520 + 0.957172i \(0.406504\pi\)
\(194\) −512.424 −0.189639
\(195\) −13.4928 −0.00495507
\(196\) 0 0
\(197\) −4545.08 −1.64378 −0.821888 0.569649i \(-0.807079\pi\)
−0.821888 + 0.569649i \(0.807079\pi\)
\(198\) 1695.71 0.608629
\(199\) −3538.22 −1.26039 −0.630195 0.776437i \(-0.717025\pi\)
−0.630195 + 0.776437i \(0.717025\pi\)
\(200\) 370.163 0.130872
\(201\) 15.3585 0.00538958
\(202\) 3254.64 1.13364
\(203\) 0 0
\(204\) −15.8672 −0.00544571
\(205\) 3786.99 1.29022
\(206\) −115.220 −0.0389696
\(207\) 620.932 0.208492
\(208\) −304.337 −0.101452
\(209\) 1747.70 0.578425
\(210\) 0 0
\(211\) 1930.46 0.629851 0.314925 0.949116i \(-0.398020\pi\)
0.314925 + 0.949116i \(0.398020\pi\)
\(212\) −1839.49 −0.595929
\(213\) 26.4388 0.00850495
\(214\) −1504.79 −0.480678
\(215\) 4875.84 1.54665
\(216\) 23.4146 0.00737574
\(217\) 0 0
\(218\) −2807.55 −0.872253
\(219\) −20.8960 −0.00644760
\(220\) 1644.01 0.503815
\(221\) −1392.03 −0.423701
\(222\) −37.1957 −0.0112451
\(223\) −3600.95 −1.08133 −0.540667 0.841236i \(-0.681828\pi\)
−0.540667 + 0.841236i \(0.681828\pi\)
\(224\) 0 0
\(225\) −1249.16 −0.370123
\(226\) 3583.06 1.05461
\(227\) 3762.62 1.10015 0.550075 0.835115i \(-0.314599\pi\)
0.550075 + 0.835115i \(0.314599\pi\)
\(228\) 12.0656 0.00350466
\(229\) −1796.42 −0.518388 −0.259194 0.965825i \(-0.583457\pi\)
−0.259194 + 0.965825i \(0.583457\pi\)
\(230\) 602.003 0.172587
\(231\) 0 0
\(232\) −1547.55 −0.437937
\(233\) 4300.36 1.20912 0.604562 0.796558i \(-0.293348\pi\)
0.604562 + 0.796558i \(0.293348\pi\)
\(234\) 1027.02 0.286917
\(235\) −434.747 −0.120680
\(236\) 2998.42 0.827037
\(237\) −38.2858 −0.0104934
\(238\) 0 0
\(239\) −3512.97 −0.950775 −0.475388 0.879776i \(-0.657692\pi\)
−0.475388 + 0.879776i \(0.657692\pi\)
\(240\) 11.3498 0.00305260
\(241\) −28.2210 −0.00754305 −0.00377152 0.999993i \(-0.501201\pi\)
−0.00377152 + 0.999993i \(0.501201\pi\)
\(242\) −689.404 −0.183126
\(243\) −118.526 −0.0312898
\(244\) −17.6262 −0.00462459
\(245\) 0 0
\(246\) 31.3696 0.00813030
\(247\) 1058.51 0.272679
\(248\) 113.437 0.0290454
\(249\) −67.9459 −0.0172928
\(250\) 2060.67 0.521314
\(251\) −2488.66 −0.625828 −0.312914 0.949781i \(-0.601305\pi\)
−0.312914 + 0.949781i \(0.601305\pi\)
\(252\) 0 0
\(253\) 722.324 0.179494
\(254\) 4340.96 1.07235
\(255\) 51.9136 0.0127488
\(256\) 256.000 0.0625000
\(257\) −2331.33 −0.565854 −0.282927 0.959141i \(-0.591305\pi\)
−0.282927 + 0.959141i \(0.591305\pi\)
\(258\) 40.3891 0.00974618
\(259\) 0 0
\(260\) 995.715 0.237506
\(261\) 5222.41 1.23854
\(262\) 4619.65 1.08932
\(263\) 3559.90 0.834650 0.417325 0.908757i \(-0.362968\pi\)
0.417325 + 0.908757i \(0.362968\pi\)
\(264\) 13.6182 0.00317478
\(265\) 6018.38 1.39512
\(266\) 0 0
\(267\) −0.756685 −0.000173440 0
\(268\) −1133.40 −0.258334
\(269\) −3397.67 −0.770110 −0.385055 0.922894i \(-0.625818\pi\)
−0.385055 + 0.922894i \(0.625818\pi\)
\(270\) −76.6068 −0.0172672
\(271\) 4530.79 1.01559 0.507797 0.861477i \(-0.330460\pi\)
0.507797 + 0.861477i \(0.330460\pi\)
\(272\) 1170.94 0.261024
\(273\) 0 0
\(274\) −3213.21 −0.708456
\(275\) −1453.14 −0.318646
\(276\) 4.98671 0.00108755
\(277\) 4404.10 0.955295 0.477648 0.878552i \(-0.341490\pi\)
0.477648 + 0.878552i \(0.341490\pi\)
\(278\) −1680.08 −0.362462
\(279\) −382.808 −0.0821439
\(280\) 0 0
\(281\) 1754.73 0.372520 0.186260 0.982500i \(-0.440363\pi\)
0.186260 + 0.982500i \(0.440363\pi\)
\(282\) −3.60124 −0.000760463 0
\(283\) 2164.05 0.454556 0.227278 0.973830i \(-0.427017\pi\)
0.227278 + 0.973830i \(0.427017\pi\)
\(284\) −1951.08 −0.407659
\(285\) −39.4757 −0.00820469
\(286\) 1194.73 0.247013
\(287\) 0 0
\(288\) −863.906 −0.176757
\(289\) 442.836 0.0901356
\(290\) 5063.20 1.02525
\(291\) 13.8876 0.00279760
\(292\) 1542.05 0.309046
\(293\) 5199.98 1.03681 0.518407 0.855134i \(-0.326525\pi\)
0.518407 + 0.855134i \(0.326525\pi\)
\(294\) 0 0
\(295\) −9810.11 −1.93616
\(296\) 2744.90 0.539000
\(297\) −91.9179 −0.0179583
\(298\) 7106.95 1.38153
\(299\) 437.484 0.0846165
\(300\) −10.0320 −0.00193067
\(301\) 0 0
\(302\) 2402.16 0.457712
\(303\) −88.2062 −0.0167238
\(304\) −890.394 −0.167986
\(305\) 57.6686 0.0108265
\(306\) −3951.48 −0.738207
\(307\) 2568.71 0.477538 0.238769 0.971076i \(-0.423256\pi\)
0.238769 + 0.971076i \(0.423256\pi\)
\(308\) 0 0
\(309\) 3.12265 0.000574890 0
\(310\) −371.139 −0.0679976
\(311\) −2161.40 −0.394088 −0.197044 0.980395i \(-0.563134\pi\)
−0.197044 + 0.980395i \(0.563134\pi\)
\(312\) 8.24803 0.00149664
\(313\) −610.293 −0.110210 −0.0551051 0.998481i \(-0.517549\pi\)
−0.0551051 + 0.998481i \(0.517549\pi\)
\(314\) −1574.93 −0.283052
\(315\) 0 0
\(316\) 2825.34 0.502969
\(317\) 1498.64 0.265527 0.132763 0.991148i \(-0.457615\pi\)
0.132763 + 0.991148i \(0.457615\pi\)
\(318\) 49.8534 0.00879132
\(319\) 6075.17 1.06628
\(320\) −837.570 −0.146317
\(321\) 40.7822 0.00709109
\(322\) 0 0
\(323\) −4072.64 −0.701572
\(324\) 2915.05 0.499837
\(325\) −880.110 −0.150215
\(326\) 3559.82 0.604786
\(327\) 76.0893 0.0128677
\(328\) −2314.96 −0.389702
\(329\) 0 0
\(330\) −44.5555 −0.00743242
\(331\) −1272.10 −0.211242 −0.105621 0.994406i \(-0.533683\pi\)
−0.105621 + 0.994406i \(0.533683\pi\)
\(332\) 5014.15 0.828877
\(333\) −9263.03 −1.52436
\(334\) −2986.37 −0.489242
\(335\) 3708.21 0.604780
\(336\) 0 0
\(337\) 3190.71 0.515754 0.257877 0.966178i \(-0.416977\pi\)
0.257877 + 0.966178i \(0.416977\pi\)
\(338\) −3670.40 −0.590661
\(339\) −97.1069 −0.0155579
\(340\) −3831.02 −0.611078
\(341\) −445.317 −0.0707192
\(342\) 3004.75 0.475083
\(343\) 0 0
\(344\) −2980.56 −0.467154
\(345\) −16.3153 −0.00254605
\(346\) 7985.49 1.24076
\(347\) −1242.97 −0.192294 −0.0961472 0.995367i \(-0.530652\pi\)
−0.0961472 + 0.995367i \(0.530652\pi\)
\(348\) 41.9411 0.00646058
\(349\) 1839.96 0.282209 0.141105 0.989995i \(-0.454935\pi\)
0.141105 + 0.989995i \(0.454935\pi\)
\(350\) 0 0
\(351\) −55.6712 −0.00846583
\(352\) −1004.97 −0.152174
\(353\) 12687.6 1.91301 0.956505 0.291716i \(-0.0942262\pi\)
0.956505 + 0.291716i \(0.0942262\pi\)
\(354\) −81.2623 −0.0122007
\(355\) 6383.46 0.954363
\(356\) 55.8405 0.00831331
\(357\) 0 0
\(358\) 204.433 0.0301806
\(359\) −10645.9 −1.56510 −0.782548 0.622591i \(-0.786080\pi\)
−0.782548 + 0.622591i \(0.786080\pi\)
\(360\) 2826.49 0.413803
\(361\) −3762.12 −0.548494
\(362\) 4572.06 0.663819
\(363\) 18.6840 0.00270153
\(364\) 0 0
\(365\) −5045.21 −0.723502
\(366\) 0.477699 6.82233e−5 0
\(367\) 8787.22 1.24983 0.624917 0.780691i \(-0.285133\pi\)
0.624917 + 0.780691i \(0.285133\pi\)
\(368\) −368.000 −0.0521286
\(369\) 7812.14 1.10212
\(370\) −8980.65 −1.26184
\(371\) 0 0
\(372\) −3.07433 −0.000428486 0
\(373\) 8283.03 1.14981 0.574905 0.818220i \(-0.305039\pi\)
0.574905 + 0.818220i \(0.305039\pi\)
\(374\) −4596.72 −0.635536
\(375\) −55.8477 −0.00769057
\(376\) 265.758 0.0364505
\(377\) 3679.50 0.502662
\(378\) 0 0
\(379\) −5492.70 −0.744435 −0.372218 0.928146i \(-0.621402\pi\)
−0.372218 + 0.928146i \(0.621402\pi\)
\(380\) 2913.15 0.393268
\(381\) −117.647 −0.0158196
\(382\) −6607.92 −0.885053
\(383\) 8652.83 1.15441 0.577205 0.816599i \(-0.304143\pi\)
0.577205 + 0.816599i \(0.304143\pi\)
\(384\) −6.93803 −0.000922018 0
\(385\) 0 0
\(386\) 3105.10 0.409444
\(387\) 10058.3 1.32117
\(388\) −1024.85 −0.134095
\(389\) 949.379 0.123741 0.0618707 0.998084i \(-0.480293\pi\)
0.0618707 + 0.998084i \(0.480293\pi\)
\(390\) −26.9856 −0.00350376
\(391\) −1683.22 −0.217709
\(392\) 0 0
\(393\) −125.200 −0.0160700
\(394\) −9090.17 −1.16232
\(395\) −9243.84 −1.17749
\(396\) 3391.41 0.430366
\(397\) −3126.90 −0.395302 −0.197651 0.980272i \(-0.563331\pi\)
−0.197651 + 0.980272i \(0.563331\pi\)
\(398\) −7076.43 −0.891230
\(399\) 0 0
\(400\) 740.326 0.0925408
\(401\) −1675.24 −0.208622 −0.104311 0.994545i \(-0.533264\pi\)
−0.104311 + 0.994545i \(0.533264\pi\)
\(402\) 30.7170 0.00381101
\(403\) −269.711 −0.0333382
\(404\) 6509.28 0.801606
\(405\) −9537.33 −1.17016
\(406\) 0 0
\(407\) −10775.6 −1.31235
\(408\) −31.7344 −0.00385070
\(409\) −8951.41 −1.08220 −0.541099 0.840959i \(-0.681991\pi\)
−0.541099 + 0.840959i \(0.681991\pi\)
\(410\) 7573.98 0.912323
\(411\) 87.0833 0.0104513
\(412\) −230.439 −0.0275557
\(413\) 0 0
\(414\) 1241.86 0.147426
\(415\) −16405.1 −1.94047
\(416\) −608.673 −0.0717371
\(417\) 45.5330 0.00534715
\(418\) 3495.40 0.409008
\(419\) −3811.27 −0.444375 −0.222187 0.975004i \(-0.571320\pi\)
−0.222187 + 0.975004i \(0.571320\pi\)
\(420\) 0 0
\(421\) −3830.34 −0.443419 −0.221710 0.975113i \(-0.571164\pi\)
−0.221710 + 0.975113i \(0.571164\pi\)
\(422\) 3860.93 0.445372
\(423\) −896.835 −0.103086
\(424\) −3678.99 −0.421386
\(425\) 3386.23 0.386486
\(426\) 52.8775 0.00601391
\(427\) 0 0
\(428\) −3009.57 −0.339890
\(429\) −32.3791 −0.00364400
\(430\) 9751.67 1.09365
\(431\) 8756.31 0.978600 0.489300 0.872116i \(-0.337252\pi\)
0.489300 + 0.872116i \(0.337252\pi\)
\(432\) 46.8291 0.00521544
\(433\) 260.904 0.0289567 0.0144783 0.999895i \(-0.495391\pi\)
0.0144783 + 0.999895i \(0.495391\pi\)
\(434\) 0 0
\(435\) −137.221 −0.0151247
\(436\) −5615.10 −0.616776
\(437\) 1279.94 0.140110
\(438\) −41.7921 −0.00455914
\(439\) −12907.1 −1.40324 −0.701619 0.712553i \(-0.747539\pi\)
−0.701619 + 0.712553i \(0.747539\pi\)
\(440\) 3288.03 0.356251
\(441\) 0 0
\(442\) −2784.05 −0.299602
\(443\) −388.326 −0.0416476 −0.0208238 0.999783i \(-0.506629\pi\)
−0.0208238 + 0.999783i \(0.506629\pi\)
\(444\) −74.3914 −0.00795148
\(445\) −182.697 −0.0194621
\(446\) −7201.91 −0.764619
\(447\) −192.610 −0.0203807
\(448\) 0 0
\(449\) −4058.85 −0.426612 −0.213306 0.976985i \(-0.568423\pi\)
−0.213306 + 0.976985i \(0.568423\pi\)
\(450\) −2498.33 −0.261716
\(451\) 9087.77 0.948839
\(452\) 7166.12 0.745721
\(453\) −65.1027 −0.00675230
\(454\) 7525.25 0.777923
\(455\) 0 0
\(456\) 24.1312 0.00247817
\(457\) 564.408 0.0577722 0.0288861 0.999583i \(-0.490804\pi\)
0.0288861 + 0.999583i \(0.490804\pi\)
\(458\) −3592.84 −0.366556
\(459\) 214.195 0.0217817
\(460\) 1204.01 0.122037
\(461\) −12838.4 −1.29706 −0.648528 0.761191i \(-0.724615\pi\)
−0.648528 + 0.761191i \(0.724615\pi\)
\(462\) 0 0
\(463\) −6743.25 −0.676858 −0.338429 0.940992i \(-0.609896\pi\)
−0.338429 + 0.940992i \(0.609896\pi\)
\(464\) −3095.10 −0.309669
\(465\) 10.0585 0.00100312
\(466\) 8600.72 0.854980
\(467\) 4063.32 0.402630 0.201315 0.979527i \(-0.435479\pi\)
0.201315 + 0.979527i \(0.435479\pi\)
\(468\) 2054.05 0.202881
\(469\) 0 0
\(470\) −869.495 −0.0853336
\(471\) 42.6832 0.00417567
\(472\) 5996.84 0.584803
\(473\) 11700.7 1.13742
\(474\) −76.5716 −0.00741993
\(475\) −2574.93 −0.248728
\(476\) 0 0
\(477\) 12415.2 1.19173
\(478\) −7025.94 −0.672300
\(479\) −8803.20 −0.839726 −0.419863 0.907588i \(-0.637922\pi\)
−0.419863 + 0.907588i \(0.637922\pi\)
\(480\) 22.6995 0.00215852
\(481\) −6526.35 −0.618661
\(482\) −56.4420 −0.00533374
\(483\) 0 0
\(484\) −1378.81 −0.129490
\(485\) 3353.06 0.313927
\(486\) −237.051 −0.0221252
\(487\) −14124.4 −1.31425 −0.657125 0.753782i \(-0.728228\pi\)
−0.657125 + 0.753782i \(0.728228\pi\)
\(488\) −35.2523 −0.00327008
\(489\) −96.4772 −0.00892198
\(490\) 0 0
\(491\) −10425.2 −0.958211 −0.479106 0.877757i \(-0.659039\pi\)
−0.479106 + 0.877757i \(0.659039\pi\)
\(492\) 62.7393 0.00574899
\(493\) −14156.9 −1.29329
\(494\) 2117.03 0.192813
\(495\) −11095.9 −1.00752
\(496\) 226.874 0.0205382
\(497\) 0 0
\(498\) −135.892 −0.0122278
\(499\) −13995.6 −1.25557 −0.627784 0.778388i \(-0.716038\pi\)
−0.627784 + 0.778388i \(0.716038\pi\)
\(500\) 4121.35 0.368625
\(501\) 80.9355 0.00721743
\(502\) −4977.32 −0.442527
\(503\) −18506.9 −1.64052 −0.820259 0.571993i \(-0.806171\pi\)
−0.820259 + 0.571993i \(0.806171\pi\)
\(504\) 0 0
\(505\) −21296.8 −1.87662
\(506\) 1444.65 0.126922
\(507\) 99.4740 0.00871360
\(508\) 8681.93 0.758264
\(509\) 22823.6 1.98750 0.993750 0.111632i \(-0.0356078\pi\)
0.993750 + 0.111632i \(0.0356078\pi\)
\(510\) 103.827 0.00901479
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −162.877 −0.0140179
\(514\) −4662.66 −0.400119
\(515\) 753.941 0.0645100
\(516\) 80.7782 0.00689159
\(517\) −1043.28 −0.0887491
\(518\) 0 0
\(519\) −216.420 −0.0183040
\(520\) 1991.43 0.167942
\(521\) −10632.1 −0.894048 −0.447024 0.894522i \(-0.647516\pi\)
−0.447024 + 0.894522i \(0.647516\pi\)
\(522\) 10444.8 0.875780
\(523\) 21476.3 1.79559 0.897793 0.440417i \(-0.145170\pi\)
0.897793 + 0.440417i \(0.145170\pi\)
\(524\) 9239.30 0.770269
\(525\) 0 0
\(526\) 7119.80 0.590187
\(527\) 1037.72 0.0857754
\(528\) 27.2364 0.00224491
\(529\) 529.000 0.0434783
\(530\) 12036.8 0.986497
\(531\) −20237.1 −1.65389
\(532\) 0 0
\(533\) 5504.11 0.447298
\(534\) −1.51337 −0.000122640 0
\(535\) 9846.58 0.795710
\(536\) −2266.80 −0.182670
\(537\) −5.54049 −0.000445232 0
\(538\) −6795.34 −0.544550
\(539\) 0 0
\(540\) −153.214 −0.0122097
\(541\) 13368.5 1.06239 0.531197 0.847248i \(-0.321742\pi\)
0.531197 + 0.847248i \(0.321742\pi\)
\(542\) 9061.58 0.718133
\(543\) −123.911 −0.00979284
\(544\) 2341.87 0.184572
\(545\) 18371.2 1.44392
\(546\) 0 0
\(547\) 5937.19 0.464088 0.232044 0.972705i \(-0.425459\pi\)
0.232044 + 0.972705i \(0.425459\pi\)
\(548\) −6426.41 −0.500954
\(549\) 118.964 0.00924817
\(550\) −2906.28 −0.225317
\(551\) 10765.1 0.832318
\(552\) 9.97342 0.000769016 0
\(553\) 0 0
\(554\) 8808.20 0.675496
\(555\) 243.391 0.0186151
\(556\) −3360.16 −0.256300
\(557\) 13625.3 1.03649 0.518245 0.855232i \(-0.326586\pi\)
0.518245 + 0.855232i \(0.326586\pi\)
\(558\) −765.617 −0.0580845
\(559\) 7086.67 0.536197
\(560\) 0 0
\(561\) 124.579 0.00937561
\(562\) 3509.45 0.263411
\(563\) 24917.9 1.86530 0.932652 0.360777i \(-0.117488\pi\)
0.932652 + 0.360777i \(0.117488\pi\)
\(564\) −7.20248 −0.000537729 0
\(565\) −23445.8 −1.74579
\(566\) 4328.10 0.321420
\(567\) 0 0
\(568\) −3902.16 −0.288259
\(569\) 8188.17 0.603279 0.301640 0.953422i \(-0.402466\pi\)
0.301640 + 0.953422i \(0.402466\pi\)
\(570\) −78.9514 −0.00580159
\(571\) 6038.51 0.442563 0.221282 0.975210i \(-0.428976\pi\)
0.221282 + 0.975210i \(0.428976\pi\)
\(572\) 2389.45 0.174664
\(573\) 179.086 0.0130566
\(574\) 0 0
\(575\) −1064.22 −0.0771843
\(576\) −1727.81 −0.124986
\(577\) 17532.8 1.26499 0.632495 0.774564i \(-0.282031\pi\)
0.632495 + 0.774564i \(0.282031\pi\)
\(578\) 885.672 0.0637355
\(579\) −84.1533 −0.00604023
\(580\) 10126.4 0.724959
\(581\) 0 0
\(582\) 27.7751 0.00197821
\(583\) 14442.5 1.02598
\(584\) 3084.10 0.218529
\(585\) −6720.35 −0.474961
\(586\) 10400.0 0.733138
\(587\) −9011.11 −0.633608 −0.316804 0.948491i \(-0.602610\pi\)
−0.316804 + 0.948491i \(0.602610\pi\)
\(588\) 0 0
\(589\) −789.092 −0.0552020
\(590\) −19620.2 −1.36907
\(591\) 246.359 0.0171469
\(592\) 5489.80 0.381131
\(593\) −9716.20 −0.672844 −0.336422 0.941711i \(-0.609217\pi\)
−0.336422 + 0.941711i \(0.609217\pi\)
\(594\) −183.836 −0.0126984
\(595\) 0 0
\(596\) 14213.9 0.976886
\(597\) 191.783 0.0131477
\(598\) 874.968 0.0598329
\(599\) 7809.19 0.532679 0.266340 0.963879i \(-0.414186\pi\)
0.266340 + 0.963879i \(0.414186\pi\)
\(600\) −20.0641 −0.00136519
\(601\) −13546.6 −0.919428 −0.459714 0.888067i \(-0.652048\pi\)
−0.459714 + 0.888067i \(0.652048\pi\)
\(602\) 0 0
\(603\) 7649.62 0.516611
\(604\) 4804.33 0.323651
\(605\) 4511.13 0.303146
\(606\) −176.412 −0.0118255
\(607\) −9931.68 −0.664110 −0.332055 0.943260i \(-0.607742\pi\)
−0.332055 + 0.943260i \(0.607742\pi\)
\(608\) −1780.79 −0.118784
\(609\) 0 0
\(610\) 115.337 0.00765551
\(611\) −631.873 −0.0418377
\(612\) −7902.97 −0.521991
\(613\) 10142.9 0.668299 0.334149 0.942520i \(-0.391551\pi\)
0.334149 + 0.942520i \(0.391551\pi\)
\(614\) 5137.42 0.337670
\(615\) −205.268 −0.0134588
\(616\) 0 0
\(617\) 30295.3 1.97673 0.988366 0.152091i \(-0.0486008\pi\)
0.988366 + 0.152091i \(0.0486008\pi\)
\(618\) 6.24529 0.000406509 0
\(619\) −4060.58 −0.263665 −0.131832 0.991272i \(-0.542086\pi\)
−0.131832 + 0.991272i \(0.542086\pi\)
\(620\) −742.277 −0.0480816
\(621\) −67.3169 −0.00434997
\(622\) −4322.79 −0.278663
\(623\) 0 0
\(624\) 16.4961 0.00105829
\(625\) −19267.8 −1.23314
\(626\) −1220.59 −0.0779303
\(627\) −94.7311 −0.00603380
\(628\) −3149.86 −0.200148
\(629\) 25110.2 1.59175
\(630\) 0 0
\(631\) −2461.05 −0.155266 −0.0776331 0.996982i \(-0.524736\pi\)
−0.0776331 + 0.996982i \(0.524736\pi\)
\(632\) 5650.69 0.355652
\(633\) −104.638 −0.00657025
\(634\) 2997.28 0.187756
\(635\) −28405.2 −1.77516
\(636\) 99.7068 0.00621640
\(637\) 0 0
\(638\) 12150.3 0.753975
\(639\) 13168.4 0.815230
\(640\) −1675.14 −0.103462
\(641\) 2333.86 0.143810 0.0719048 0.997412i \(-0.477092\pi\)
0.0719048 + 0.997412i \(0.477092\pi\)
\(642\) 81.5644 0.00501416
\(643\) −15498.1 −0.950524 −0.475262 0.879844i \(-0.657647\pi\)
−0.475262 + 0.879844i \(0.657647\pi\)
\(644\) 0 0
\(645\) −264.287 −0.0161338
\(646\) −8145.28 −0.496086
\(647\) −23277.1 −1.41440 −0.707199 0.707014i \(-0.750042\pi\)
−0.707199 + 0.707014i \(0.750042\pi\)
\(648\) 5830.10 0.353438
\(649\) −23541.6 −1.42387
\(650\) −1760.22 −0.106218
\(651\) 0 0
\(652\) 7119.65 0.427649
\(653\) 10483.8 0.628276 0.314138 0.949377i \(-0.398285\pi\)
0.314138 + 0.949377i \(0.398285\pi\)
\(654\) 152.179 0.00909886
\(655\) −30228.8 −1.80326
\(656\) −4629.92 −0.275561
\(657\) −10407.7 −0.618026
\(658\) 0 0
\(659\) −11847.5 −0.700323 −0.350162 0.936689i \(-0.613873\pi\)
−0.350162 + 0.936689i \(0.613873\pi\)
\(660\) −89.1110 −0.00525552
\(661\) −19718.1 −1.16028 −0.580139 0.814518i \(-0.697002\pi\)
−0.580139 + 0.814518i \(0.697002\pi\)
\(662\) −2544.20 −0.149370
\(663\) 75.4525 0.00441981
\(664\) 10028.3 0.586105
\(665\) 0 0
\(666\) −18526.1 −1.07788
\(667\) 4449.20 0.258281
\(668\) −5972.73 −0.345946
\(669\) 195.184 0.0112799
\(670\) 7416.42 0.427644
\(671\) 138.389 0.00796193
\(672\) 0 0
\(673\) −19678.2 −1.12710 −0.563550 0.826082i \(-0.690565\pi\)
−0.563550 + 0.826082i \(0.690565\pi\)
\(674\) 6381.42 0.364693
\(675\) 135.425 0.00772225
\(676\) −7340.80 −0.417661
\(677\) −13907.3 −0.789512 −0.394756 0.918786i \(-0.629171\pi\)
−0.394756 + 0.918786i \(0.629171\pi\)
\(678\) −194.214 −0.0110011
\(679\) 0 0
\(680\) −7662.05 −0.432097
\(681\) −203.947 −0.0114761
\(682\) −890.634 −0.0500061
\(683\) −124.832 −0.00699348 −0.00349674 0.999994i \(-0.501113\pi\)
−0.00349674 + 0.999994i \(0.501113\pi\)
\(684\) 6009.51 0.335935
\(685\) 21025.7 1.17277
\(686\) 0 0
\(687\) 97.3721 0.00540753
\(688\) −5961.12 −0.330328
\(689\) 8747.27 0.483664
\(690\) −32.6306 −0.00180033
\(691\) 27514.2 1.51475 0.757373 0.652983i \(-0.226483\pi\)
0.757373 + 0.652983i \(0.226483\pi\)
\(692\) 15971.0 0.877349
\(693\) 0 0
\(694\) −2485.94 −0.135973
\(695\) 10993.6 0.600018
\(696\) 83.8823 0.00456832
\(697\) −21177.1 −1.15085
\(698\) 3679.93 0.199552
\(699\) −233.094 −0.0126129
\(700\) 0 0
\(701\) 21289.4 1.14706 0.573532 0.819183i \(-0.305573\pi\)
0.573532 + 0.819183i \(0.305573\pi\)
\(702\) −111.342 −0.00598625
\(703\) −19094.1 −1.02439
\(704\) −2009.94 −0.107603
\(705\) 23.5648 0.00125887
\(706\) 25375.2 1.35270
\(707\) 0 0
\(708\) −162.525 −0.00862718
\(709\) 14503.4 0.768244 0.384122 0.923282i \(-0.374504\pi\)
0.384122 + 0.923282i \(0.374504\pi\)
\(710\) 12766.9 0.674837
\(711\) −19069.0 −1.00583
\(712\) 111.681 0.00587840
\(713\) −326.132 −0.0171300
\(714\) 0 0
\(715\) −7817.71 −0.408903
\(716\) 408.867 0.0213409
\(717\) 190.415 0.00991795
\(718\) −21291.8 −1.10669
\(719\) 2462.39 0.127722 0.0638608 0.997959i \(-0.479659\pi\)
0.0638608 + 0.997959i \(0.479659\pi\)
\(720\) 5652.98 0.292603
\(721\) 0 0
\(722\) −7524.23 −0.387844
\(723\) 1.52967 7.86848e−5 0
\(724\) 9144.13 0.469391
\(725\) −8950.70 −0.458511
\(726\) 37.3680 0.00191027
\(727\) 13804.6 0.704240 0.352120 0.935955i \(-0.385461\pi\)
0.352120 + 0.935955i \(0.385461\pi\)
\(728\) 0 0
\(729\) −19670.2 −0.999347
\(730\) −10090.4 −0.511593
\(731\) −27266.0 −1.37958
\(732\) 0.955397 4.82411e−5 0
\(733\) 28457.7 1.43398 0.716992 0.697082i \(-0.245519\pi\)
0.716992 + 0.697082i \(0.245519\pi\)
\(734\) 17574.4 0.883766
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 8898.72 0.444760
\(738\) 15624.3 0.779319
\(739\) 25496.4 1.26915 0.634573 0.772863i \(-0.281176\pi\)
0.634573 + 0.772863i \(0.281176\pi\)
\(740\) −17961.3 −0.892257
\(741\) −57.3750 −0.00284443
\(742\) 0 0
\(743\) 24682.0 1.21870 0.609351 0.792901i \(-0.291430\pi\)
0.609351 + 0.792901i \(0.291430\pi\)
\(744\) −6.14867 −0.000302985 0
\(745\) −46504.5 −2.28697
\(746\) 16566.1 0.813038
\(747\) −33841.8 −1.65757
\(748\) −9193.43 −0.449392
\(749\) 0 0
\(750\) −111.695 −0.00543805
\(751\) 10796.2 0.524579 0.262290 0.964989i \(-0.415522\pi\)
0.262290 + 0.964989i \(0.415522\pi\)
\(752\) 531.515 0.0257744
\(753\) 134.894 0.00652829
\(754\) 7358.99 0.355436
\(755\) −15718.6 −0.757693
\(756\) 0 0
\(757\) 26337.9 1.26455 0.632276 0.774743i \(-0.282121\pi\)
0.632276 + 0.774743i \(0.282121\pi\)
\(758\) −10985.4 −0.526395
\(759\) −39.1524 −0.00187239
\(760\) 5826.31 0.278082
\(761\) −28788.9 −1.37135 −0.685674 0.727909i \(-0.740492\pi\)
−0.685674 + 0.727909i \(0.740492\pi\)
\(762\) −235.295 −0.0111861
\(763\) 0 0
\(764\) −13215.8 −0.625827
\(765\) 25856.6 1.22202
\(766\) 17305.7 0.816291
\(767\) −14258.3 −0.671234
\(768\) −13.8761 −0.000651965 0
\(769\) −10675.6 −0.500612 −0.250306 0.968167i \(-0.580531\pi\)
−0.250306 + 0.968167i \(0.580531\pi\)
\(770\) 0 0
\(771\) 126.366 0.00590267
\(772\) 6210.19 0.289520
\(773\) 8432.58 0.392366 0.196183 0.980567i \(-0.437145\pi\)
0.196183 + 0.980567i \(0.437145\pi\)
\(774\) 20116.6 0.934207
\(775\) 656.097 0.0304099
\(776\) −2049.70 −0.0948194
\(777\) 0 0
\(778\) 1898.76 0.0874984
\(779\) 16103.3 0.740644
\(780\) −53.9711 −0.00247753
\(781\) 15318.6 0.701847
\(782\) −3366.44 −0.153943
\(783\) −566.175 −0.0258409
\(784\) 0 0
\(785\) 10305.6 0.468563
\(786\) −250.401 −0.0113632
\(787\) 10992.3 0.497883 0.248942 0.968518i \(-0.419917\pi\)
0.248942 + 0.968518i \(0.419917\pi\)
\(788\) −18180.3 −0.821888
\(789\) −192.959 −0.00870660
\(790\) −18487.7 −0.832611
\(791\) 0 0
\(792\) 6782.82 0.304315
\(793\) 83.8170 0.00375338
\(794\) −6253.81 −0.279521
\(795\) −326.216 −0.0145531
\(796\) −14152.9 −0.630195
\(797\) −30559.6 −1.35819 −0.679094 0.734051i \(-0.737627\pi\)
−0.679094 + 0.734051i \(0.737627\pi\)
\(798\) 0 0
\(799\) 2431.14 0.107644
\(800\) 1480.65 0.0654362
\(801\) −376.882 −0.0166248
\(802\) −3350.48 −0.147518
\(803\) −12107.2 −0.532070
\(804\) 61.4341 0.00269479
\(805\) 0 0
\(806\) −539.423 −0.0235736
\(807\) 184.165 0.00803336
\(808\) 13018.6 0.566821
\(809\) −779.749 −0.0338869 −0.0169435 0.999856i \(-0.505394\pi\)
−0.0169435 + 0.999856i \(0.505394\pi\)
\(810\) −19074.7 −0.827426
\(811\) 14098.7 0.610445 0.305222 0.952281i \(-0.401269\pi\)
0.305222 + 0.952281i \(0.401269\pi\)
\(812\) 0 0
\(813\) −245.584 −0.0105941
\(814\) −21551.2 −0.927970
\(815\) −23293.8 −1.00116
\(816\) −63.4687 −0.00272285
\(817\) 20733.4 0.887845
\(818\) −17902.8 −0.765229
\(819\) 0 0
\(820\) 15148.0 0.645110
\(821\) 4473.53 0.190167 0.0950837 0.995469i \(-0.469688\pi\)
0.0950837 + 0.995469i \(0.469688\pi\)
\(822\) 174.167 0.00739022
\(823\) 11771.4 0.498574 0.249287 0.968430i \(-0.419804\pi\)
0.249287 + 0.968430i \(0.419804\pi\)
\(824\) −460.879 −0.0194848
\(825\) 78.7650 0.00332393
\(826\) 0 0
\(827\) 9400.65 0.395275 0.197638 0.980275i \(-0.436673\pi\)
0.197638 + 0.980275i \(0.436673\pi\)
\(828\) 2483.73 0.104246
\(829\) −42378.6 −1.77548 −0.887738 0.460349i \(-0.847724\pi\)
−0.887738 + 0.460349i \(0.847724\pi\)
\(830\) −32810.2 −1.37212
\(831\) −238.717 −0.00996510
\(832\) −1217.35 −0.0507258
\(833\) 0 0
\(834\) 91.0660 0.00378100
\(835\) 19541.3 0.809887
\(836\) 6990.79 0.289212
\(837\) 41.5013 0.00171385
\(838\) −7622.55 −0.314220
\(839\) 7200.79 0.296304 0.148152 0.988965i \(-0.452668\pi\)
0.148152 + 0.988965i \(0.452668\pi\)
\(840\) 0 0
\(841\) 13031.4 0.534314
\(842\) −7660.69 −0.313545
\(843\) −95.1120 −0.00388592
\(844\) 7721.85 0.314925
\(845\) 24017.3 0.977776
\(846\) −1793.67 −0.0728932
\(847\) 0 0
\(848\) −7357.98 −0.297965
\(849\) −117.299 −0.00474168
\(850\) 6772.46 0.273287
\(851\) −7891.59 −0.317885
\(852\) 105.755 0.00425247
\(853\) −18633.5 −0.747946 −0.373973 0.927440i \(-0.622005\pi\)
−0.373973 + 0.927440i \(0.622005\pi\)
\(854\) 0 0
\(855\) −19661.7 −0.786449
\(856\) −6019.14 −0.240339
\(857\) 10637.9 0.424017 0.212009 0.977268i \(-0.431999\pi\)
0.212009 + 0.977268i \(0.431999\pi\)
\(858\) −64.7581 −0.00257670
\(859\) 7232.74 0.287285 0.143643 0.989630i \(-0.454118\pi\)
0.143643 + 0.989630i \(0.454118\pi\)
\(860\) 19503.3 0.773324
\(861\) 0 0
\(862\) 17512.6 0.691975
\(863\) 42247.1 1.66641 0.833203 0.552967i \(-0.186505\pi\)
0.833203 + 0.552967i \(0.186505\pi\)
\(864\) 93.6583 0.00368787
\(865\) −52253.1 −2.05394
\(866\) 521.808 0.0204755
\(867\) −24.0032 −0.000940244 0
\(868\) 0 0
\(869\) −22182.8 −0.865936
\(870\) −274.442 −0.0106948
\(871\) 5389.61 0.209667
\(872\) −11230.2 −0.436127
\(873\) 6916.98 0.268161
\(874\) 2559.88 0.0990725
\(875\) 0 0
\(876\) −83.5842 −0.00322380
\(877\) −47245.6 −1.81912 −0.909560 0.415572i \(-0.863582\pi\)
−0.909560 + 0.415572i \(0.863582\pi\)
\(878\) −25814.2 −0.992239
\(879\) −281.857 −0.0108155
\(880\) 6576.05 0.251908
\(881\) 8004.88 0.306120 0.153060 0.988217i \(-0.451087\pi\)
0.153060 + 0.988217i \(0.451087\pi\)
\(882\) 0 0
\(883\) −43800.6 −1.66932 −0.834659 0.550767i \(-0.814335\pi\)
−0.834659 + 0.550767i \(0.814335\pi\)
\(884\) −5568.11 −0.211850
\(885\) 531.741 0.0201969
\(886\) −776.651 −0.0294493
\(887\) −1929.00 −0.0730208 −0.0365104 0.999333i \(-0.511624\pi\)
−0.0365104 + 0.999333i \(0.511624\pi\)
\(888\) −148.783 −0.00562255
\(889\) 0 0
\(890\) −365.393 −0.0137618
\(891\) −22887.0 −0.860544
\(892\) −14403.8 −0.540667
\(893\) −1848.66 −0.0692757
\(894\) −385.221 −0.0144113
\(895\) −1337.71 −0.0499607
\(896\) 0 0
\(897\) −23.7131 −0.000882672 0
\(898\) −8117.70 −0.301660
\(899\) −2742.96 −0.101761
\(900\) −4996.66 −0.185061
\(901\) −33655.2 −1.24441
\(902\) 18175.5 0.670930
\(903\) 0 0
\(904\) 14332.2 0.527305
\(905\) −29917.4 −1.09888
\(906\) −130.205 −0.00477459
\(907\) 3445.37 0.126132 0.0630660 0.998009i \(-0.479912\pi\)
0.0630660 + 0.998009i \(0.479912\pi\)
\(908\) 15050.5 0.550075
\(909\) −43932.9 −1.60304
\(910\) 0 0
\(911\) 30571.3 1.11183 0.555913 0.831241i \(-0.312369\pi\)
0.555913 + 0.831241i \(0.312369\pi\)
\(912\) 48.2624 0.00175233
\(913\) −39367.8 −1.42704
\(914\) 1128.82 0.0408511
\(915\) −3.12583 −0.000112936 0
\(916\) −7185.69 −0.259194
\(917\) 0 0
\(918\) 428.391 0.0154020
\(919\) −29854.7 −1.07162 −0.535809 0.844339i \(-0.679993\pi\)
−0.535809 + 0.844339i \(0.679993\pi\)
\(920\) 2408.01 0.0862933
\(921\) −139.233 −0.00498140
\(922\) −25676.7 −0.917156
\(923\) 9277.89 0.330862
\(924\) 0 0
\(925\) 15875.9 0.564322
\(926\) −13486.5 −0.478611
\(927\) 1555.30 0.0551053
\(928\) −6190.19 −0.218969
\(929\) −37797.8 −1.33488 −0.667441 0.744663i \(-0.732610\pi\)
−0.667441 + 0.744663i \(0.732610\pi\)
\(930\) 20.1170 0.000709313 0
\(931\) 0 0
\(932\) 17201.4 0.604562
\(933\) 117.155 0.00411091
\(934\) 8126.64 0.284702
\(935\) 30078.7 1.05206
\(936\) 4108.10 0.143459
\(937\) 2885.94 0.100618 0.0503092 0.998734i \(-0.483979\pi\)
0.0503092 + 0.998734i \(0.483979\pi\)
\(938\) 0 0
\(939\) 33.0799 0.00114965
\(940\) −1738.99 −0.0603400
\(941\) −13767.0 −0.476929 −0.238465 0.971151i \(-0.576644\pi\)
−0.238465 + 0.971151i \(0.576644\pi\)
\(942\) 85.3665 0.00295264
\(943\) 6655.51 0.229834
\(944\) 11993.7 0.413518
\(945\) 0 0
\(946\) 23401.4 0.804277
\(947\) −54210.7 −1.86020 −0.930102 0.367302i \(-0.880281\pi\)
−0.930102 + 0.367302i \(0.880281\pi\)
\(948\) −153.143 −0.00524669
\(949\) −7332.84 −0.250826
\(950\) −5149.86 −0.175877
\(951\) −81.2313 −0.00276983
\(952\) 0 0
\(953\) 33288.7 1.13151 0.565753 0.824574i \(-0.308585\pi\)
0.565753 + 0.824574i \(0.308585\pi\)
\(954\) 24830.5 0.842680
\(955\) 43239.0 1.46511
\(956\) −14051.9 −0.475388
\(957\) −329.294 −0.0111229
\(958\) −17606.4 −0.593776
\(959\) 0 0
\(960\) 45.3991 0.00152630
\(961\) −29589.9 −0.993251
\(962\) −13052.7 −0.437460
\(963\) 20312.4 0.679707
\(964\) −112.884 −0.00377152
\(965\) −20318.3 −0.677790
\(966\) 0 0
\(967\) −29821.4 −0.991719 −0.495860 0.868403i \(-0.665147\pi\)
−0.495860 + 0.868403i \(0.665147\pi\)
\(968\) −2757.62 −0.0915632
\(969\) 220.751 0.00731841
\(970\) 6706.11 0.221980
\(971\) 59734.7 1.97423 0.987115 0.160011i \(-0.0511528\pi\)
0.987115 + 0.160011i \(0.0511528\pi\)
\(972\) −474.102 −0.0156449
\(973\) 0 0
\(974\) −28248.9 −0.929315
\(975\) 47.7049 0.00156695
\(976\) −70.5047 −0.00231230
\(977\) −13895.1 −0.455010 −0.227505 0.973777i \(-0.573057\pi\)
−0.227505 + 0.973777i \(0.573057\pi\)
\(978\) −192.954 −0.00630879
\(979\) −438.423 −0.0143126
\(980\) 0 0
\(981\) 37897.8 1.23342
\(982\) −20850.4 −0.677558
\(983\) 46977.7 1.52427 0.762134 0.647419i \(-0.224152\pi\)
0.762134 + 0.647419i \(0.224152\pi\)
\(984\) 125.479 0.00406515
\(985\) 59481.6 1.92410
\(986\) −28313.8 −0.914497
\(987\) 0 0
\(988\) 4234.06 0.136339
\(989\) 8569.11 0.275513
\(990\) −22191.8 −0.712425
\(991\) −17180.5 −0.550712 −0.275356 0.961342i \(-0.588796\pi\)
−0.275356 + 0.961342i \(0.588796\pi\)
\(992\) 453.748 0.0145227
\(993\) 68.9521 0.00220355
\(994\) 0 0
\(995\) 46304.7 1.47534
\(996\) −271.784 −0.00864638
\(997\) 19426.4 0.617091 0.308545 0.951210i \(-0.400158\pi\)
0.308545 + 0.951210i \(0.400158\pi\)
\(998\) −27991.2 −0.887820
\(999\) 1004.23 0.0318042
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.x.1.6 11
7.3 odd 6 322.4.e.b.93.6 22
7.5 odd 6 322.4.e.b.277.6 yes 22
7.6 odd 2 2254.4.a.w.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.4.e.b.93.6 22 7.3 odd 6
322.4.e.b.277.6 yes 22 7.5 odd 6
2254.4.a.w.1.6 11 7.6 odd 2
2254.4.a.x.1.6 11 1.1 even 1 trivial